linux/drivers/net/ethernet/qlogic/qed/qed_init_fw_funcs.c
Michal Kalderon d52c89f120 qed*: Utilize FW 8.37.2.0
This FW contains several fixes and features.

RDMA
- Several modifications and fixes for Memory Windows
- drop vlan and tcp timestamp from mss calculation in driver for
  this FW
- Fix SQ completion flow when local ack timeout is infinite
- Modifications in t10dif support

ETH
- Fix aRFS for tunneled traffic without inner IP.
- Fix chip configuration which may fail under heavy traffic conditions.
- Support receiving any-VNI in VXLAN and GENEVE RX classification.

iSCSI / FcoE
- Fix iSCSI recovery flow
- Drop vlan and tcp timestamp from mss calc for fw 8.37.2.0

Misc
- Several registers (split registers) won't read correctly with
  ethtool -d

Signed-off-by: Ariel Elior <Ariel.Elior@cavium.com>
Signed-off-by: Manish Rangankar <manish.rangankar@cavium.com>
Signed-off-by: Michal Kalderon <Michal.Kalderon@cavium.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-06-05 10:48:09 -04:00

1560 lines
46 KiB
C

/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and /or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/types.h>
#include <linux/crc8.h>
#include <linux/delay.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/string.h>
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_init_ops.h"
#include "qed_reg_addr.h"
#define CDU_VALIDATION_DEFAULT_CFG 61
static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = {
{400, 336, 352, 304, 304, 384, 416, 352}, /* region 3 offsets */
{528, 496, 416, 448, 448, 512, 544, 480}, /* region 4 offsets */
{608, 544, 496, 512, 576, 592, 624, 560} /* region 5 offsets */
};
static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = {
{240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */
};
/* General constants */
#define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \
QM_PQ_ELEMENT_SIZE, \
0x1000) : 0)
#define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \
0x100) - 1 : 0)
#define QM_INVALID_PQ_ID 0xffff
/* Feature enable */
#define QM_BYPASS_EN 1
#define QM_BYTE_CRD_EN 1
/* Other PQ constants */
#define QM_OTHER_PQS_PER_PF 4
/* WFQ constants */
/* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */
#define QM_WFQ_UPPER_BOUND 62500000
/* Bit of VOQ in WFQ VP PQ map */
#define QM_WFQ_VP_PQ_VOQ_SHIFT 0
/* Bit of PF in WFQ VP PQ map */
#define QM_WFQ_VP_PQ_PF_E4_SHIFT 5
/* 0x9000 = 4*9*1024 */
#define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000)
/* Max WFQ increment value is 0.7 * upper bound */
#define QM_WFQ_MAX_INC_VAL ((QM_WFQ_UPPER_BOUND * 7) / 10)
/* RL constants */
/* Period in us */
#define QM_RL_PERIOD 5
/* Period in 25MHz cycles */
#define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD)
/* RL increment value - rate is specified in mbps */
#define QM_RL_INC_VAL(rate) ({ \
typeof(rate) __rate = (rate); \
max_t(u32, \
(u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \
(8 * 100)), \
1); })
/* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */
#define QM_PF_RL_UPPER_BOUND 62500000
/* Max PF RL increment value is 0.7 * upper bound */
#define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10)
/* Vport RL Upper bound, link speed is in Mpbs */
#define QM_VP_RL_UPPER_BOUND(speed) ((u32)max_t(u32, \
QM_RL_INC_VAL(speed), \
9700 + 1000))
/* Max Vport RL increment value is the Vport RL upper bound */
#define QM_VP_RL_MAX_INC_VAL(speed) QM_VP_RL_UPPER_BOUND(speed)
/* Vport RL credit threshold in case of QM bypass */
#define QM_VP_RL_BYPASS_THRESH_SPEED (QM_VP_RL_UPPER_BOUND(10000) - 1)
/* AFullOprtnstcCrdMask constants */
#define QM_OPPOR_LINE_VOQ_DEF 1
#define QM_OPPOR_FW_STOP_DEF 0
#define QM_OPPOR_PQ_EMPTY_DEF 1
/* Command Queue constants */
/* Pure LB CmdQ lines (+spare) */
#define PBF_CMDQ_PURE_LB_LINES 150
#define PBF_CMDQ_LINES_E5_RSVD_RATIO 8
#define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \
(PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \
(ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \
PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET))
#define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \
(PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \
(ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \
PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET))
#define QM_VOQ_LINE_CRD(pbf_cmd_lines) \
((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT)
/* BTB: blocks constants (block size = 256B) */
/* 256B blocks in 9700B packet */
#define BTB_JUMBO_PKT_BLOCKS 38
/* Headroom per-port */
#define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS
#define BTB_PURE_LB_FACTOR 10
/* Factored (hence really 0.7) */
#define BTB_PURE_LB_RATIO 7
/* QM stop command constants */
#define QM_STOP_PQ_MASK_WIDTH 32
#define QM_STOP_CMD_ADDR 2
#define QM_STOP_CMD_STRUCT_SIZE 2
#define QM_STOP_CMD_PAUSE_MASK_OFFSET 0
#define QM_STOP_CMD_PAUSE_MASK_SHIFT 0
#define QM_STOP_CMD_PAUSE_MASK_MASK -1
#define QM_STOP_CMD_GROUP_ID_OFFSET 1
#define QM_STOP_CMD_GROUP_ID_SHIFT 16
#define QM_STOP_CMD_GROUP_ID_MASK 15
#define QM_STOP_CMD_PQ_TYPE_OFFSET 1
#define QM_STOP_CMD_PQ_TYPE_SHIFT 24
#define QM_STOP_CMD_PQ_TYPE_MASK 1
#define QM_STOP_CMD_MAX_POLL_COUNT 100
#define QM_STOP_CMD_POLL_PERIOD_US 500
/* QM command macros */
#define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE
#define QM_CMD_SET_FIELD(var, cmd, field, value) \
SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \
cmd ## _ ## field, \
value)
#define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, rl_valid, vp_pq_id, rl_id, \
ext_voq, wrr) \
do { \
typeof(map) __map; \
memset(&__map, 0, sizeof(__map)); \
SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _PQ_VALID, 1); \
SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_VALID, \
rl_valid); \
SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VP_PQ_ID, \
vp_pq_id); \
SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _RL_ID, rl_id); \
SET_FIELD(__map.reg, QM_RF_PQ_MAP_ ## chip ## _VOQ, ext_voq); \
SET_FIELD(__map.reg, \
QM_RF_PQ_MAP_ ## chip ## _WRR_WEIGHT_GROUP, wrr); \
STORE_RT_REG(p_hwfn, QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \
*((u32 *)&__map)); \
(map) = __map; \
} while (0)
#define WRITE_PQ_INFO_TO_RAM 1
#define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \
(((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \
((rl_valid) << 22) | ((rl) << 24))
#define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \
(XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + 21776 + (pq_id) * 4)
/******************** INTERNAL IMPLEMENTATION *********************/
/* Returns the external VOQ number */
static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn,
u8 port_id, u8 tc, u8 max_phys_tcs_per_port)
{
if (tc == PURE_LB_TC)
return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id;
else
return port_id * max_phys_tcs_per_port + tc;
}
/* Prepare PF RL enable/disable runtime init values */
static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en)
{
STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0);
if (pf_rl_en) {
u8 num_ext_voqs = MAX_NUM_VOQS_E4;
u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1;
/* Enable RLs for all VOQs */
STORE_RT_REG(p_hwfn,
QM_REG_RLPFVOQENABLE_RT_OFFSET,
(u32)voq_bit_mask);
if (num_ext_voqs >= 32)
STORE_RT_REG(p_hwfn, QM_REG_RLPFVOQENABLE_MSB_RT_OFFSET,
(u32)(voq_bit_mask >> 32));
/* Write RL period */
STORE_RT_REG(p_hwfn,
QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M);
STORE_RT_REG(p_hwfn,
QM_REG_RLPFPERIODTIMER_RT_OFFSET,
QM_RL_PERIOD_CLK_25M);
/* Set credit threshold for QM bypass flow */
if (QM_BYPASS_EN)
STORE_RT_REG(p_hwfn,
QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET,
QM_PF_RL_UPPER_BOUND);
}
}
/* Prepare PF WFQ enable/disable runtime init values */
static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en)
{
STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0);
/* Set credit threshold for QM bypass flow */
if (pf_wfq_en && QM_BYPASS_EN)
STORE_RT_REG(p_hwfn,
QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET,
QM_WFQ_UPPER_BOUND);
}
/* Prepare VPORT RL enable/disable runtime init values */
static void qed_enable_vport_rl(struct qed_hwfn *p_hwfn, bool vport_rl_en)
{
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET,
vport_rl_en ? 1 : 0);
if (vport_rl_en) {
/* Write RL period (use timer 0 only) */
STORE_RT_REG(p_hwfn,
QM_REG_RLGLBLPERIOD_0_RT_OFFSET,
QM_RL_PERIOD_CLK_25M);
STORE_RT_REG(p_hwfn,
QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET,
QM_RL_PERIOD_CLK_25M);
/* Set credit threshold for QM bypass flow */
if (QM_BYPASS_EN)
STORE_RT_REG(p_hwfn,
QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET,
QM_VP_RL_BYPASS_THRESH_SPEED);
}
}
/* Prepare VPORT WFQ enable/disable runtime init values */
static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en)
{
STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET,
vport_wfq_en ? 1 : 0);
/* Set credit threshold for QM bypass flow */
if (vport_wfq_en && QM_BYPASS_EN)
STORE_RT_REG(p_hwfn,
QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET,
QM_WFQ_UPPER_BOUND);
}
/* Prepare runtime init values to allocate PBF command queue lines for
* the specified VOQ.
*/
static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn,
u8 ext_voq, u16 cmdq_lines)
{
u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines);
OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq),
(u32)cmdq_lines);
STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq,
qm_line_crd);
STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq,
qm_line_crd);
}
/* Prepare runtime init values to allocate PBF command queue lines. */
static void qed_cmdq_lines_rt_init(
struct qed_hwfn *p_hwfn,
u8 max_ports_per_engine,
u8 max_phys_tcs_per_port,
struct init_qm_port_params port_params[MAX_NUM_PORTS])
{
u8 tc, ext_voq, port_id, num_tcs_in_port;
u8 num_ext_voqs = MAX_NUM_VOQS_E4;
/* Clear PBF lines of all VOQs */
for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++)
STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0);
for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
u16 phys_lines, phys_lines_per_tc;
if (!port_params[port_id].active)
continue;
/* Find number of command queue lines to divide between the
* active physical TCs. In E5, 1/8 of the lines are reserved.
* the lines for pure LB TC are subtracted.
*/
phys_lines = port_params[port_id].num_pbf_cmd_lines;
phys_lines -= PBF_CMDQ_PURE_LB_LINES;
/* Find #lines per active physical TC */
num_tcs_in_port = 0;
for (tc = 0; tc < max_phys_tcs_per_port; tc++)
if (((port_params[port_id].active_phys_tcs >>
tc) & 0x1) == 1)
num_tcs_in_port++;
phys_lines_per_tc = phys_lines / num_tcs_in_port;
/* Init registers per active TC */
for (tc = 0; tc < max_phys_tcs_per_port; tc++) {
ext_voq = qed_get_ext_voq(p_hwfn,
port_id,
tc, max_phys_tcs_per_port);
if (((port_params[port_id].active_phys_tcs >>
tc) & 0x1) == 1)
qed_cmdq_lines_voq_rt_init(p_hwfn,
ext_voq,
phys_lines_per_tc);
}
/* Init registers for pure LB TC */
ext_voq = qed_get_ext_voq(p_hwfn,
port_id,
PURE_LB_TC, max_phys_tcs_per_port);
qed_cmdq_lines_voq_rt_init(p_hwfn,
ext_voq, PBF_CMDQ_PURE_LB_LINES);
}
}
static void qed_btb_blocks_rt_init(
struct qed_hwfn *p_hwfn,
u8 max_ports_per_engine,
u8 max_phys_tcs_per_port,
struct init_qm_port_params port_params[MAX_NUM_PORTS])
{
u32 usable_blocks, pure_lb_blocks, phys_blocks;
u8 tc, ext_voq, port_id, num_tcs_in_port;
for (port_id = 0; port_id < max_ports_per_engine; port_id++) {
if (!port_params[port_id].active)
continue;
/* Subtract headroom blocks */
usable_blocks = port_params[port_id].num_btb_blocks -
BTB_HEADROOM_BLOCKS;
/* Find blocks per physical TC. Use factor to avoid floating
* arithmethic.
*/
num_tcs_in_port = 0;
for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++)
if (((port_params[port_id].active_phys_tcs >>
tc) & 0x1) == 1)
num_tcs_in_port++;
pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) /
(num_tcs_in_port * BTB_PURE_LB_FACTOR +
BTB_PURE_LB_RATIO);
pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS,
pure_lb_blocks / BTB_PURE_LB_FACTOR);
phys_blocks = (usable_blocks - pure_lb_blocks) /
num_tcs_in_port;
/* Init physical TCs */
for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) {
if (((port_params[port_id].active_phys_tcs >>
tc) & 0x1) == 1) {
ext_voq =
qed_get_ext_voq(p_hwfn,
port_id,
tc,
max_phys_tcs_per_port);
STORE_RT_REG(p_hwfn,
PBF_BTB_GUARANTEED_RT_OFFSET
(ext_voq), phys_blocks);
}
}
/* Init pure LB TC */
ext_voq = qed_get_ext_voq(p_hwfn,
port_id,
PURE_LB_TC, max_phys_tcs_per_port);
STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq),
pure_lb_blocks);
}
}
/* Prepare Tx PQ mapping runtime init values for the specified PF */
static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_qm_pf_rt_init_params *p_params,
u32 base_mem_addr_4kb)
{
u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 };
struct init_qm_vport_params *vport_params = p_params->vport_params;
u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE;
u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group;
struct init_qm_pq_params *pq_params = p_params->pq_params;
u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb;
num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE;
last_pq_group = (p_params->start_pq + num_pqs - 1) /
QM_PF_QUEUE_GROUP_SIZE;
pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids);
vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids);
mem_addr_4kb = base_mem_addr_4kb;
/* Set mapping from PQ group to PF */
for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++)
STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group,
(u32)(p_params->pf_id));
/* Set PQ sizes */
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET,
QM_PQ_SIZE_256B(p_params->num_pf_cids));
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET,
QM_PQ_SIZE_256B(p_params->num_vf_cids));
/* Go over all Tx PQs */
for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) {
u8 ext_voq, vport_id_in_pf, tc_id = pq_params[i].tc_id;
u32 max_qm_global_rls = MAX_QM_GLOBAL_RLS;
struct qm_rf_pq_map_e4 tx_pq_map;
bool is_vf_pq, rl_valid;
u16 *p_first_tx_pq_id;
ext_voq = qed_get_ext_voq(p_hwfn,
pq_params[i].port_id,
tc_id,
p_params->max_phys_tcs_per_port);
is_vf_pq = (i >= p_params->num_pf_pqs);
rl_valid = pq_params[i].rl_valid > 0;
/* Update first Tx PQ of VPORT/TC */
vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport;
p_first_tx_pq_id =
&vport_params[vport_id_in_pf].first_tx_pq_id[tc_id];
if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) {
u32 map_val =
(ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) |
(p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT);
/* Create new VP PQ */
*p_first_tx_pq_id = pq_id;
/* Map VP PQ to VOQ and PF */
STORE_RT_REG(p_hwfn,
QM_REG_WFQVPMAP_RT_OFFSET +
*p_first_tx_pq_id,
map_val);
}
/* Check RL ID */
if (rl_valid && pq_params[i].vport_id >= max_qm_global_rls) {
DP_NOTICE(p_hwfn,
"Invalid VPORT ID for rate limiter configuration\n");
rl_valid = false;
}
/* Prepare PQ map entry */
QM_INIT_TX_PQ_MAP(p_hwfn,
tx_pq_map,
E4,
pq_id,
rl_valid ? 1 : 0,
*p_first_tx_pq_id,
rl_valid ? pq_params[i].vport_id : 0,
ext_voq, pq_params[i].wrr_group);
/* Set PQ base address */
STORE_RT_REG(p_hwfn,
QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id,
mem_addr_4kb);
/* Clear PQ pointer table entry (64 bit) */
if (p_params->is_pf_loading)
for (j = 0; j < 2; j++)
STORE_RT_REG(p_hwfn,
QM_REG_PTRTBLTX_RT_OFFSET +
(pq_id * 2) + j, 0);
/* Write PQ info to RAM */
if (WRITE_PQ_INFO_TO_RAM != 0) {
u32 pq_info = 0;
pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id,
p_params->pf_id,
tc_id,
pq_params[i].port_id,
rl_valid ? 1 : 0,
rl_valid ?
pq_params[i].vport_id : 0);
qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id),
pq_info);
}
/* If VF PQ, add indication to PQ VF mask */
if (is_vf_pq) {
tx_pq_vf_mask[pq_id /
QM_PF_QUEUE_GROUP_SIZE] |=
BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE));
mem_addr_4kb += vport_pq_mem_4kb;
} else {
mem_addr_4kb += pq_mem_4kb;
}
}
/* Store Tx PQ VF mask to size select register */
for (i = 0; i < num_tx_pq_vf_masks; i++)
if (tx_pq_vf_mask[i])
STORE_RT_REG(p_hwfn,
QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i,
tx_pq_vf_mask[i]);
}
/* Prepare Other PQ mapping runtime init values for the specified PF */
static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn,
u8 pf_id,
bool is_pf_loading,
u32 num_pf_cids,
u32 num_tids, u32 base_mem_addr_4kb)
{
u32 pq_size, pq_mem_4kb, mem_addr_4kb;
u16 i, j, pq_id, pq_group;
/* A single other PQ group is used in each PF, where PQ group i is used
* in PF i.
*/
pq_group = pf_id;
pq_size = num_pf_cids + num_tids;
pq_mem_4kb = QM_PQ_MEM_4KB(pq_size);
mem_addr_4kb = base_mem_addr_4kb;
/* Map PQ group to PF */
STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group,
(u32)(pf_id));
/* Set PQ sizes */
STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET,
QM_PQ_SIZE_256B(pq_size));
for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE;
i < QM_OTHER_PQS_PER_PF; i++, pq_id++) {
/* Set PQ base address */
STORE_RT_REG(p_hwfn,
QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id,
mem_addr_4kb);
/* Clear PQ pointer table entry */
if (is_pf_loading)
for (j = 0; j < 2; j++)
STORE_RT_REG(p_hwfn,
QM_REG_PTRTBLOTHER_RT_OFFSET +
(pq_id * 2) + j, 0);
mem_addr_4kb += pq_mem_4kb;
}
}
/* Prepare PF WFQ runtime init values for the specified PF.
* Return -1 on error.
*/
static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn,
struct qed_qm_pf_rt_init_params *p_params)
{
u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs;
struct init_qm_pq_params *pq_params = p_params->pq_params;
u32 inc_val, crd_reg_offset;
u8 ext_voq;
u16 i;
inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq);
if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
return -1;
}
for (i = 0; i < num_tx_pqs; i++) {
ext_voq = qed_get_ext_voq(p_hwfn,
pq_params[i].port_id,
pq_params[i].tc_id,
p_params->max_phys_tcs_per_port);
crd_reg_offset =
(p_params->pf_id < MAX_NUM_PFS_BB ?
QM_REG_WFQPFCRD_RT_OFFSET :
QM_REG_WFQPFCRD_MSB_RT_OFFSET) +
ext_voq * MAX_NUM_PFS_BB +
(p_params->pf_id % MAX_NUM_PFS_BB);
OVERWRITE_RT_REG(p_hwfn,
crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT);
}
STORE_RT_REG(p_hwfn,
QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id,
QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id,
inc_val);
return 0;
}
/* Prepare PF RL runtime init values for the specified PF.
* Return -1 on error.
*/
static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl)
{
u32 inc_val = QM_RL_INC_VAL(pf_rl);
if (inc_val > QM_PF_RL_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
return -1;
}
STORE_RT_REG(p_hwfn,
QM_REG_RLPFCRD_RT_OFFSET + pf_id,
(u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn,
QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id,
QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val);
return 0;
}
/* Prepare VPORT WFQ runtime init values for the specified VPORTs.
* Return -1 on error.
*/
static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn,
u8 num_vports,
struct init_qm_vport_params *vport_params)
{
u16 vport_pq_id;
u32 inc_val;
u8 tc, i;
/* Go over all PF VPORTs */
for (i = 0; i < num_vports; i++) {
if (!vport_params[i].vport_wfq)
continue;
inc_val = QM_WFQ_INC_VAL(vport_params[i].vport_wfq);
if (inc_val > QM_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn,
"Invalid VPORT WFQ weight configuration\n");
return -1;
}
/* Each VPORT can have several VPORT PQ IDs for various TCs */
for (tc = 0; tc < NUM_OF_TCS; tc++) {
vport_pq_id = vport_params[i].first_tx_pq_id[tc];
if (vport_pq_id != QM_INVALID_PQ_ID) {
STORE_RT_REG(p_hwfn,
QM_REG_WFQVPCRD_RT_OFFSET +
vport_pq_id,
(u32)QM_WFQ_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn,
QM_REG_WFQVPWEIGHT_RT_OFFSET +
vport_pq_id, inc_val);
}
}
}
return 0;
}
/* Prepare VPORT RL runtime init values for the specified VPORTs.
* Return -1 on error.
*/
static int qed_vport_rl_rt_init(struct qed_hwfn *p_hwfn,
u8 start_vport,
u8 num_vports,
u32 link_speed,
struct init_qm_vport_params *vport_params)
{
u8 i, vport_id;
u32 inc_val;
if (start_vport + num_vports >= MAX_QM_GLOBAL_RLS) {
DP_NOTICE(p_hwfn,
"Invalid VPORT ID for rate limiter configuration\n");
return -1;
}
/* Go over all PF VPORTs */
for (i = 0, vport_id = start_vport; i < num_vports; i++, vport_id++) {
inc_val = QM_RL_INC_VAL(vport_params[i].vport_rl ?
vport_params[i].vport_rl :
link_speed);
if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
DP_NOTICE(p_hwfn,
"Invalid VPORT rate-limit configuration\n");
return -1;
}
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLCRD_RT_OFFSET + vport_id,
(u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn,
QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + vport_id,
QM_VP_RL_UPPER_BOUND(link_speed) |
(u32)QM_RL_CRD_REG_SIGN_BIT);
STORE_RT_REG(p_hwfn, QM_REG_RLGLBLINCVAL_RT_OFFSET + vport_id,
inc_val);
}
return 0;
}
static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
u32 reg_val, i;
for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val;
i++) {
udelay(QM_STOP_CMD_POLL_PERIOD_US);
reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY);
}
/* Check if timeout while waiting for SDM command ready */
if (i == QM_STOP_CMD_MAX_POLL_COUNT) {
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
"Timeout when waiting for QM SDM command ready signal\n");
return false;
}
return true;
}
static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb)
{
if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt))
return false;
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr);
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb);
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb);
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1);
qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0);
return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt);
}
/******************** INTERFACE IMPLEMENTATION *********************/
u32 qed_qm_pf_mem_size(u32 num_pf_cids,
u32 num_vf_cids,
u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs)
{
return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs +
QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs +
QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF;
}
int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn,
struct qed_qm_common_rt_init_params *p_params)
{
/* Init AFullOprtnstcCrdMask */
u32 mask = (QM_OPPOR_LINE_VOQ_DEF <<
QM_RF_OPPORTUNISTIC_MASK_LINEVOQ_SHIFT) |
(QM_BYTE_CRD_EN << QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ_SHIFT) |
(p_params->pf_wfq_en <<
QM_RF_OPPORTUNISTIC_MASK_PFWFQ_SHIFT) |
(p_params->vport_wfq_en <<
QM_RF_OPPORTUNISTIC_MASK_VPWFQ_SHIFT) |
(p_params->pf_rl_en <<
QM_RF_OPPORTUNISTIC_MASK_PFRL_SHIFT) |
(p_params->vport_rl_en <<
QM_RF_OPPORTUNISTIC_MASK_VPQCNRL_SHIFT) |
(QM_OPPOR_FW_STOP_DEF <<
QM_RF_OPPORTUNISTIC_MASK_FWPAUSE_SHIFT) |
(QM_OPPOR_PQ_EMPTY_DEF <<
QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY_SHIFT);
STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask);
/* Enable/disable PF RL */
qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en);
/* Enable/disable PF WFQ */
qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en);
/* Enable/disable VPORT RL */
qed_enable_vport_rl(p_hwfn, p_params->vport_rl_en);
/* Enable/disable VPORT WFQ */
qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en);
/* Init PBF CMDQ line credit */
qed_cmdq_lines_rt_init(p_hwfn,
p_params->max_ports_per_engine,
p_params->max_phys_tcs_per_port,
p_params->port_params);
/* Init BTB blocks in PBF */
qed_btb_blocks_rt_init(p_hwfn,
p_params->max_ports_per_engine,
p_params->max_phys_tcs_per_port,
p_params->port_params);
return 0;
}
int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_qm_pf_rt_init_params *p_params)
{
struct init_qm_vport_params *vport_params = p_params->vport_params;
u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids +
p_params->num_tids) *
QM_OTHER_PQS_PER_PF;
u8 tc, i;
/* Clear first Tx PQ ID array for each VPORT */
for (i = 0; i < p_params->num_vports; i++)
for (tc = 0; tc < NUM_OF_TCS; tc++)
vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID;
/* Map Other PQs (if any) */
qed_other_pq_map_rt_init(p_hwfn,
p_params->pf_id,
p_params->is_pf_loading, p_params->num_pf_cids,
p_params->num_tids, 0);
/* Map Tx PQs */
qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb);
/* Init PF WFQ */
if (p_params->pf_wfq)
if (qed_pf_wfq_rt_init(p_hwfn, p_params))
return -1;
/* Init PF RL */
if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl))
return -1;
/* Set VPORT WFQ */
if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params))
return -1;
/* Set VPORT RL */
if (qed_vport_rl_rt_init(p_hwfn, p_params->start_vport,
p_params->num_vports, p_params->link_speed,
vport_params))
return -1;
return 0;
}
int qed_init_pf_wfq(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq)
{
u32 inc_val = QM_WFQ_INC_VAL(pf_wfq);
if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n");
return -1;
}
qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val);
return 0;
}
int qed_init_pf_rl(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl)
{
u32 inc_val = QM_RL_INC_VAL(pf_rl);
if (inc_val > QM_PF_RL_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n");
return -1;
}
qed_wr(p_hwfn,
p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val);
return 0;
}
int qed_init_vport_wfq(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 first_tx_pq_id[NUM_OF_TCS], u16 vport_wfq)
{
u16 vport_pq_id;
u32 inc_val;
u8 tc;
inc_val = QM_WFQ_INC_VAL(vport_wfq);
if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) {
DP_NOTICE(p_hwfn, "Invalid VPORT WFQ weight configuration\n");
return -1;
}
for (tc = 0; tc < NUM_OF_TCS; tc++) {
vport_pq_id = first_tx_pq_id[tc];
if (vport_pq_id != QM_INVALID_PQ_ID)
qed_wr(p_hwfn,
p_ptt,
QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val);
}
return 0;
}
int qed_init_vport_rl(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u8 vport_id, u32 vport_rl, u32 link_speed)
{
u32 inc_val, max_qm_global_rls = MAX_QM_GLOBAL_RLS;
if (vport_id >= max_qm_global_rls) {
DP_NOTICE(p_hwfn,
"Invalid VPORT ID for rate limiter configuration\n");
return -1;
}
inc_val = QM_RL_INC_VAL(vport_rl ? vport_rl : link_speed);
if (inc_val > QM_VP_RL_MAX_INC_VAL(link_speed)) {
DP_NOTICE(p_hwfn, "Invalid VPORT rate-limit configuration\n");
return -1;
}
qed_wr(p_hwfn,
p_ptt,
QM_REG_RLGLBLCRD + vport_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT);
qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + vport_id * 4, inc_val);
return 0;
}
bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
bool is_release_cmd,
bool is_tx_pq, u16 start_pq, u16 num_pqs)
{
u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 };
u32 pq_mask = 0, last_pq, pq_id;
last_pq = start_pq + num_pqs - 1;
/* Set command's PQ type */
QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1);
/* Go over requested PQs */
for (pq_id = start_pq; pq_id <= last_pq; pq_id++) {
/* Set PQ bit in mask (stop command only) */
if (!is_release_cmd)
pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH));
/* If last PQ or end of PQ mask, write command */
if ((pq_id == last_pq) ||
(pq_id % QM_STOP_PQ_MASK_WIDTH ==
(QM_STOP_PQ_MASK_WIDTH - 1))) {
QM_CMD_SET_FIELD(cmd_arr,
QM_STOP_CMD, PAUSE_MASK, pq_mask);
QM_CMD_SET_FIELD(cmd_arr,
QM_STOP_CMD,
GROUP_ID,
pq_id / QM_STOP_PQ_MASK_WIDTH);
if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR,
cmd_arr[0], cmd_arr[1]))
return false;
pq_mask = 0;
}
}
return true;
}
#define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \
do { \
typeof(var) *__p_var = &(var); \
typeof(offset) __offset = offset; \
*__p_var = (*__p_var & ~BIT(__offset)) | \
((enable) ? BIT(__offset) : 0); \
} while (0)
#define PRS_ETH_TUNN_OUTPUT_FORMAT -188897008
#define PRS_ETH_OUTPUT_FORMAT -46832
void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 dest_port)
{
/* Update PRS register */
qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port);
/* Update NIG register */
qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port);
/* Update PBF register */
qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port);
}
void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, bool vxlan_enable)
{
u32 reg_val;
u8 shift;
/* Update PRS register */
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
if (reg_val) {
reg_val =
qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
/* Update output only if tunnel blocks not included. */
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
(u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
}
/* Update NIG register */
reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable);
qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
/* Update DORQ register */
qed_wr(p_hwfn,
p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0);
}
void qed_set_gre_enable(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
bool eth_gre_enable, bool ip_gre_enable)
{
u32 reg_val;
u8 shift;
/* Update PRS register */
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
if (reg_val) {
reg_val =
qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
/* Update output only if tunnel blocks not included. */
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
(u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
}
/* Update NIG register */
reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE);
shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable);
shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable);
qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val);
/* Update DORQ registers */
qed_wr(p_hwfn,
p_ptt,
DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0);
qed_wr(p_hwfn,
p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0);
}
void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 dest_port)
{
/* Update PRS register */
qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port);
/* Update NIG register */
qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port);
/* Update PBF register */
qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port);
}
void qed_set_geneve_enable(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
bool eth_geneve_enable, bool ip_geneve_enable)
{
u32 reg_val;
u8 shift;
/* Update PRS register */
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN);
shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable);
shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT;
SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable);
qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val);
if (reg_val) {
reg_val =
qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2);
/* Update output only if tunnel blocks not included. */
if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT)
qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
(u32)PRS_ETH_TUNN_OUTPUT_FORMAT);
}
/* Update NIG register */
qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE,
eth_geneve_enable ? 1 : 0);
qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0);
/* EDPM with geneve tunnel not supported in BB */
if (QED_IS_BB_B0(p_hwfn->cdev))
return;
/* Update DORQ registers */
qed_wr(p_hwfn,
p_ptt,
DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5,
eth_geneve_enable ? 1 : 0);
qed_wr(p_hwfn,
p_ptt,
DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5,
ip_geneve_enable ? 1 : 0);
}
#define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 4
#define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT -927094512
void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, bool enable)
{
u32 reg_val, cfg_mask;
/* read PRS config register */
reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO);
/* set VXLAN_NO_L2_ENABLE mask */
cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET);
if (enable) {
/* set VXLAN_NO_L2_ENABLE flag */
reg_val |= cfg_mask;
/* update PRS FIC register */
qed_wr(p_hwfn,
p_ptt,
PRS_REG_OUTPUT_FORMAT_4_0_BB_K2,
(u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT);
} else {
/* clear VXLAN_NO_L2_ENABLE flag */
reg_val &= ~cfg_mask;
}
/* write PRS config register */
qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val);
}
#define T_ETH_PACKET_ACTION_GFT_EVENTID 23
#define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272
#define T_ETH_PACKET_MATCH_RFS_EVENTID 25
#define PARSER_ETH_CONN_CM_HDR 0
#define CAM_LINE_SIZE sizeof(u32)
#define RAM_LINE_SIZE sizeof(u64)
#define REG_SIZE sizeof(u32)
void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id)
{
/* Disable gft search for PF */
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0);
/* Clean ram & cam for next gft session */
/* Zero camline */
qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0);
/* Zero ramline */
qed_wr(p_hwfn,
p_ptt, PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, 0);
qed_wr(p_hwfn,
p_ptt,
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + REG_SIZE,
0);
}
void qed_set_gft_event_id_cm_hdr(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
u32 rfs_cm_hdr_event_id;
/* Set RFS event ID to be awakened i Tstorm By Prs */
rfs_cm_hdr_event_id = qed_rd(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT);
rfs_cm_hdr_event_id |= T_ETH_PACKET_ACTION_GFT_EVENTID <<
PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
rfs_cm_hdr_event_id |= PARSER_ETH_CONN_GFT_ACTION_CM_HDR <<
PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, rfs_cm_hdr_event_id);
}
void qed_gft_config(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 pf_id,
bool tcp,
bool udp,
bool ipv4, bool ipv6, enum gft_profile_type profile_type)
{
u32 reg_val, cam_line, ram_line_lo, ram_line_hi, search_non_ip_as_gft;
if (!ipv6 && !ipv4)
DP_NOTICE(p_hwfn,
"gft_config: must accept at least on of - ipv4 or ipv6'\n");
if (!tcp && !udp)
DP_NOTICE(p_hwfn,
"gft_config: must accept at least on of - udp or tcp\n");
if (profile_type >= MAX_GFT_PROFILE_TYPE)
DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n");
/* Set RFS event ID to be awakened i Tstorm By Prs */
reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID <<
PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT;
reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT;
qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val);
/* Do not load context only cid in PRS on match. */
qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0);
/* Do not use tenant ID exist bit for gft search */
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0);
/* Set Cam */
cam_line = 0;
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1);
/* Filters are per PF!! */
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_PF_ID_MASK,
GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK);
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id);
if (!(tcp && udp)) {
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK,
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK);
if (tcp)
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
GFT_PROFILE_TCP_PROTOCOL);
else
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE,
GFT_PROFILE_UDP_PROTOCOL);
}
if (!(ipv4 && ipv6)) {
SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1);
if (ipv4)
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_IP_VERSION,
GFT_PROFILE_IPV4);
else
SET_FIELD(cam_line,
GFT_CAM_LINE_MAPPED_IP_VERSION,
GFT_PROFILE_IPV6);
}
/* Write characteristics to cam */
qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id,
cam_line);
cam_line =
qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id);
/* Write line to RAM - compare to filter 4 tuple */
ram_line_lo = 0;
ram_line_hi = 0;
/* Search no IP as GFT */
search_non_ip_as_gft = 0;
/* Tunnel type */
SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1);
if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) {
SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_SRC_PORT, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
} else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) {
SET_FIELD(ram_line_hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_DST_PORT, 1);
} else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) {
SET_FIELD(ram_line_hi, GFT_RAM_LINE_DST_IP, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
} else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) {
SET_FIELD(ram_line_hi, GFT_RAM_LINE_SRC_IP, 1);
SET_FIELD(ram_line_lo, GFT_RAM_LINE_ETHERTYPE, 1);
} else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) {
SET_FIELD(ram_line_lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1);
/* Allow tunneled traffic without inner IP */
search_non_ip_as_gft = 1;
}
qed_wr(p_hwfn,
p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft);
qed_wr(p_hwfn,
p_ptt,
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id,
ram_line_lo);
qed_wr(p_hwfn,
p_ptt,
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id + REG_SIZE,
ram_line_hi);
/* Set default profile so that no filter match will happen */
qed_wr(p_hwfn,
p_ptt,
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
PRS_GFT_CAM_LINES_NO_MATCH, 0xffffffff);
qed_wr(p_hwfn,
p_ptt,
PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE *
PRS_GFT_CAM_LINES_NO_MATCH + REG_SIZE, 0x3ff);
/* Enable gft search */
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1);
}
DECLARE_CRC8_TABLE(cdu_crc8_table);
/* Calculate and return CDU validation byte per connection type/region/cid */
static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid)
{
const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG;
u8 crc, validation_byte = 0;
static u8 crc8_table_valid; /* automatically initialized to 0 */
u32 validation_string = 0;
u32 data_to_crc;
if (!crc8_table_valid) {
crc8_populate_msb(cdu_crc8_table, 0x07);
crc8_table_valid = 1;
}
/* The CRC is calculated on the String-to-compress:
* [31:8] = {CID[31:20],CID[11:0]}
* [7:4] = Region
* [3:0] = Type
*/
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1)
validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8);
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1)
validation_string |= ((region & 0xF) << 4);
if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1)
validation_string |= (conn_type & 0xF);
/* Convert to big-endian and calculate CRC8 */
data_to_crc = be32_to_cpu(validation_string);
crc = crc8(cdu_crc8_table,
(u8 *)&data_to_crc, sizeof(data_to_crc), CRC8_INIT_VALUE);
/* The validation byte [7:0] is composed:
* for type A validation
* [7] = active configuration bit
* [6:0] = crc[6:0]
*
* for type B validation
* [7] = active configuration bit
* [6:3] = connection_type[3:0]
* [2:0] = crc[2:0]
*/
validation_byte |=
((validation_cfg >>
CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7;
if ((validation_cfg >>
CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1)
validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7);
else
validation_byte |= crc & 0x7F;
return validation_byte;
}
/* Calcualte and set validation bytes for session context */
void qed_calc_session_ctx_validation(void *p_ctx_mem,
u16 ctx_size, u8 ctx_type, u32 cid)
{
u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
p_ctx = (u8 * const)p_ctx_mem;
x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
memset(p_ctx, 0, ctx_size);
*x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid);
*t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid);
*u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid);
}
/* Calcualte and set validation bytes for task context */
void qed_calc_task_ctx_validation(void *p_ctx_mem,
u16 ctx_size, u8 ctx_type, u32 tid)
{
u8 *p_ctx, *region1_val_ptr;
p_ctx = (u8 * const)p_ctx_mem;
region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
memset(p_ctx, 0, ctx_size);
*region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid);
}
/* Memset session context to 0 while preserving validation bytes */
void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
{
u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx;
u8 x_val, t_val, u_val;
p_ctx = (u8 * const)p_ctx_mem;
x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]];
t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]];
u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]];
x_val = *x_val_ptr;
t_val = *t_val_ptr;
u_val = *u_val_ptr;
memset(p_ctx, 0, ctx_size);
*x_val_ptr = x_val;
*t_val_ptr = t_val;
*u_val_ptr = u_val;
}
/* Memset task context to 0 while preserving validation bytes */
void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type)
{
u8 *p_ctx, *region1_val_ptr;
u8 region1_val;
p_ctx = (u8 * const)p_ctx_mem;
region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]];
region1_val = *region1_val_ptr;
memset(p_ctx, 0, ctx_size);
*region1_val_ptr = region1_val;
}
/* Enable and configure context validation */
void qed_enable_context_validation(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
u32 ctx_validation;
/* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24;
qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation);
/* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation);
/* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */
ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8;
qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation);
}
static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id)
{
switch (storm_id) {
case 0:
return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
case 1:
return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
case 2:
return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
case 3:
return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
case 4:
return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
case 5:
return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM +
PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id);
default:
return 0;
}
}
void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u8 assert_level[NUM_STORMS])
{
u8 storm_id;
for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) {
u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id);
qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]);
}
}