linux/drivers/nvme/host/pr.c
Mike Christie 28c97ba38f nvme: Add pr_ops read_reservation support
This patch adds support for the pr_ops read_reservation callout by
calling the NVMe Reservation Report helper. It then parses that info to
detect if there is a reservation and if there is then convert the
returned info to a pr_ops pr_held_reservation struct.

Signed-off-by: Mike Christie <michael.christie@oracle.com>
Link: https://lore.kernel.org/r/20230407200551.12660-14-michael.christie@oracle.com
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
2023-04-11 21:55:36 -04:00

316 lines
7.7 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2015 Intel Corporation
* Keith Busch <kbusch@kernel.org>
*/
#include <linux/blkdev.h>
#include <linux/pr.h>
#include <asm/unaligned.h>
#include "nvme.h"
static enum nvme_pr_type nvme_pr_type_from_blk(enum pr_type type)
{
switch (type) {
case PR_WRITE_EXCLUSIVE:
return NVME_PR_WRITE_EXCLUSIVE;
case PR_EXCLUSIVE_ACCESS:
return NVME_PR_EXCLUSIVE_ACCESS;
case PR_WRITE_EXCLUSIVE_REG_ONLY:
return NVME_PR_WRITE_EXCLUSIVE_REG_ONLY;
case PR_EXCLUSIVE_ACCESS_REG_ONLY:
return NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY;
case PR_WRITE_EXCLUSIVE_ALL_REGS:
return NVME_PR_WRITE_EXCLUSIVE_ALL_REGS;
case PR_EXCLUSIVE_ACCESS_ALL_REGS:
return NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS;
}
return 0;
}
static enum pr_type block_pr_type_from_nvme(enum nvme_pr_type type)
{
switch (type) {
case NVME_PR_WRITE_EXCLUSIVE:
return PR_WRITE_EXCLUSIVE;
case NVME_PR_EXCLUSIVE_ACCESS:
return PR_EXCLUSIVE_ACCESS;
case NVME_PR_WRITE_EXCLUSIVE_REG_ONLY:
return PR_WRITE_EXCLUSIVE_REG_ONLY;
case NVME_PR_EXCLUSIVE_ACCESS_REG_ONLY:
return PR_EXCLUSIVE_ACCESS_REG_ONLY;
case NVME_PR_WRITE_EXCLUSIVE_ALL_REGS:
return PR_WRITE_EXCLUSIVE_ALL_REGS;
case NVME_PR_EXCLUSIVE_ACCESS_ALL_REGS:
return PR_EXCLUSIVE_ACCESS_ALL_REGS;
}
return 0;
}
static int nvme_send_ns_head_pr_command(struct block_device *bdev,
struct nvme_command *c, void *data, unsigned int data_len)
{
struct nvme_ns_head *head = bdev->bd_disk->private_data;
int srcu_idx = srcu_read_lock(&head->srcu);
struct nvme_ns *ns = nvme_find_path(head);
int ret = -EWOULDBLOCK;
if (ns) {
c->common.nsid = cpu_to_le32(ns->head->ns_id);
ret = nvme_submit_sync_cmd(ns->queue, c, data, data_len);
}
srcu_read_unlock(&head->srcu, srcu_idx);
return ret;
}
static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
void *data, unsigned int data_len)
{
c->common.nsid = cpu_to_le32(ns->head->ns_id);
return nvme_submit_sync_cmd(ns->queue, c, data, data_len);
}
static int nvme_sc_to_pr_err(int nvme_sc)
{
if (nvme_is_path_error(nvme_sc))
return PR_STS_PATH_FAILED;
switch (nvme_sc) {
case NVME_SC_SUCCESS:
return PR_STS_SUCCESS;
case NVME_SC_RESERVATION_CONFLICT:
return PR_STS_RESERVATION_CONFLICT;
case NVME_SC_ONCS_NOT_SUPPORTED:
return -EOPNOTSUPP;
case NVME_SC_BAD_ATTRIBUTES:
case NVME_SC_INVALID_OPCODE:
case NVME_SC_INVALID_FIELD:
case NVME_SC_INVALID_NS:
return -EINVAL;
default:
return PR_STS_IOERR;
}
}
static int nvme_send_pr_command(struct block_device *bdev,
struct nvme_command *c, void *data, unsigned int data_len)
{
if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
bdev->bd_disk->fops == &nvme_ns_head_ops)
return nvme_send_ns_head_pr_command(bdev, c, data, data_len);
return nvme_send_ns_pr_command(bdev->bd_disk->private_data, c, data,
data_len);
}
static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
u64 key, u64 sa_key, u8 op)
{
struct nvme_command c = { };
u8 data[16] = { 0, };
int ret;
put_unaligned_le64(key, &data[0]);
put_unaligned_le64(sa_key, &data[8]);
c.common.opcode = op;
c.common.cdw10 = cpu_to_le32(cdw10);
ret = nvme_send_pr_command(bdev, &c, data, sizeof(data));
if (ret < 0)
return ret;
return nvme_sc_to_pr_err(ret);
}
static int nvme_pr_register(struct block_device *bdev, u64 old,
u64 new, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = old ? 2 : 0;
cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
}
static int nvme_pr_reserve(struct block_device *bdev, u64 key,
enum pr_type type, unsigned flags)
{
u32 cdw10;
if (flags & ~PR_FL_IGNORE_KEY)
return -EOPNOTSUPP;
cdw10 = nvme_pr_type_from_blk(type) << 8;
cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
}
static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
enum pr_type type, bool abort)
{
u32 cdw10 = nvme_pr_type_from_blk(type) << 8 | (abort ? 2 : 1);
return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
}
static int nvme_pr_clear(struct block_device *bdev, u64 key)
{
u32 cdw10 = 1 | (key ? 0 : 1 << 3);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}
static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
{
u32 cdw10 = nvme_pr_type_from_blk(type) << 8 | (key ? 0 : 1 << 3);
return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
}
static int nvme_pr_resv_report(struct block_device *bdev, void *data,
u32 data_len, bool *eds)
{
struct nvme_command c = { };
int ret;
c.common.opcode = nvme_cmd_resv_report;
c.common.cdw10 = cpu_to_le32(nvme_bytes_to_numd(data_len));
c.common.cdw11 = cpu_to_le32(NVME_EXTENDED_DATA_STRUCT);
*eds = true;
retry:
ret = nvme_send_pr_command(bdev, &c, data, data_len);
if (ret == NVME_SC_HOST_ID_INCONSIST &&
c.common.cdw11 == cpu_to_le32(NVME_EXTENDED_DATA_STRUCT)) {
c.common.cdw11 = 0;
*eds = false;
goto retry;
}
if (ret < 0)
return ret;
return nvme_sc_to_pr_err(ret);
}
static int nvme_pr_read_keys(struct block_device *bdev,
struct pr_keys *keys_info)
{
u32 rse_len, num_keys = keys_info->num_keys;
struct nvme_reservation_status_ext *rse;
int ret, i;
bool eds;
/*
* Assume we are using 128-bit host IDs and allocate a buffer large
* enough to get enough keys to fill the return keys buffer.
*/
rse_len = struct_size(rse, regctl_eds, num_keys);
rse = kzalloc(rse_len, GFP_KERNEL);
if (!rse)
return -ENOMEM;
ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
if (ret)
goto free_rse;
keys_info->generation = le32_to_cpu(rse->gen);
keys_info->num_keys = get_unaligned_le16(&rse->regctl);
num_keys = min(num_keys, keys_info->num_keys);
for (i = 0; i < num_keys; i++) {
if (eds) {
keys_info->keys[i] =
le64_to_cpu(rse->regctl_eds[i].rkey);
} else {
struct nvme_reservation_status *rs;
rs = (struct nvme_reservation_status *)rse;
keys_info->keys[i] = le64_to_cpu(rs->regctl_ds[i].rkey);
}
}
free_rse:
kfree(rse);
return ret;
}
static int nvme_pr_read_reservation(struct block_device *bdev,
struct pr_held_reservation *resv)
{
struct nvme_reservation_status_ext tmp_rse, *rse;
int ret, i, num_regs;
u32 rse_len;
bool eds;
get_num_regs:
/*
* Get the number of registrations so we know how big to allocate
* the response buffer.
*/
ret = nvme_pr_resv_report(bdev, &tmp_rse, sizeof(tmp_rse), &eds);
if (ret)
return ret;
num_regs = get_unaligned_le16(&tmp_rse.regctl);
if (!num_regs) {
resv->generation = le32_to_cpu(tmp_rse.gen);
return 0;
}
rse_len = struct_size(rse, regctl_eds, num_regs);
rse = kzalloc(rse_len, GFP_KERNEL);
if (!rse)
return -ENOMEM;
ret = nvme_pr_resv_report(bdev, rse, rse_len, &eds);
if (ret)
goto free_rse;
if (num_regs != get_unaligned_le16(&rse->regctl)) {
kfree(rse);
goto get_num_regs;
}
resv->generation = le32_to_cpu(rse->gen);
resv->type = block_pr_type_from_nvme(rse->rtype);
for (i = 0; i < num_regs; i++) {
if (eds) {
if (rse->regctl_eds[i].rcsts) {
resv->key = le64_to_cpu(rse->regctl_eds[i].rkey);
break;
}
} else {
struct nvme_reservation_status *rs;
rs = (struct nvme_reservation_status *)rse;
if (rs->regctl_ds[i].rcsts) {
resv->key = le64_to_cpu(rs->regctl_ds[i].rkey);
break;
}
}
}
free_rse:
kfree(rse);
return ret;
}
const struct pr_ops nvme_pr_ops = {
.pr_register = nvme_pr_register,
.pr_reserve = nvme_pr_reserve,
.pr_release = nvme_pr_release,
.pr_preempt = nvme_pr_preempt,
.pr_clear = nvme_pr_clear,
.pr_read_keys = nvme_pr_read_keys,
.pr_read_reservation = nvme_pr_read_reservation,
};