ff474a78ce
Adding uretprobe syscall instead of trap to speed up return probe. At the moment the uretprobe setup/path is: - install entry uprobe - when the uprobe is hit, it overwrites probed function's return address on stack with address of the trampoline that contains breakpoint instruction - the breakpoint trap code handles the uretprobe consumers execution and jumps back to original return address This patch replaces the above trampoline's breakpoint instruction with new ureprobe syscall call. This syscall does exactly the same job as the trap with some more extra work: - syscall trampoline must save original value for rax/r11/rcx registers on stack - rax is set to syscall number and r11/rcx are changed and used by syscall instruction - the syscall code reads the original values of those registers and restore those values in task's pt_regs area - only caller from trampoline exposed in '[uprobes]' is allowed, the process will receive SIGILL signal otherwise Even with some extra work, using the uretprobes syscall shows speed improvement (compared to using standard breakpoint): On Intel (11th Gen Intel(R) Core(TM) i7-1165G7 @ 2.80GHz) current: uretprobe-nop : 1.498 ± 0.000M/s uretprobe-push : 1.448 ± 0.001M/s uretprobe-ret : 0.816 ± 0.001M/s with the fix: uretprobe-nop : 1.969 ± 0.002M/s < 31% speed up uretprobe-push : 1.910 ± 0.000M/s < 31% speed up uretprobe-ret : 0.934 ± 0.000M/s < 14% speed up On Amd (AMD Ryzen 7 5700U) current: uretprobe-nop : 0.778 ± 0.001M/s uretprobe-push : 0.744 ± 0.001M/s uretprobe-ret : 0.540 ± 0.001M/s with the fix: uretprobe-nop : 0.860 ± 0.001M/s < 10% speed up uretprobe-push : 0.818 ± 0.001M/s < 10% speed up uretprobe-ret : 0.578 ± 0.000M/s < 7% speed up The performance test spawns a thread that runs loop which triggers uprobe with attached bpf program that increments the counter that gets printed in results above. The uprobe (and uretprobe) kind is determined by which instruction is being patched with breakpoint instruction. That's also important for uretprobes, because uprobe is installed for each uretprobe. The performance test is part of bpf selftests: tools/testing/selftests/bpf/run_bench_uprobes.sh Note at the moment uretprobe syscall is supported only for native 64-bit process, compat process still uses standard breakpoint. Note that when shadow stack is enabled the uretprobe syscall returns via iret, which is slower than return via sysret, but won't cause the shadow stack violation. Link: https://lore.kernel.org/all/20240611112158.40795-4-jolsa@kernel.org/ Suggested-by: Andrii Nakryiko <andrii@kernel.org> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> Acked-by: Andrii Nakryiko <andrii@kernel.org> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org> |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
io_uring | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
rust | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.editorconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
.rustfmt.toml | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the reStructuredText markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.