Muhammad Usama Anjum fa04b7ffc2 selftests/dmabuf-heap: conform test to TAP format output
Conform the layout, informational and status messages to TAP. No
functional change is intended other than the layout of output messages.
Improve the TAP messages as well.

Reviewed-by: T.J. Mercier <tjmercier@google.com>
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Shuah Khan <skhan@linuxfoundation.org>
2024-05-06 13:57:19 -06:00

441 lines
9.8 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <dirent.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <linux/dma-buf.h>
#include <linux/dma-heap.h>
#include <drm/drm.h>
#include "../kselftest.h"
#define DEVPATH "/dev/dma_heap"
static int check_vgem(int fd)
{
drm_version_t version = { 0 };
char name[5];
int ret;
version.name_len = 4;
version.name = name;
ret = ioctl(fd, DRM_IOCTL_VERSION, &version);
if (ret)
return 0;
return !strcmp(name, "vgem");
}
static int open_vgem(void)
{
int i, fd;
const char *drmstr = "/dev/dri/card";
fd = -1;
for (i = 0; i < 16; i++) {
char name[80];
snprintf(name, 80, "%s%u", drmstr, i);
fd = open(name, O_RDWR);
if (fd < 0)
continue;
if (!check_vgem(fd)) {
close(fd);
fd = -1;
continue;
} else {
break;
}
}
return fd;
}
static int import_vgem_fd(int vgem_fd, int dma_buf_fd, uint32_t *handle)
{
struct drm_prime_handle import_handle = {
.fd = dma_buf_fd,
.flags = 0,
.handle = 0,
};
int ret;
ret = ioctl(vgem_fd, DRM_IOCTL_PRIME_FD_TO_HANDLE, &import_handle);
if (ret == 0)
*handle = import_handle.handle;
return ret;
}
static void close_handle(int vgem_fd, uint32_t handle)
{
struct drm_gem_close close = {
.handle = handle,
};
ioctl(vgem_fd, DRM_IOCTL_GEM_CLOSE, &close);
}
static int dmabuf_heap_open(char *name)
{
int ret, fd;
char buf[256];
ret = snprintf(buf, 256, "%s/%s", DEVPATH, name);
if (ret < 0)
ksft_exit_fail_msg("snprintf failed! %d\n", ret);
fd = open(buf, O_RDWR);
if (fd < 0)
ksft_exit_fail_msg("open %s failed: %s\n", buf, strerror(errno));
return fd;
}
static int dmabuf_heap_alloc_fdflags(int fd, size_t len, unsigned int fd_flags,
unsigned int heap_flags, int *dmabuf_fd)
{
struct dma_heap_allocation_data data = {
.len = len,
.fd = 0,
.fd_flags = fd_flags,
.heap_flags = heap_flags,
};
int ret;
if (!dmabuf_fd)
return -EINVAL;
ret = ioctl(fd, DMA_HEAP_IOCTL_ALLOC, &data);
if (ret < 0)
return ret;
*dmabuf_fd = (int)data.fd;
return ret;
}
static int dmabuf_heap_alloc(int fd, size_t len, unsigned int flags,
int *dmabuf_fd)
{
return dmabuf_heap_alloc_fdflags(fd, len, O_RDWR | O_CLOEXEC, flags,
dmabuf_fd);
}
static int dmabuf_sync(int fd, int start_stop)
{
struct dma_buf_sync sync = {
.flags = start_stop | DMA_BUF_SYNC_RW,
};
return ioctl(fd, DMA_BUF_IOCTL_SYNC, &sync);
}
#define ONE_MEG (1024 * 1024)
static void test_alloc_and_import(char *heap_name)
{
int heap_fd = -1, dmabuf_fd = -1, importer_fd = -1;
uint32_t handle = 0;
void *p = NULL;
int ret;
heap_fd = dmabuf_heap_open(heap_name);
ksft_print_msg("Testing allocation and importing:\n");
ret = dmabuf_heap_alloc(heap_fd, ONE_MEG, 0, &dmabuf_fd);
if (ret) {
ksft_test_result_fail("FAIL (Allocation Failed!) %d\n", ret);
return;
}
/* mmap and write a simple pattern */
p = mmap(NULL, ONE_MEG, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd, 0);
if (p == MAP_FAILED) {
ksft_test_result_fail("FAIL (mmap() failed): %s\n", strerror(errno));
goto close_and_return;
}
dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_START);
memset(p, 1, ONE_MEG / 2);
memset((char *)p + ONE_MEG / 2, 0, ONE_MEG / 2);
dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_END);
importer_fd = open_vgem();
if (importer_fd < 0) {
ksft_test_result_skip("Could not open vgem %d\n", importer_fd);
} else {
ret = import_vgem_fd(importer_fd, dmabuf_fd, &handle);
ksft_test_result(ret >= 0, "Import buffer %d\n", ret);
}
ret = dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_START);
if (ret < 0) {
ksft_print_msg("FAIL (DMA_BUF_SYNC_START failed!) %d\n", ret);
goto out;
}
memset(p, 0xff, ONE_MEG);
ret = dmabuf_sync(dmabuf_fd, DMA_BUF_SYNC_END);
if (ret < 0) {
ksft_print_msg("FAIL (DMA_BUF_SYNC_END failed!) %d\n", ret);
goto out;
}
close_handle(importer_fd, handle);
ksft_test_result_pass("%s dmabuf sync succeeded\n", __func__);
return;
out:
ksft_test_result_fail("%s dmabuf sync failed\n", __func__);
munmap(p, ONE_MEG);
close(importer_fd);
close_and_return:
close(dmabuf_fd);
close(heap_fd);
}
static void test_alloc_zeroed(char *heap_name, size_t size)
{
int heap_fd = -1, dmabuf_fd[32];
int i, j, k, ret;
void *p = NULL;
char *c;
ksft_print_msg("Testing alloced %ldk buffers are zeroed:\n", size / 1024);
heap_fd = dmabuf_heap_open(heap_name);
/* Allocate and fill a bunch of buffers */
for (i = 0; i < 32; i++) {
ret = dmabuf_heap_alloc(heap_fd, size, 0, &dmabuf_fd[i]);
if (ret) {
ksft_test_result_fail("FAIL (Allocation (%i) failed) %d\n", i, ret);
goto close_and_return;
}
/* mmap and fill with simple pattern */
p = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd[i], 0);
if (p == MAP_FAILED) {
ksft_test_result_fail("FAIL (mmap() failed!): %s\n", strerror(errno));
goto close_and_return;
}
dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_START);
memset(p, 0xff, size);
dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END);
munmap(p, size);
}
/* close them all */
for (i = 0; i < 32; i++)
close(dmabuf_fd[i]);
ksft_test_result_pass("Allocate and fill a bunch of buffers\n");
/* Allocate and validate all buffers are zeroed */
for (i = 0; i < 32; i++) {
ret = dmabuf_heap_alloc(heap_fd, size, 0, &dmabuf_fd[i]);
if (ret < 0) {
ksft_test_result_fail("FAIL (Allocation (%i) failed) %d\n", i, ret);
goto close_and_return;
}
/* mmap and validate everything is zero */
p = mmap(NULL, size, PROT_READ | PROT_WRITE, MAP_SHARED, dmabuf_fd[i], 0);
if (p == MAP_FAILED) {
ksft_test_result_fail("FAIL (mmap() failed!): %s\n", strerror(errno));
goto close_and_return;
}
dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_START);
c = (char *)p;
for (j = 0; j < size; j++) {
if (c[j] != 0) {
ksft_print_msg("FAIL (Allocated buffer not zeroed @ %i)\n", j);
dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END);
munmap(p, size);
goto out;
}
}
dmabuf_sync(dmabuf_fd[i], DMA_BUF_SYNC_END);
munmap(p, size);
}
out:
ksft_test_result(i == 32, "Allocate and validate all buffers are zeroed\n");
close_and_return:
/* close them all */
for (k = 0; k < i; k++)
close(dmabuf_fd[k]);
close(heap_fd);
return;
}
/* Test the ioctl version compatibility w/ a smaller structure then expected */
static int dmabuf_heap_alloc_older(int fd, size_t len, unsigned int flags,
int *dmabuf_fd)
{
int ret;
unsigned int older_alloc_ioctl;
struct dma_heap_allocation_data_smaller {
__u64 len;
__u32 fd;
__u32 fd_flags;
} data = {
.len = len,
.fd = 0,
.fd_flags = O_RDWR | O_CLOEXEC,
};
older_alloc_ioctl = _IOWR(DMA_HEAP_IOC_MAGIC, 0x0,
struct dma_heap_allocation_data_smaller);
if (!dmabuf_fd)
return -EINVAL;
ret = ioctl(fd, older_alloc_ioctl, &data);
if (ret < 0)
return ret;
*dmabuf_fd = (int)data.fd;
return ret;
}
/* Test the ioctl version compatibility w/ a larger structure then expected */
static int dmabuf_heap_alloc_newer(int fd, size_t len, unsigned int flags,
int *dmabuf_fd)
{
int ret;
unsigned int newer_alloc_ioctl;
struct dma_heap_allocation_data_bigger {
__u64 len;
__u32 fd;
__u32 fd_flags;
__u64 heap_flags;
__u64 garbage1;
__u64 garbage2;
__u64 garbage3;
} data = {
.len = len,
.fd = 0,
.fd_flags = O_RDWR | O_CLOEXEC,
.heap_flags = flags,
.garbage1 = 0xffffffff,
.garbage2 = 0x88888888,
.garbage3 = 0x11111111,
};
newer_alloc_ioctl = _IOWR(DMA_HEAP_IOC_MAGIC, 0x0,
struct dma_heap_allocation_data_bigger);
if (!dmabuf_fd)
return -EINVAL;
ret = ioctl(fd, newer_alloc_ioctl, &data);
if (ret < 0)
return ret;
*dmabuf_fd = (int)data.fd;
return ret;
}
static void test_alloc_compat(char *heap_name)
{
int ret, heap_fd = -1, dmabuf_fd = -1;
heap_fd = dmabuf_heap_open(heap_name);
ksft_print_msg("Testing (theoretical) older alloc compat:\n");
ret = dmabuf_heap_alloc_older(heap_fd, ONE_MEG, 0, &dmabuf_fd);
if (dmabuf_fd >= 0)
close(dmabuf_fd);
ksft_test_result(!ret, "dmabuf_heap_alloc_older\n");
ksft_print_msg("Testing (theoretical) newer alloc compat:\n");
ret = dmabuf_heap_alloc_newer(heap_fd, ONE_MEG, 0, &dmabuf_fd);
if (dmabuf_fd >= 0)
close(dmabuf_fd);
ksft_test_result(!ret, "dmabuf_heap_alloc_newer\n");
close(heap_fd);
}
static void test_alloc_errors(char *heap_name)
{
int heap_fd = -1, dmabuf_fd = -1;
int ret;
heap_fd = dmabuf_heap_open(heap_name);
ksft_print_msg("Testing expected error cases:\n");
ret = dmabuf_heap_alloc(0, ONE_MEG, 0x111111, &dmabuf_fd);
ksft_test_result(ret, "Error expected on invalid fd %d\n", ret);
ret = dmabuf_heap_alloc(heap_fd, ONE_MEG, 0x111111, &dmabuf_fd);
ksft_test_result(ret, "Error expected on invalid heap flags %d\n", ret);
ret = dmabuf_heap_alloc_fdflags(heap_fd, ONE_MEG,
~(O_RDWR | O_CLOEXEC), 0, &dmabuf_fd);
ksft_test_result(ret, "Error expected on invalid heap flags %d\n", ret);
if (dmabuf_fd >= 0)
close(dmabuf_fd);
close(heap_fd);
}
static int numer_of_heaps(void)
{
DIR *d = opendir(DEVPATH);
struct dirent *dir;
int heaps = 0;
while ((dir = readdir(d))) {
if (!strncmp(dir->d_name, ".", 2))
continue;
if (!strncmp(dir->d_name, "..", 3))
continue;
heaps++;
}
return heaps;
}
int main(void)
{
struct dirent *dir;
DIR *d;
ksft_print_header();
d = opendir(DEVPATH);
if (!d) {
ksft_print_msg("No %s directory?\n", DEVPATH);
return KSFT_SKIP;
}
ksft_set_plan(11 * numer_of_heaps());
while ((dir = readdir(d))) {
if (!strncmp(dir->d_name, ".", 2))
continue;
if (!strncmp(dir->d_name, "..", 3))
continue;
ksft_print_msg("Testing heap: %s\n", dir->d_name);
ksft_print_msg("=======================================\n");
test_alloc_and_import(dir->d_name);
test_alloc_zeroed(dir->d_name, 4 * 1024);
test_alloc_zeroed(dir->d_name, ONE_MEG);
test_alloc_compat(dir->d_name);
test_alloc_errors(dir->d_name);
}
closedir(d);
ksft_finished();
}