2019-12-21 03:51:38 +03:00
*******************************************************************************
2019-12-05 22:47:35 +03:00
* For reference the following is a text-only version of the Zint manual. *
2020-08-03 00:26:39 +03:00
* The HTML version can be accessed at http://zint.org.uk/Manual.aspx *
* however this text file is more likely to be up-to-date. *
2019-12-05 22:47:35 +03:00
*******************************************************************************
Zint Barcode Generator and Zint Barcode Studio User Manual
==========================================================
1. Introduction
===============
The Zint project aims to provide a complete cross-platform open source barcode
2021-07-06 21:53:31 +03:00
generating solution. The package currently consists of a Qt based GUI, a CLI
2019-12-05 22:47:35 +03:00
command line executable and a library with an API to allow developers access to
the capabilities of Zint. It is hoped that Zint provides a solution which is
flexible enough for professional users while at the same time takes care of as
much of the processing as possible to allow easy translation from input data to
barcode image.
The library which forms the main component of the Zint project is currently
able to encode data in over 50 barcode symbologies (types of barcode), for each
of which it is possible to translate that data from either Unicode (UTF-8) or a
raw 8-bit data stream. The image can be rendered as either a Portable Network
Graphic (PNG) image, Windows Bitmap (BMP), Graphics Interchange Format (GIF),
2020-10-26 15:21:43 +03:00
ZSoft Paintbrush image (PCX), Tagged Image File Format (TIF), Enhanced Metafile
2021-01-15 17:22:32 +03:00
Format (EMF), as Encapsulated PostScript (EPS), or as a Scalable Vector Graphic
2020-10-26 15:21:43 +03:00
(SVG). Many options are available for setting the characteristics of the output
image including the size and colour of the image, the amount of error correction
used in the symbol and the orientation of the image.
2019-12-05 22:47:35 +03:00
1.1 Terms of Reference
----------------------
Some of the words and phrases used in this document are specific to barcoding,
and so a brief explanation is given to help understanding:
symbol: A symbol is an image which encodes data according to one of the
2019-12-21 03:51:38 +03:00
standards. This encompasses barcodes (linear symbols) as well as any of
2019-12-05 22:47:35 +03:00
the other methods of representing data used in this program.
symbology: A method of encoding data to create a certain type of symbol.
linear: A linear symbol is one which consists of bars and spaces, and is what
most people associate with the term "barcode". Examples include EAN.
stacked: A stacked symbol consists of multiple linear symbols placed one above
2019-12-21 03:51:38 +03:00
another and which together hold the message, usually alongside some
2019-12-05 22:47:35 +03:00
error correction data. Examples include PDF417.
matrix: A matrix symbol is one based on a (usually square) grid of elements.
2020-12-19 20:13:35 +03:00
Examples include Data Matrix, but MaxiCode and DotCode are also
2019-12-05 22:47:35 +03:00
considered matrix symbologies.
2020-09-30 14:19:12 +03:00
X-dimension: The X-dimension of a symbol is the size (usually the width) of the
2019-12-05 22:47:35 +03:00
smallest element. For a linear symbology this is the width of the
2020-05-21 20:22:28 +03:00
smallest bar. The default size of the X-dimension in a raster image
2019-12-05 22:47:35 +03:00
is 2 pixels. Many symbologies have a fixed width-to-height ratio where
2020-05-21 20:22:28 +03:00
the height is expressed as a multiple of the X-dimension.
2019-12-05 22:47:35 +03:00
composite: A composite symbology is one which is made up of elements which are
both linear and stacked. Those currently supported are made up of a
linear "primary" message above which is printed a stacked component
based on the PDF417 symbology. These symbols also have a separator
2019-12-21 03:51:38 +03:00
which separates the linear and the stacked components.
2019-12-05 22:47:35 +03:00
2020-06-04 20:45:25 +03:00
GS1 data: This is a structured way of representing information which consists
2019-12-05 22:47:35 +03:00
of "chunks" of data, each of which starts with an Application
Identifier. The AI identifies what type of information is being
2019-12-21 03:51:38 +03:00
encoded.
2019-12-05 22:47:35 +03:00
Reader Initialisation: Some symbologies allow a special character to be included
which can be detected by the scanning equipment as signifying that the
data is used to program or change settings in that equipment. This data
is usually not passed on to the software which handles normal input
data. This feature should only be used if you are familiar with the
programming codes relevant to your scanner.
ECI: The ECI mechanism allows for multi-language data to be encoded in
2021-07-06 14:13:34 +03:00
symbols which would usually support only Latin-1 (ISO/IEC 8859-1)
2021-07-07 12:46:26 +03:00
characters. This can be useful, for example, if you need to encode
Cyrillic characters, but should be used with caution as not all scanners
support this method.
2019-12-05 22:47:35 +03:00
2021-07-06 21:53:31 +03:00
Two other concepts that are important are raster and vector. Raster is a low
level bitmap representation of an image. BMP, GIF, PCX, PNG and TIF are raster
file formats. Vector is a high level command- or data-based representation of an
image. EMF, EPS and SVG are vector file formats. They require renderers to turn
them into bitmaps.
2020-09-30 14:19:12 +03:00
2021-07-13 00:27:16 +03:00
2019-12-05 22:47:35 +03:00
2. Installing Zint
==================
2.1 Linux
---------
The easiest way to configure compilation is to take advantage of the CMake
utilities. You will need to install CMake and libpng first. Note that you will
need both libpng and libpng-devel packages. If you want to take advantage of
Zint Barcode Studio you will also need the Qt libraries pre-installed.
2021-07-13 00:27:16 +03:00
Once you have fulfilled these requirements unzip the source code tarball or
clone the latest source
git clone https://git.code.sf.net/p/zint/code zint
and follow these steps in the top directory:
2019-12-05 22:47:35 +03:00
mkdir build
cd build
cmake ..
make
2021-05-30 18:53:13 +03:00
sudo make install
2019-12-05 22:47:35 +03:00
2021-07-07 12:46:26 +03:00
The CLI command line program can be accessed by typing
2019-12-05 22:47:35 +03:00
2020-09-30 14:19:12 +03:00
zint {options}
2019-12-05 22:47:35 +03:00
2020-09-30 14:19:12 +03:00
The GUI can be accessed by typing
2019-12-05 22:47:35 +03:00
zint-qt
To test that the installation has been successful a shell script is included in
2021-07-07 12:46:26 +03:00
the frontend sub-directory. To run the test type
2019-12-05 22:47:35 +03:00
./test.sh
This should create numerous files showing the many modes of operation which are
available from Zint.
2.2 Microsoft Windows
---------------------
2020-04-09 11:35:11 +03:00
For Microsoft Windows, Zint is distributed as a binary executable. Simply
download the ZIP file, then right-click on the ZIP file and "Extract All". A
new folder will be created within which are two binary files:
qtZint.exe - Zint Barcode Studio
zint.exe - Command Line Interface
For fresh releases you will get a warning message from Microsoft Defender
SmartScreen that this is an "unrecognised app". This happens because Zint is
a free and open-source software project with no advertising and hence no
income, meaning we are not able to afford the $664 per year to have the
2020-08-09 11:22:35 +03:00
application digitally signed by Microsoft.
2019-12-05 22:47:35 +03:00
2021-07-13 00:27:16 +03:00
To build Zint on Windows from source, see "win32/README".
2019-12-05 22:47:35 +03:00
2.3 Apple macOS
---------------
2019-12-21 04:04:42 +03:00
Zint can be installed using Homebrew. To install homebrew input the following
line into the MacOS terminal
/usr/bin/ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)"
Once homebrew is installed use the following command to install Zint.
2020-09-30 14:19:12 +03:00
brew install zint
2019-12-05 22:47:35 +03:00
2.4 zint tcl backend
--------------------
2020-09-30 14:19:12 +03:00
The tcl backend may be built using the provided TEA build on Linux, Windows,
2021-07-07 12:46:26 +03:00
Mac-OS and Android. For Windows, an MS-VC6 makefile is also available.
2019-12-05 22:47:35 +03:00
2020-09-30 14:19:12 +03:00
2019-12-05 22:47:35 +03:00
3. Using Zint Barcode Studio
============================
Zint Barcode Studio is the graphical user interface for Zint. If you are
starting from a command line interface you can start the GUI by typing
zint-qt
or in Windows
2020-04-09 11:35:11 +03:00
qtZint.exe
2019-12-05 22:47:35 +03:00
2020-04-09 11:35:11 +03:00
See the note in section 2.2 about Microsoft Defender SmartScreen.
2019-12-05 22:47:35 +03:00
(The rest of this section of the manual involves use of the GUI, so has been
removed from this text-only version)
4. Using the Command Line
=========================
2021-05-30 18:53:13 +03:00
This section describes how to encode data using the command line frontend
2019-12-05 22:47:35 +03:00
program. The examples given are for the Linux platform, but the same options
2019-12-21 03:51:38 +03:00
are available for Windows - just remember to include the executable file
2020-09-30 14:19:12 +03:00
extension if ".EXE" is not in your PATHEXT environment variable, i.e.:
2019-12-05 22:47:35 +03:00
zint.exe -d "This Text"
2020-09-30 14:19:12 +03:00
For compatibility with Windows the examples use double quotes to delimit data,
though on Linux single quotes are generally preferable as they stop the shell
from processing any characters such as backslash or dollar. A single quote
itself is dealt with by terminating the single-quoted text, backslashing the
single quote, and then continuing:
zint -d 'Text containing a single quote '\'' in the middle'
2019-12-05 22:47:35 +03:00
4.1 Inputting data
------------------
The data to encode can be entered at the command line using the -d option, for
example
zint -d "This Text"
This will encode the text "This Text". Zint will use the default symbology,
Code 128, and output to the default file out.png in the current directory.
Alternatively, if libpng was not present when Zint was built, the default
2020-08-05 00:22:26 +03:00
output file will be out.gif.
2019-12-05 22:47:35 +03:00
2021-07-06 21:53:31 +03:00
The data input to the Zint CLI is assumed to be encoded in Unicode (UTF-8)
format (Zint will correctly handle UTF-8 data on Windows). If you are encoding
characters beyond the 7-bit ASCII set using a scheme other than UTF-8 then you
will need to set the appropriate input options as shown in section 4.10 below.
2019-12-05 22:47:35 +03:00
Non-printing characters can be entered on the command line using the backslash
(\) as an escape character in combination with the --esc switch. Permissible
2021-01-15 17:22:32 +03:00
sequences are shown in the table below.
------------------------------------------------------------------------------
Escape Sequence | ASCII Equivalent | Name | Interpretation
------------------------------------------------------------------------------
\0 | 0x00 | NUL | Null character
\E | 0x04 | EOT | End of Transmission
\a | 0x07 | BEL | Bell
\b | 0x08 | BS | Backspace
\t | 0x09 | HT | Horizontal Tab
\n | 0x0A | LF | Line Feed
\v | 0x0B | VT | Vertical Tab
\f | 0x0C | FF | Form Feed
\r | 0x0D | CR | Carriage Return
\e | 0x1B | ESC | Escape
\G | 0x1D | GS | Group Separator
\R | 0x1E | RS | Record Separator
\\ | 0x5C | \ | Backslash
\xNN | 0xNN | | Any 8-bit character where NN
| | | is hexadecimal
\uNNNN | | | Any 16-bit Unicode Basic
| | | Multilingual Plane (BMP)
| | | character where NNNN is
| | | hexadecimal
------------------------------------------------------------------------------
2019-12-05 22:47:35 +03:00
Input data can be read directly from file using the -i switch as shown below.
The input file is assumed to be Unicode (UTF-8) formatted unless an alternative
2020-08-05 00:22:26 +03:00
mode is selected. This command replaces the use of the -d switch.
2019-12-05 22:47:35 +03:00
zint -i ./somefile.txt
2021-01-15 17:22:32 +03:00
Note that except when batch processing (section 4.11 below), the file should not
end with a newline (LF on Unix, CR+LF on Windows) unless you want the newline to
be encoded in the symbol.
2019-12-05 22:47:35 +03:00
4.2 Directing Output
--------------------
Output can be directed to a file other than the default using the -o switch.
For example:
zint -o here.png -d "This Text"
2021-01-15 17:22:32 +03:00
This draws a Code 128 barcode in the file here.png. If an encapsulated
PostScript file is needed simply append the file name with .eps, and so on for
the other supported file types:
2019-12-05 22:47:35 +03:00
zint -o there.eps -d "This Text"
4.3 Selecting barcode type
--------------------------
Selecting which type of barcode you wish to produce (i.e. which symbology to
use) can be done at the command line using the -b or --barcode= switch followed
2021-01-21 00:15:03 +03:00
by the appropriate integer value or name in the following table. For example to
create a Data Matrix symbol you could use:
2019-12-05 22:47:35 +03:00
2021-01-21 00:15:03 +03:00
zint -b 71 -o datamatrix.png -d "Data to encode"
or
zint -b DATAMATRIX -o datamatrix.png -d "Data to encode"
2019-12-05 22:47:35 +03:00
--------------------------------------------------------------------------------
2021-01-21 00:15:03 +03:00
Numeric | Name (case- | Barcode Name
Value | insensitive) |
2019-12-05 22:47:35 +03:00
--------------------------------------------------------------------------------
2021-01-21 00:15:03 +03:00
1 | CODE11 | Code 11
2 | C25STANDARD | Standard Code 2 of 5
3 | C25INTER | Interleaved 2 of 5
4 | C25IATA | Code 2 of 5 IATA
6 | C25LOGIC | Code 2 of 5 Data Logic
7 | C25IND | Code 2 of 5 Industrial
8 | CODE39 | Code 3 of 9 (Code 39)
9 | EXCODE39 | Extended Code 3 of 9 (Code 39+)
13 | EANX | EAN (including EAN-8 and EAN-13)
14 | EANX_CHK | EAN + Check Digit
16 | GS1_128 | GS1-128 (UCC.EAN-128)
18 | CODABAR | Codabar
20 | CODE128 | Code 128 (automatic subset switching)
21 | DPLEIT | Deutshe Post Leitcode
22 | DPIDENT | Deutshe Post Identcode
23 | CODE16K | Code 16K
24 | CODE49 | Code 49
25 | CODE93 | Code 93
28 | FLAT | Flattermarken
29 | DBAR_OMN | GS1 DataBar Omnidirectional (including GS1
| | DataBar Truncated)
30 | DBAR_LTD | GS1 DataBar Limited
31 | DBAR_EXP | GS1 DataBar Expanded
32 | TELEPEN | Telepen Alpha
34 | UPCA | UPC-A
35 | UPCA_CHK | UPC-A + Check Digit
37 | UPCE | UPC-E
38 | UPCE_CHK | UPC-E + Check Digit
40 | POSTNET | POSTNET
47 | MSI_PLESSEY | MSI Plessey
49 | FIM | FIM
50 | LOGMARS | LOGMARS
51 | PHARMA | Pharmacode One-Track
52 | PZN | PZN
53 | PHARMA_TWO | Pharmacode Two-Track
55 | PDF417 | PDF417
56 | PDF417COMP | Compact PDF417 (Truncated PDF417)
57 | MAXICODE | MaxiCode
58 | QRCODE | QR Code
60 | CODE128B | Code 128 (Subset B)
63 | AUSPOST | Australia Post Standard Customer
66 | AUSREPLY | Australia Post Reply Paid
67 | AUSROUTE | Australia Post Routing
68 | AUSREDIRECT | Australia Post Redirection
69 | ISBNX | ISBN (EAN-13 with verification stage)
70 | RM4SCC | Royal Mail 4 State (RM4SCC)
71 | DATAMATRIX | Data Matrix (ECC200)
72 | EAN14 | EAN-14
73 | VIN | Vehicle Identification Number
74 | CODABLOCKF | Codablock-F
75 | NVE18 | NVE-18 (SSCC-18)
76 | JAPANPOST | Japanese Postal Code
77 | KOREAPOST | Korea Post
79 | DBAR_STK | GS1 DataBar Stacked (stacked version of GS1
| | DataBar Truncated)
80 | DBAR_OMNSTK | GS1 DataBar Stacked Omnidirectional
81 | DBAR_EXPSTK | GS1 DataBar Expanded Stacked
82 | PLANET | PLANET
84 | MICROPDF417 | MicroPDF417
85 | USPS_IMAIL | USPS Intelligent Mail (OneCode)
86 | PLESSEY | Plessey Code
87 | TELEPEN_NUM | Telepen Numeric
89 | ITF14 | ITF-14
90 | KIX | Dutch Post KIX Code
92 | AZTEC | Aztec Code
93 | DAFT | DAFT Code
96 | DPD | DPD Code
97 | MICROQR | Micro QR Code
2021-08-13 17:05:35 +03:00
98 | HIBC_128 | HIBC (Health Industry Barcode) Code 128
2021-01-21 00:15:03 +03:00
99 | HIBC_39 | HIBC Code 39
102 | HIBC_DM | HIBC Data Matrix ECC200
104 | HIBC_QR | HIBC QR Code
106 | HIBC_PDF | HIBC PDF417
108 | HIBC_MICPDF | HIBC MicroPDF417
110 | HIBC_BLOCKF | HIBC Codablock-F
112 | HIBC_AZTEC | HIBC Aztec Code
115 | DOTCODE | DotCode
116 | HANXIN | Han Xin (Chinese Sensible) Code
121 | MAILMARK | Royal Mail 4-state Mailmark
128 | AZRUNE | Aztec Runes
129 | CODE32 | Code 32
130 | EANX_CC | Composite Symbol with EAN linear component
131 | GS1_128_CC | Composite Symbol with GS1-128 linear component
132 | DBAR_OMN_CC | Composite Symbol with GS1 DataBar Omnidirectional
| | linear component
133 | DBAR_LTD_CC | Composite Symbol with GS1 DataBar Limited linear
| | component
134 | DBAR_EXP_CC | Composite Symbol with GS1 DataBar Expanded linear
| | component
135 | UPCA_CC | Composite Symbol with UPC-A linear component
136 | UPCE_CC | Composite Symbol with UPC-E linear component
137 | DBAR_STK_CC | Composite Symbol with GS1 DataBar Stacked
| | component
138 | DBAR_OMNSTK_CC | Composite Symbol with GS1 DataBar Stacked
| | Omnidirectional component
139 | DBAR_EXPSTK_CC | Composite Symbol with GS1 DataBar Expanded
| | Stacked component
140 | CHANNEL | Channel Code
141 | CODEONE | Code One
142 | GRIDMATRIX | Grid Matrix
143 | UPNQR | UPNQR (Univerzalnega Plačilnega Naloga QR)
144 | ULTRA | Ultracode
145 | RMQR | Rectangular Micro QR Code (rMQR)
2019-12-05 22:47:35 +03:00
--------------------------------------------------------------------------------
4.4 Adjusting height
--------------------
2020-09-30 14:19:12 +03:00
The height of a symbol (except those with a fixed width-to-height ratio) can be
adjusted using the --height switch. For example:
2019-12-05 22:47:35 +03:00
zint --height=100 -d "This Text"
2020-07-15 21:00:12 +03:00
This specifies a symbol height of 100 times the X-dimension of the symbol.
2019-12-05 22:47:35 +03:00
4.5 Adjusting whitespace
------------------------
2021-05-25 22:42:26 +03:00
The amount of horizontal whitespace to the left and right of the generated
2021-08-05 18:34:45 +03:00
barcode can be altered using the -w or --whitesp switch. For example:
2019-12-05 22:47:35 +03:00
zint -w 10 -d "This Text"
2021-05-25 22:42:26 +03:00
This specifies a whitespace width of 10 times the X-dimension of the symbol
both to the left and to the right of the barcode.
The amount of vertical whitespace above and below the barcode can be altered
using the --vwhitesp switch. For example for 3 times the X-dimension:
zint --vwhitesp 3 -d "This Text"
Note that the whitespace at the bottom appears below the text, if any.
Horizontal and vertical whitespace can of course be used together:
zint -b DATAMATRIX --whitesp 1 --vwhitesp 1 -d "This Text"
2019-12-05 22:47:35 +03:00
2021-09-24 15:21:24 +03:00
A --quietzones option is also available which adds quiet zones compliant with
the symbology's specification. This is in addition to any whitespace specified
with the --whitesp or --vwhitesp switches.
Note that Codablock-F, Code 16K, Code 49, ITF-14, EAN-13, EAN-8, EAN-5, EAN-2,
ISBN, UPC-A and UPC-E have compliant quiet zones added by default. This can be
disabled with the option --noquietzones.
2019-12-05 22:47:35 +03:00
4.6 Adding boundary bars and boxes
----------------------------------
2021-01-15 17:22:32 +03:00
Zint allows the symbol to be bound with 'boundary bars' (also known as 'bearer
bars') using the option --bind. These bars help to prevent misreading of the
symbol by corrupting a scan if the scanning beam strays off the top or bottom of
the symbol. Zint can also put a border right around the symbol and its
2021-05-25 22:42:26 +03:00
horizontal whitespace with the --box option.
2019-12-05 22:47:35 +03:00
The width of the boundary or box can be specified using the --border switch.
For example:
2021-05-25 22:42:26 +03:00
zint --box --border=10 -w 10 -d "This"
2019-12-05 22:47:35 +03:00
2021-05-25 22:42:26 +03:00
gives a box with a width 10 times the X-dimension of the symbol. Note that when
specifying a box, horizontal whitespace is usually required in order to create a
quiet zone between the barcode and the sides of the box.
2019-12-05 22:47:35 +03:00
2021-09-24 15:21:24 +03:00
Codablock-F, Code 16K and Code 49 always have boundary bars, and default to
2021-05-25 22:42:26 +03:00
particular horizontal whitespace values. Special considerations apply to ITF-14
- see the specific section 6.1.2.6 for that symbology.
2020-07-30 12:09:17 +03:00
2019-12-05 22:47:35 +03:00
4.7 Using colour
----------------
The default colours of a symbol are a black symbol on a white background. Zint
allows you to change this. The -r switch allows the default colours to be
inverted so that a white symbol is shown on a black background. For example the
command
zint -r -d "This"
gives an inverted Code 128 symbol. This is not practical for most symbologies
2021-07-26 17:29:05 +03:00
but white-on-black is allowed by the Data Matrix and Aztec Code symbology
specifications.
2019-12-05 22:47:35 +03:00
2020-04-02 16:41:13 +03:00
For more specific needs the foreground (ink) and background (paper) colours can
be specified using the --fg= and --bg= options followed by a number in RRGGBB
2019-12-05 22:47:35 +03:00
hexadecimal notation (the same system used in HTML). For example the command
zint --fg=004700 -d "This"
alters the symbol to a dark green.
2020-08-03 00:26:39 +03:00
Zint also supports RGBA colour information for some output file formats which
2021-07-26 17:29:05 +03:00
support alpha channels (currently only PNG, TIF and SVG) in a RRGGBBAA format.
2020-08-03 00:26:39 +03:00
For example:
zint --fg=00ff0055 -d "This"
will produce a semi-transparent green foreground with standard (white)
background. Note that transparency is handled differently for raster and
vector files so that...
zint --bg=ff0000 --fg=ffffff00 ...
will give different results for PNG and SVG. Experimentation is advised!
In addition the --nobackground option will simply remove the background from
2021-07-26 17:29:05 +03:00
PNG, GIF, TIF, SVG, EMF and EPS files.
2020-08-03 00:26:39 +03:00
2019-12-05 22:47:35 +03:00
4.8 Rotating the Symbol
-----------------------
The symbol can be rotated through four orientations using the --rotate= option
2020-10-26 15:21:43 +03:00
followed by the angle of rotation as shown below.
2019-12-05 22:47:35 +03:00
--rotate=0 (default)
--rotate=90
--rotate=180
--rotate=270
4.9 Adjusting image size
------------------------
The scale of the image can be altered using the --scale= option followed by a
2021-05-16 18:34:42 +03:00
multiple of the default X-dimension. The scale is multiplied by 2 before being
applied. The default scale is 1.
For raster output, the default X-dimension is 2 pixels (except for MaxiCode, see
2021-05-25 22:42:26 +03:00
4.9.2 below). For example for PNG images a scale of 5 will increase the
X-dimension to 10 pixels. Scales should be given in increments of 0.5, i.e. 0.5,
1, 1.5, 2, 2.5, 3, 3.5, etc., to avoid the X-dimension varying across the symbol
due to interpolation. 0.5 increments are also faster to render.
2021-05-16 18:34:42 +03:00
The minimum scale for non-dotty raster output is 0.5, giving a minimum
X-dimension of 1 pixel, and text will not be printed for scales less than 1.
2021-05-25 22:42:26 +03:00
The minimum scale for raster output in dotty mode is 1 (see 4.14).
2021-05-16 18:34:42 +03:00
The minimum scale for vector output is 0.1, giving a minimum X-dimension of 0.2.
2021-09-20 16:56:27 +03:00
The maximum scale for both raster and vector is 100.
2021-05-16 18:34:42 +03:00
4.9.1 Scaling example
---------------------
The GS1 General Specifications Section 5.2.6.6 "Symbol dimensions at nominal
size" gives an example of an EAN-13 barcode using the X-dimension of 0.33mm.
To print that example as a PNG at 12 dots per mm (dpmm), the equivalent of 300
dots per inch (dpi = dpmm * 25.4), specify a scale of 2, since 0.33 * 12 = 3.96
pixels, or 4 pixels rounding to the nearest pixel:
zint -b EANX -d "501234567890" --height 69 --scale 2
This will result in output of 38.27mm x 26.08mm (WxH) at 300 dpi. The following
table shows the scale to use (in 0.5 increments) depending on the dpmm desired,
for a target X-dimension of 0.33mm:
-------------------
dpmm | dpi | scale
-------------------
6 | 150 | 1
8 | 200 | 1.5
12 | 300 | 2
16 | 400 | 3
24 | 600 | 4
47 | 1200 | 8
95 | 2400 | 15.5
189 | 4800 | 31
-------------------
4.9.2 MaxiCode raster scaling
-----------------------------
For MaxiCode symbols, which use hexagons, the scale for raster output is
multiplied by 10 before being applied. The minimum scale is 0.2, so the minimum
X-dimension is 2 pixels.
MaxiCode symbols have fixed size ranges of 24.82mm to 27.93mm in width, and
23.71mm to 26.69mm in height, excluding quiet zones. The following table shows
the scale to use depending on the dpmm desired, with dpi equivalents:
-------------------
dpmm | dpi | scale
-------------------
6 | 150 | 0.5
8 | 200 | 0.7
12 | 300 | 1
16 | 400 | 1.4
24 | 600 | 2.1
47 | 1200 | 4.1
95 | 2400 | 8.2
189 | 4800 | 16.4
-------------------
Note that the 0.5 increment recommended for normal raster output does not apply.
Scales below 0.5 are not recommended and may produce symbols that are not within
the minimum/maximum size ranges.
2019-12-05 22:47:35 +03:00
4.10 Input modes
----------------
By default all input data is assumed to be encoded in Unicode (UTF-8) format.
2021-01-11 21:11:41 +03:00
Many barcode symbologies encode data using Latin-1 (ISO/IEC 8859-1) character
encoding, so input is converted from UTF-8 to Latin-1 before being put in the
2020-04-02 16:41:13 +03:00
symbol. In addition QR Code, Micro QR Code, Rectangular Micro QR Code, Han Xin
Code and Grid Matrix can encode Japanese or Chinese characters which are also
2021-01-11 21:11:41 +03:00
converted from UTF-8. If Zint encounters characters which can not be encoded
2020-04-02 16:41:13 +03:00
using the default character encoding then it will take advantage of the ECI
2021-08-13 17:05:35 +03:00
(Extended Channel Interpretations) mechanism to encode the data if the symbology
supports it. Be aware that not all barcode readers support ECI mode, so this can
sometimes lead to unreadable barcodes. If you are using characters beyond those
supported by Latin-1 then you should check that the resulting barcode can be
understood by your target barcode reader. Zint will generate a warning message
when an ECI code that has not been explicitly requested has been inserted into a
symbol.
2019-12-05 22:47:35 +03:00
2021-07-07 12:46:26 +03:00
GS1 data can be encoded in a number of symbologies. Application Identifiers
2019-12-05 22:47:35 +03:00
should be enclosed in [square brackets] followed by the data to be encoded (see
2021-05-30 18:53:13 +03:00
6.1.11.3). To encode GS1 data use the --gs1 option. GS1 mode is assumed (and
2020-07-10 21:39:32 +03:00
doesn't need to be set) for GS1-128, EAN-14, DataBar and Composite symbologies
2021-09-24 15:21:24 +03:00
but is also available for Aztec Code, Code 16K, Code 49, Code One, Data Matrix,
2020-07-10 21:39:32 +03:00
DotCode, QR Code and Ultracode.
2019-12-05 22:47:35 +03:00
2021-01-15 17:22:32 +03:00
HIBC data may also be encoded in the symbologies Code 39, Code 128, Codablock-F,
Data Matrix, QR Code, PDF417, MicroPDF417 and Aztec Code. Within this mode, the
leading '+' and the check character are automatically added, conforming to HIBC
Labeler Identification Code (HIBC LIC). For HIBC Provider Applications Standard
2020-07-17 18:39:01 +03:00
(HIBC PAS), preface the data with a slash "/".
2019-12-05 22:47:35 +03:00
2020-04-06 21:10:17 +03:00
The --binary option encodes the input data as given. Automatic code page
2021-08-13 17:05:35 +03:00
translation to an ECI page is disabled, and no validation of the data's encoding
takes place. This may be used for raw binary or binary encrypted data. This
switch plays together with the built-in ECI logic and examples may be found
below.
2019-12-05 22:47:35 +03:00
2020-04-02 16:41:13 +03:00
The --fullmultibyte option uses the multibyte modes of QR Code, Micro QR Code,
Rectangular Micro QR Code, Han Xin Code and Grid Matrix for binary and Latin
2020-04-08 11:32:25 +03:00
data, maximizing density. This is achieved by using compression designed for
2020-09-30 14:19:12 +03:00
Kanji/Hanzi characters, however some decoders take blocks which are encoded this
way and interpret them as Kanji/Hanzi characters, typically by applying a
transformation to UTF-8 and thus causing data corruption. Symbols encoded with
2021-08-13 17:05:35 +03:00
this option should be checked against decoders before they are used. The popular
open-source ZXing decoder is known to exhibit this behaviour.
2019-12-05 22:47:35 +03:00
2021-08-13 17:05:35 +03:00
If your data contains non-Latin-1 characters, you may encode it using an
ECI-aware symbology and an ECI value from the table below. The ECI information
is added to your code symbol as prefix data.
2019-12-05 22:47:35 +03:00
2020-04-02 16:41:13 +03:00
The ECI value may be specified with the --eci switch, followed by the value in
2021-08-13 17:05:35 +03:00
the column "ECI Code". The input data should be UTF-8 formatted. Zint
automatically translates the data into the target encoding.
2020-04-02 16:41:13 +03:00
The ECI value of 0 does not encode any ECI information in the code symbol. In
2021-01-11 21:11:41 +03:00
this case, the default encoding applies for the data which is "ISO/IEC 8859-1 -
2020-04-02 16:41:13 +03:00
Latin alphabet No. 1".
2021-08-13 17:05:35 +03:00
The row marked with an asterisk (*) translates GB 2312 codepoints, except when
using Han Xin Code, which translates GB 18030 codepoints, a superset of GB 2312.
2020-04-02 16:41:13 +03:00
Note: the "--eci 3" specification should only be used for special purposes.
Using this parameter, the ECI information is explicitly added to the code
symbol. Nevertheless, for ECI Code 3, this is not required, as this is the
default encoding, which is also active without any ECI information.
2019-12-05 22:47:35 +03:00
2021-01-11 21:11:41 +03:00
------------------------------------------------------------
2019-12-05 22:47:35 +03:00
ECI Code | Character Encoding Scheme
2021-01-11 21:11:41 +03:00
------------------------------------------------------------
3 | ISO/IEC 8859-1 - Latin alphabet No. 1
4 | ISO/IEC 8859-2 - Latin alphabet No. 2
5 | ISO/IEC 8859-3 - Latin alphabet No. 3
6 | ISO/IEC 8859-4 - Latin alphabet No. 4
7 | ISO/IEC 8859-5 - Latin/Cyrillic alphabet
8 | ISO/IEC 8859-6 - Latin/Arabic alphabet
9 | ISO/IEC 8859-7 - Latin/Greek alphabet
10 | ISO/IEC 8859-8 - Latin/Hebrew alphabet
11 | ISO/IEC 8859-9 - Latin alphabet No. 5 (Turkish)
12 | ISO/IEC 8859-10 - Latin alphabet No. 6 (Nordic)
13 | ISO/IEC 8859-11 - Latin/Thai alphabet
15 | ISO/IEC 8859-13 - Latin alphabet No. 7 (Baltic)
16 | ISO/IEC 8859-14 - Latin alphabet No. 8 (Celtic)
17 | ISO/IEC 8859-15 - Latin alphabet No. 9
18 | ISO/IEC 8859-16 - Latin alphabet No. 10
2021-01-12 17:11:53 +03:00
20 | Shift JIS (JIS X 0208 and JIS X 0201)
21 | Windows 1250 - Latin 2 (Central Europe)
22 | Windows 1251 - Cyrillic
23 | Windows 1252 - Latin 1
24 | Windows 1256 - Arabic
2021-01-11 21:11:41 +03:00
25 | UCS-2BE (High order byte first) (Unicode BMP)
26 | UTF-8 (Unicode)
27 | ISO/IEC 646:1991 7-bit character set (ASCII)
28 | Big5 (Taiwan) Chinese Character Set
29 * | GB (PRC) Chinese Character Set
2021-03-20 17:36:21 +03:00
30 | Korean Character Set EUC-KR (KS X 1001:2002)
2021-01-11 21:11:41 +03:00
899 | 8-bit binary data
------------------------------------------------------------
2019-12-05 22:47:35 +03:00
2020-04-02 16:41:13 +03:00
Three examples:
2021-01-15 17:22:32 +03:00
Ex1: The Euro sign U+20AC can be encoded in ISO/IEC 8859-15. The Euro sign has
the ISO/IEC 8859-15 codepoint hex A4. It is encoded in UTF-8 as the hex
sequence: E2 82 AC. Those 3 bytes are contained in the file "utf8euro.txt". This
command will generate the corresponding code:
zint -b 71 --square --scale 10 --eci 17 -i utf8euro.txt
2020-04-02 16:41:13 +03:00
2021-01-15 17:22:32 +03:00
This is equivalent to the commands (using the --esc switch):
zint -b 71 --square --scale 10 --eci 17 --esc -d "\xE2\x82\xAC"
zint -b 71 --square --scale 10 --eci 17 --esc -d "\u20AC"
2019-12-05 22:47:35 +03:00
2021-01-21 00:15:03 +03:00
and to the command:
zint -b 71 --square --scale 10 --eci 17 -d "€"
2021-01-11 21:11:41 +03:00
Ex2: The Chinese character with Unicode codepoint U+5E38 can be encoded in Big5
2021-01-15 17:22:32 +03:00
encoding. The Big5 representation of this character is the two hex bytes: B1 60
2021-01-11 21:11:41 +03:00
(contained in the file big5char.txt). The generation command for Data Matrix is:
2020-04-02 16:41:13 +03:00
zint -b 71 --square --scale 10 --eci 28 --binary -i big5char.txt
2021-01-15 17:22:32 +03:00
This is equivalent to the command (using the --esc switch):
zint -b 71 --square --scale 10 --eci 28 --binary --esc -d "\xB1\x60"
2021-01-21 00:15:03 +03:00
and to the commands (no --binary switch so conversion occurs):
2021-01-15 17:22:32 +03:00
zint -b 71 --square --scale 10 --eci 28 --esc -d "\u5E38"
2021-01-21 00:15:03 +03:00
zint -b 71 --square --scale 10 --eci 28 -d "常"
2020-04-02 16:41:13 +03:00
Ex3: Some decoders (in particular mobile app ones) for QR Code assume UTF-8
encoding by default and do not support ECI. In this case supply UTF-8 data and
2021-01-15 17:22:32 +03:00
use the --binary switch so that the data will be encoded as UTF-8 without
conversion:
2020-04-02 16:41:13 +03:00
zint -b 58 --binary -d "UTF-8 data"
2019-12-05 22:47:35 +03:00
4.11 Batch processing
---------------------
Data can be batch processed by reading from a text file and producing a
separate barcode image for each line of text in that file. To do this use the
2021-08-05 18:34:45 +03:00
--batch switch. To select the input file from which to read data use the -i
2019-12-05 22:47:35 +03:00
option. Zint will automatically detect the end of a line of text (in either
Unix or Windows formatted text files) and produce a symbol each time it finds
2021-08-05 18:34:45 +03:00
this. Input files should end with a line feed character - if this is not present
2019-12-05 22:47:35 +03:00
then Zint will not encode the last line of text, and will warn you that there
is a problem.
By default Zint will output numbered filenames starting with 00001.png,
2021-08-05 18:34:45 +03:00
00002.png etc. To change this behaviour use the -o option in combination with
2019-12-05 22:47:35 +03:00
--batch using special characters in the output file name as shown in the table
below:
---------------------------------------------
Input Character | Interpretation
---------------------------------------------
~ | Insert a number or '0'
# | Insert a number or space
@ | Insert a number or "*"
Any other | Insert literally
---------------------------------------------
The following table shows some examples to clarify this method:
--------------------------------------------------------------
Input | Filenames Generated
--------------------------------------------------------------
-o file~~~.svg | file001.svg, file002.svg, file003.svg
-o @@@@bar.png | ***1.png, ***2.png, ***3.png
-o my~~~bar.eps | my001.bar.eps, my002.bar.eps, my003bar.eps
-o t@es~t~.png | t*es0t1.png, t*es0t2.png, t*es0t3.png
--------------------------------------------------------------
4.12 Direct output
------------------
2021-07-26 17:29:05 +03:00
The finished image files can be output directly to stdout for use as part of a
pipe by using the --direct option. By default --direct will output data as a PNG
image (or GIF image if libpng is not present), but this can be altered by
supplementing the --direct option with a --filetype= option followed by the
suffix of the file type required. For example:
2019-12-05 22:47:35 +03:00
zint -b 84 --direct --filetype=pcx -d "Data to encode"
This command will output the symbol as a PCX file to stdout. The currently
supported output file formats are shown in the following table:
--------------------------------------------------------------
Abbreviation | File format
--------------------------------------------------------------
BMP | Windows Bitmap
2020-10-26 15:21:43 +03:00
EMF | Enhanced Metafile Format
2019-12-05 22:47:35 +03:00
EPS | Encapsulated PostScript
GIF | Graphics Interchange Format
PCX | ZSoft Paintbrush image
PNG | Portable Network Graphic
SVG | Scalable Vector Graphic
TIF | Tagged Image File Format
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
TXT | Text file (see 4.17)
2019-12-05 22:47:35 +03:00
--------------------------------------------------------------
=============================================================================
CAUTION: Outputting binary files to the command shell without catching that
data in a pipe can have unpredictable results. Use with care!
=============================================================================
4.13 Automatic filenames
------------------------
The --mirror option instructs Zint to use the data to be encoded as an
indicator of the filename to be used. This is particularly useful if you are
processing batch data. For example the input data "1234567" will result in
a file named 1234567.png.
There are restrictions, however, on what characters can be stored in a file
name, so the file name may vary from the data if the data includes non-
printable characters, for example, and may be shortened if the data input is
long.
To set the output file format use the --filetype= option as detailed in
section 4.12.
4.14 Working with dots
----------------------
Matrix codes can be rendered as a series of dots or circles rather than the
normal squares by using the --dotty option. This option is only available for
matrix symbologies, and is automatically selected for DotCode. The size of
the dots can be adjusted using the --dotsize= option followed by the radius
2021-05-16 18:34:42 +03:00
of the dot, where that radius is given as a multiple of the X-dimension. The
2021-05-26 15:10:34 +03:00
minimum dot size is 0.01, the maximum is 20.
The default and minimum scale for raster output in dotty mode is 1.
2019-12-05 22:47:35 +03:00
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
4.15 Structured Append
----------------------
Structured Append is a method of splitting data among several symbols so that
they form a sequence that can be scanned and re-assembled in the correct order
on reading, and is available for Aztec Code, Code One, Data Matrix, DotCode,
Grid Matrix, MaxiCode, MicroPDF417, PDF417, QR Code and Ultracode.
The --structapp option marks a symbol as part of a Structured Append sequence,
and has the format
--structapp=I,C[,ID]
where I is the index (position) of the symbol in the Structured Append sequence,
C is the count or total number of symbols in the sequence, and ID is an optional
identifier (not available for Code One, DotCode or MaxiCode) that is the same
for all symbols belonging to the same sequence. The index is 1-based and goes
from 1 to count. Count must be 2 or more. See the individual symbologies for
further details.
4.16 Help options
2019-12-05 22:47:35 +03:00
-----------------
There are three help options which give information about how to use the
command line. The -h or --help option will display a list of all of the valid
options available, and also gives the exact version of the software.
The -t or --types option gives the table of symbologies along with the symbol
2021-01-21 00:15:03 +03:00
ID numbers and names.
2019-12-05 22:47:35 +03:00
The -e or --ecinos option gives a list of the ECI codes.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
4.17 Other output options
2019-12-05 22:47:35 +03:00
-------------------------
For linear barcodes the text present in the output image can be removed by
using the --notext option.
The text can be set to bold using the --bold option, or a smaller font
can be substituted using the --small option. The --bold and --small options
can be used together if required.
Zint can output a representation of the symbol data as a set of hexadecimal
values if asked to output to a text file (*.txt) or if given the option
--filetype=txt. This can be used for test and diagnostic purposes.
2021-07-06 21:53:31 +03:00
The --cmyk option is specific to output in encapsulated PostScript and TIF, and
converts the RGB colours used to the CMYK colour space. Setting custom colours
at the command line will still need to be done in RRGGBB format.
2019-12-05 22:47:35 +03:00
Additional options are available which are specific to certain symbologies.
These may, for example, control the amount of error correction data or the
size of the symbol. These options are discussed in section 6 of this guide.
2020-09-30 14:19:12 +03:00
2019-12-05 22:47:35 +03:00
5. Using the API
================
2021-07-07 12:46:26 +03:00
Zint has been written using the C language and has an API for use with C/C++
language programs. A Qt interface is available in the backend_qt sub-directory,
and a Tcl interface is available in the backend_tcl sub-directory.
2019-12-05 22:47:35 +03:00
The libzint API has been designed to be very similar to that used by the GNU
Barcode package. This allows easy migration from GNU Barcode to Zint. Zint,
however, uses none of the same function names or option names as GNU Barcode.
This allows you to use both packages in your application without conflict if
you wish.
5.1 Creating and Deleting Symbols
---------------------------------
The symbols manipulated by Zint are held in a zint_symbol structure defined in
zint.h. These symbols are created with the ZBarcode_Create() function and
deleted using the ZBarcode_Delete() function. For example the following code
creates and then deletes a symbol:
#include <stdio.h>
#include <zint.h>
int main()
{
2020-04-02 16:41:13 +03:00
struct zint_symbol *my_symbol;
my_symbol = ZBarcode_Create();
if (my_symbol != NULL)
2019-12-05 22:47:35 +03:00
{
printf("Symbol successfully created!\n");
}
ZBarcode_Delete(my_symbol);
return 0;
}
When compiling this code it will need to be linked with the libzint library
using the -lzint option:
2021-08-05 18:34:45 +03:00
gcc -o simple simple.c -lzint
2019-12-05 22:47:35 +03:00
5.2 Encoding and Saving to File
-------------------------------
To encode data in a barcode use the ZBarcode_Encode() function. To write the
symbol to a file use the ZBarcode_Print() function. For example the following
code takes a string from the command line and outputs a Code 128 symbol in a
PNG file named out.png (or a GIF file called out.gif if libpng is not present)
in the current working directory:
#include <zint.h>
int main(int argc, char **argv)
{
struct zint_symbol *my_symbol;
my_symbol = ZBarcode_Create();
ZBarcode_Encode(my_symbol, argv[1], 0);
ZBarcode_Print(my_symbol, 0);
ZBarcode_Delete(my_symbol);
return 0;
}
This can also be done in one stage using the ZBarcode_Encode_and_Print()
function as shown in the next example:
#include <zint.h>
int main(int argc, char **argv)
{
struct zint_symbol *my_symbol;
my_symbol = ZBarcode_Create();
ZBarcode_Encode_and_Print(my_symbol, argv[1], 0, 0);
ZBarcode_Delete(my_symbol);
return 0;
}
2021-05-26 15:10:34 +03:00
Note that when using the API, the input data is assumed to be Latin-1 or binary
2021-09-29 17:06:33 +03:00
unless the input_mode variable in the symbol structure is set - see section 5.10
for details.
2019-12-05 22:47:35 +03:00
5.3 Encoding and Printing Functions in Depth
--------------------------------------------
The functions for encoding and printing barcodes are defined as:
2020-09-30 14:19:12 +03:00
int ZBarcode_Encode(struct zint_symbol *symbol, const unsigned char *source,
2021-07-06 21:53:31 +03:00
int length);
2019-12-05 22:47:35 +03:00
2021-07-13 21:56:53 +03:00
int ZBarcode_Encode_File(struct zint_symbol *symbol, const char *filename);
2019-12-05 22:47:35 +03:00
int ZBarcode_Print(struct zint_symbol *symbol, int rotate_angle);
2021-07-13 21:56:53 +03:00
int ZBarcode_Encode_and_Print(struct zint_symbol *symbol,
const unsigned char *source, int length, int rotate_angle);
2019-12-05 22:47:35 +03:00
2021-07-13 21:56:53 +03:00
int ZBarcode_Encode_File_and_Print(struct zint_symbol *symbol,
const char *filename, int rotate_angle);
2019-12-05 22:47:35 +03:00
In these definitions "length" can be used to set the length of the input
2020-08-11 18:11:38 +03:00
string. This allows the encoding of NUL (ASCII 0) characters in those
2021-05-15 14:23:46 +03:00
symbologies which allow this. A value of 0 will disable this usage and Zint
2020-08-11 18:11:38 +03:00
will encode data up to the first NUL character in the input string.
2019-12-05 22:47:35 +03:00
2020-10-26 15:21:43 +03:00
The "rotate_angle" value can be used to rotate the image when outputting. Valid
values are 0, 90, 180 and 270.
2019-12-05 22:47:35 +03:00
The ZBarcode_Encode_File() and ZBarcode_Encode_File_and_Print() functions can
2020-04-02 16:41:13 +03:00
be used to encode data read directly from a text file where the filename is
given in the "filename" string.
2019-12-05 22:47:35 +03:00
2021-07-06 21:53:31 +03:00
If printing more than one barcode, the zint_symbol structure may be re-used by
calling the ZBarcode_Clear() function after each barcode to free any output
2021-09-29 17:06:33 +03:00
buffers allocated. The symbol structure input variables must be reset.
2021-07-06 21:53:31 +03:00
5.4 Buffering Symbols in Memory (raster)
----------------------------------------
2019-12-05 22:47:35 +03:00
In addition to saving barcode images to file Zint allows you to access a
representation of the resulting bitmap image in memory. The following functions
allow you to do this:
int ZBarcode_Buffer(struct zint_symbol *symbol, int rotate_angle);
2021-07-07 12:46:26 +03:00
int ZBarcode_Encode_and_Buffer(struct zint_symbol *symbol,
2021-07-13 21:56:53 +03:00
const unsigned char *source, int length, int rotate_angle);
2019-12-05 22:47:35 +03:00
2021-07-13 21:56:53 +03:00
int ZBarcode_Encode_File_and_Buffer(struct zint_symbol *symbol,
const char *filename, int rotate_angle);
2019-12-05 22:47:35 +03:00
The arguments here are the same as above. The difference is that instead of
2020-08-11 18:11:38 +03:00
saving the image to file it is placed in an unsigned character array. The
"bitmap" pointer is set to the first memory location in the array and the values
2019-12-05 22:47:35 +03:00
"barcode_width" and "barcode_height" indicate the size of the resulting image
in pixels. Rotation and colour options can be used at the same time as using
2020-10-26 15:21:43 +03:00
the buffer functions in the same way as when saving to a file. The pixel data
can be extracted from the array by the method shown in the example below where
render_pixel() is assumed to be a function for drawing a pixel on the screen
implemented by the external application:
2019-12-05 22:47:35 +03:00
int row, col, i = 0;
2020-03-29 15:42:33 +03:00
int red, blue, green;
2019-12-05 22:47:35 +03:00
for (row = 0; row < my_symbol->bitmap_height; row++) {
2020-08-11 18:11:38 +03:00
for (col = 0; col < my_symbol->bitmap_width; col++) {
2020-03-29 15:42:33 +03:00
red = (int) my_symbol->bitmap[i];
green = (int) my_symbol->bitmap[i + 1];
blue = (int) my_symbol->bitmap[i + 2];
2020-08-11 18:11:38 +03:00
render_pixel(row, col, red, green, blue);
2019-12-05 22:47:35 +03:00
i += 3;
}
}
2020-08-11 18:11:38 +03:00
Where speed is important, the buffer can be returned instead in a more compact
intermediate form using the output option OUT_BUFFER_INTERMEDIATE. Here each
byte is an ASCII value: '1' for foreground colour and '0' for background colour,
except for Ultracode, which uses colour codes: 'W' for white, 'C' for cyan, 'B'
for blue, 'M' for magenta, 'R' for red, 'Y' for yellow, 'G' from green, and 'K'
for black. The loop for accessing the data is then:
int row, col, i = 0;
for (row = 0; row < my_symbol->bitmap_height; row++) {
for (col = 0; col < my_symbol->bitmap_width; col++) {
render_pixel(row, col, my_symbol->bitmap[i]);
2020-08-11 19:05:57 +03:00
i++;
2020-08-11 18:11:38 +03:00
}
}
2021-07-06 21:53:31 +03:00
5.5 Buffering Symbols in Memory (vector)
----------------------------------------
Symbols can also be saved to memory in a vector representation as well as a
bitmap one. The following functions, exactly analogous to the ones above, allow
you to do this:
int ZBarcode_Buffer_Vector(struct zint_symbol *symbol, int rotate_angle);
int ZBarcode_Encode_and_Buffer_Vector(struct zint_symbol *symbol,
2021-07-13 21:56:53 +03:00
const unsigned char *source, int length, int rotate_angle);
2021-07-06 21:53:31 +03:00
int ZBarcode_Encode_File_and_Buffer_Vector(struct zint_symbol *symbol,
2021-07-13 21:56:53 +03:00
const char *filename, int rotate_angle);
2021-07-06 21:53:31 +03:00
Here the "vector" pointer is set to a header which contains pointers to lists
of structures representing the various elements of the barcode: rectangles,
hexagons, strings and circles. To draw the barcode, each of the element types is
iterated in turn, and using the information stored is drawn by a rendering
system. For instance, to draw a barcode using a rendering system with
2021-07-07 12:46:26 +03:00
prepare_canvas(), draw_rect(), draw_hexagon(), draw_string(), and draw_circle()
routines available:
2021-07-06 21:53:31 +03:00
struct zint_vector_rect *rect;
struct zint_vector_hexagon *hexagon;
struct zint_vector_string *string;
struct zint_vector_circle *circle;
prepare_canvas(symbol->vector->width, symbol->vector->height, symbol->scale,
2021-07-07 12:46:26 +03:00
symbol->fgcolour, symbol->bgcolor, rotate_angle);
2021-07-06 21:53:31 +03:00
rect = symbol->vector->rectangles;
while (rect) {
2021-07-07 12:46:26 +03:00
draw_rect(rect->x, rect->y, rect->width, rect->height, rect->colour);
rect = rect->next;
2021-07-06 21:53:31 +03:00
}
hexagon = symbol->vector->hexagons;
while (hexagon) {
2021-08-22 15:59:01 +03:00
draw_hexagon(hexagon->x, hexagon->y, hexagon->diameter, hexagon->rotation);
2021-07-07 12:46:26 +03:00
hexagon = hexagon->next;
2021-07-06 21:53:31 +03:00
}
string = symbol->vector->strings;
while (string) {
2021-07-07 12:46:26 +03:00
draw_string(string->x, string->y, string->fsize, string->rotation,
2021-08-22 15:59:01 +03:00
string->halign, string->text, string->length);
2021-07-07 12:46:26 +03:00
string = string->next;
2021-07-06 21:53:31 +03:00
}
circle = symbol->vector->circles;
while (circle) {
2021-08-22 15:59:01 +03:00
draw_circle(circle->x, circle->y, circle->diameter, circle->width,
circle->colour);
2021-07-07 12:46:26 +03:00
circle = circle->next;
2021-07-06 21:53:31 +03:00
}
5.6 Setting Options
2019-12-05 22:47:35 +03:00
-------------------
So far our application is not very useful unless we plan to only make Code 128
symbols and we don't mind that they only save to out.png. As with the CLI
2021-07-06 21:53:31 +03:00
program, of course, these options can be altered. The way this is done is by
altering the contents of the zint_symbol structure between the creation and
2019-12-05 22:47:35 +03:00
encoding stages. The zint_symbol structure consists of the following variables:
2020-07-19 02:13:03 +03:00
--------------------------------------------------------------------------------
Variable Name | Type | Meaning | Default Value
--------------------------------------------------------------------------------
symbology | integer | Symbol to use (see section | BARCODE_CODE128
2021-07-06 21:53:31 +03:00
| | 5.8). |
2021-06-19 15:11:23 +03:00
height | float | Symbol height, excluding | Symbol
| | fixed width-to-height | dependent
| | symbols. [1] |
2021-09-22 02:04:15 +03:00
scale | float | Scale factor for adjusting | 1.0
| | size of image. |
2021-05-25 22:42:26 +03:00
whitespace_width | integer | Horizontal whitespace width.| 0
whitespace_height | integer | Vertical whitespace height. | 0
2020-07-19 02:13:03 +03:00
border_width | integer | Border width. | 0
output_options | integer | Set various output file | 0 (none)
| | parameters (see section |
2021-07-06 21:53:31 +03:00
| | 5.9). |
2020-07-19 02:13:03 +03:00
fgcolour | character | Foreground (ink) colour as | "000000"
2020-08-03 09:53:54 +03:00
| string | RGB/RGBA hexadecimal |
2020-08-03 00:26:39 +03:00
| | string. Must be 6 or 8 |
| | characters followed by |
| | terminating \0. |
2020-07-19 02:13:03 +03:00
bgcolour | character | Background (paper) colour | "ffffff"
2020-08-03 00:26:39 +03:00
| string | as RGB/RGBA hexadecimal |
| | string. Must be 6 or 8 |
| | characters followed by |
| | terminating \0. |
2021-05-15 14:23:46 +03:00
fgcolor | pointer | Points to fgcolour allowing |
| | alternate spelling. |
2020-08-03 00:26:39 +03:00
bgcolor | pointer | Points to bgcolour allowing |
| | alternate spelling. |
2020-07-19 02:13:03 +03:00
outfile | character | Contains the name of the | "out.png"
| string | file to output a result- |
| | ing barcode symbol to. |
| | Must end in .png, .gif, |
| | .bmp, .emf, .eps, .pcx, |
| | .svg, .tif or .txt |
2021-07-26 17:29:05 +03:00
| | followed by a terminat- |
| | ing \0. |
2021-09-22 02:04:15 +03:00
primary | character | Primary message data for | "" (empty)
| string | more complex symbols, |
| | with a terminating \0. |
2020-07-19 02:13:03 +03:00
option_1 | integer | Symbol specific options. | -1
option_2 | integer | Symbol specific options. | 0
option_3 | integer | Symbol specific options. | 0
show_hrt | integer | Set to 0 to hide text. | 1
input_mode | integer | Set encoding of input data | DATA_MODE
2021-07-06 21:53:31 +03:00
| | (see section 5.10) |
2020-07-19 02:13:03 +03:00
eci | integer | Extended Channel Interpre- | 0 (none)
| | tation code. |
2021-09-22 02:04:15 +03:00
dot_size | float | Size of dots used in dotty | 4.0 / 5.0
| | mode. |
guard_descent | float | Height of guard bar descent | 5.0
| | (UPC/EAN only). |
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
structapp | Structured | Mark a symbol as part of a | count 0
| Append | sequence of symbols. | (disabled)
| structure | |
2021-09-22 02:04:15 +03:00
warn_level | integer | Affects error/warning value | WARN_DEFAULT
| | returned by Zint API. |
2021-07-06 21:53:31 +03:00
text | unsigned | Human Readable Text, which | "" (empty)
2020-07-19 02:13:03 +03:00
| character | usually consists of in- |
| string | put data plus one more |
| | check digit. Uses UTF-8 |
2021-07-26 17:29:05 +03:00
| | formatting, with a |
| | terminating \0. |
2020-07-19 02:13:03 +03:00
rows | integer | Number of rows used by the | (output only)
| | the symbol. |
width | integer | Width of the generated sym- | (output only)
| | bol. |
encoding_data | array of | Representation of the | (output only)
2021-07-26 17:29:05 +03:00
| unsigned | encoded data. |
| character | |
| arrays | |
2020-07-19 02:13:03 +03:00
row_height | array of | Representation of the | (output only)
2021-06-19 15:11:23 +03:00
| floats | height of a row. |
2020-07-19 02:13:03 +03:00
errtxt | character | Error message in the event | (output only)
2021-07-26 17:29:05 +03:00
| string | that an error occurred, |
| | with a terminating \0. |
2020-07-19 02:13:03 +03:00
bitmap | pointer to | Pointer to stored bitmap | (output only)
| unsigned | image. |
| character | |
| array | |
bitmap_width | integer | Width of stored bitmap | (output only)
| | image (in pixels). |
bitmap_height | integer | Height of stored bitmap | (output only)
| | image (in pixels). |
2020-08-03 09:53:54 +03:00
alphamap | pointer to | Pointer to array | (output only)
| unsigned | representing alpha |
| character | channel (or NULL if no |
| array | alpha channel needed). |
2020-07-19 02:13:03 +03:00
bitmap_byte_length| integer | Size of BMP bitmap data. | (output only)
vector | pointer to | Pointer to vector header | (output only)
| vector | containing pointers to |
| structure | vector elements. |
--------------------------------------------------------------------------------
2019-12-05 22:47:35 +03:00
2021-06-19 15:11:23 +03:00
[1] This value is ignored for Aztec (including HIBC and Aztec Rune), Code One,
Data Matrix (including HIBC), DotCode, Grid Matrix, Han Xin, MaxiCode, QR Code
(including HIBC, Micro QR, rMQR and UPNQR), and Ultracode - all of which have a
fixed width-to-height ratio (or, in the case of Code One, a fixed height).
2021-05-15 14:23:46 +03:00
2019-12-05 22:47:35 +03:00
To alter these values use the syntax shown in the example below. This code has
the same result as the previous example except the output is now taller and
plotted in green.
#include <zint.h>
#include <string.h>
int main(int argc, char **argv)
{
2020-09-30 14:19:12 +03:00
struct zint_symbol *my_symbol;
2020-10-04 00:51:08 +03:00
my_symbol = ZBarcode_Create();
2019-12-05 22:47:35 +03:00
strcpy(my_symbol->fgcolour, "00ff00");
2021-06-19 15:11:23 +03:00
my_symbol->height = 400.0f;
2019-12-05 22:47:35 +03:00
ZBarcode_Encode_and_Print(my_symbol, argv[1], 0, 0);
ZBarcode_Delete(my_symbol);
return 0;
}
2021-07-26 17:29:05 +03:00
Background removal for PNG, GIF, TIF, SVG, EMF and EPS files can be achieved by
2020-08-03 19:13:25 +03:00
setting the background alpha to "00" where the values for R, G and B will be
ignored:
2020-08-03 00:26:39 +03:00
strcpy(my_symbol->bgcolour, "55555500");
2019-12-05 22:47:35 +03:00
5.6 Handling Errors
-------------------
If errors occur during encoding an integer value is passed back to the calling
application. In addition the errtxt value is used to give a message detailing
the nature of the error. The errors generated by Zint are given in the table
below:
2020-09-30 14:19:12 +03:00
--------------------------------------------------------------------------------
2019-12-05 22:47:35 +03:00
Return Value | Meaning
2020-09-30 14:19:12 +03:00
--------------------------------------------------------------------------------
2019-12-05 22:47:35 +03:00
ZINT_WARN_INVALID_OPTION | One of the values in zint_struct was set
| incorrectly but Zint has made a guess at
| what it should have been and generated a
| barcode accordingly.
ZINT_WARN_USES_ECI | Zint has automatically inserted an ECI
| character. The symbol may not be readable
| with some readers.
2020-09-30 14:19:12 +03:00
ZINT_WARN_NONCOMPLIANT | The symbol was created but is not compliant with
| certain standards set in its specification
| (e.g. height, GS1 AI data lengths).
ZINT_ERROR | Marks the divide between warnings and errors.
| For return values greater than or equal to
2021-07-06 21:53:31 +03:00
| this no symbol (or only an incomplete symbol)
| is generated.
2019-12-05 22:47:35 +03:00
ZINT_ERROR_TOO_LONG | The input data is too long or too short for the
| selected symbology. No symbol has been
| generated.
ZINT_ERROR_INVALID_DATA | The data to be encoded includes characters which
| are not permitted by the selected symbology
| (e.g. alphabetic characters in an EAN
| symbol). No symbol has been generated.
2021-06-27 13:47:55 +03:00
ZINT_ERROR_INVALID_CHECK | Data with an incorrect check digit has been
2019-12-05 22:47:35 +03:00
| entered. No symbol has been generated.
ZINT_ERROR_INVALID_OPTION | One of the values in zint_struct was set
| incorrectly and Zint was unable to guess what
| it should have been. No symbol has been
| generated.
ZINT_ERROR_ENCODING_PROBLEM | A problem has occurred during encoding of the
| data. This should never happen. Please
| contact the developer if you encounter this
| error.
ZINT_ERROR_FILE_ACCESS | Zint was unable to open the requested output
| file. This is usually a file permissions
| problem.
ZINT_ERROR_MEMORY | Zint ran out of memory. This should only be a
| problem with legacy systems.
2021-03-19 16:09:21 +03:00
ZINT_ERROR_FILE_WRITE | Zint failed to write all contents to the
| requested output file. This should only occur
2021-06-27 13:47:55 +03:00
| if the output device becomes full.
2021-07-06 21:53:31 +03:00
ZINT_ERROR_USES_ECI | Returned if warn level set to WARN_FAIL_ALL and
| ZINT_WARN_USES_ECI occurs.
ZINT_ERROR_NONCOMPLIANT | Returned if warn level set to WARN_FAIL_ALL and
| ZINT_WARN_NONCOMPLIANT occurs.
2020-09-30 14:19:12 +03:00
--------------------------------------------------------------------------------
2019-12-05 22:47:35 +03:00
To catch errors use an integer variable as shown in the code below:
#include <stdio.h>
#include <zint.h>
#include <string.h>
int main(int argc, char **argv)
{
struct zint_symbol *my_symbol;
int error = 0;
my_symbol = ZBarcode_Create();
strcpy(my_symbol->fgcolour, "nonsense");
error = ZBarcode_Encode_and_Print(my_symbol, argv[1], 0, 0);
2020-04-02 16:41:13 +03:00
if (error != 0)
2019-12-05 22:47:35 +03:00
{
2020-04-02 16:41:13 +03:00
/* some warning or error occurred */
2019-12-05 22:47:35 +03:00
printf("%s\n", my_symbol->errtxt);
}
2020-09-30 14:19:12 +03:00
if (error >= ZINT_ERROR)
2019-12-05 22:47:35 +03:00
{
2020-04-02 16:41:13 +03:00
/* stop now */
2019-12-05 22:47:35 +03:00
ZBarcode_Delete(my_symbol);
2020-04-02 16:41:13 +03:00
return 1;
2019-12-05 22:47:35 +03:00
}
/* otherwise carry on with the rest of the application */
ZBarcode_Delete(my_symbol);
return 0;
}
This code will exit with the appropriate message:
2020-09-30 14:19:12 +03:00
Error 653: Malformed foreground colour target
2019-12-05 22:47:35 +03:00
2021-07-06 21:53:31 +03:00
To treat all warnings as errors, set symbol->warn_level to WARN_FAIL_ALL.
5.8 Specifying a Symbology
2019-12-05 22:47:35 +03:00
--------------------------
Symbologies can be specified by number or by name as shown in the following
table. For example
2020-09-30 14:19:12 +03:00
symbol->symbology = BARCODE_LOGMARS;
2019-12-05 22:47:35 +03:00
means the same as
symbol->symbology = 50;
--------------------------------------------------------------------------------
Numeric | Name | Barcode Name
Value |
--------------------------------------------------------------------------------
1 | BARCODE_CODE11 | Code 11
2020-07-29 22:43:08 +03:00
2* | BARCODE_C25STANDARD | Standard Code 2 of 5
2019-12-05 22:47:35 +03:00
3 | BARCODE_C25INTER | Interleaved 2 of 5
4 | BARCODE_C25IATA | Code 2 of 5 IATA
6 | BARCODE_C25LOGIC | Code 2 of 5 Data Logic
7 | BARCODE_C25IND | Code 2 of 5 Industrial
8 | BARCODE_CODE39 | Code 3 of 9 (Code 39)
9 | BARCODE_EXCODE39 | Extended Code 3 of 9 (Code 39+)
2021-01-15 17:22:32 +03:00
13 | BARCODE_EANX | EAN (including EAN-8 and EAN-13)
2019-12-05 22:47:35 +03:00
14 | BARCODE_EANX_CHK | EAN + Check Digit
2020-07-29 22:43:08 +03:00
16* | BARCODE_GS1_128 | GS1-128 (UCC.EAN-128)
2019-12-05 22:47:35 +03:00
18 | BARCODE_CODABAR | Codabar
20 | BARCODE_CODE128 | Code 128 (automatic subset switching)
21 | BARCODE_DPLEIT | Deutshe Post Leitcode
22 | BARCODE_DPIDENT | Deutshe Post Identcode
23 | BARCODE_CODE16K | Code 16K
24 | BARCODE_CODE49 | Code 49
25 | BARCODE_CODE93 | Code 93
28 | BARCODE_FLAT | Flattermarken
2021-01-15 17:22:32 +03:00
29* | BARCODE_DBAR_OMN | GS1 DataBar Omnidirectional (including
| | GS1 DataBar Truncated)
2020-07-29 22:43:08 +03:00
30* | BARCODE_DBAR_LTD | GS1 DataBar Limited
31* | BARCODE_DBAR_EXP | GS1 DataBar Expanded
2019-12-05 22:47:35 +03:00
32 | BARCODE_TELEPEN | Telepen Alpha
2020-07-10 21:39:32 +03:00
34 | BARCODE_UPCA | UPC-A
35 | BARCODE_UPCA_CHK | UPC-A + Check Digit
37 | BARCODE_UPCE | UPC-E
38 | BARCODE_UPCE_CHK | UPC-E + Check Digit
2020-10-04 00:51:08 +03:00
40 | BARCODE_POSTNET | POSTNET
2019-12-05 22:47:35 +03:00
47 | BARCODE_MSI_PLESSEY | MSI Plessey
49 | BARCODE_FIM | FIM
50 | BARCODE_LOGMARS | LOGMARS
51 | BARCODE_PHARMA | Pharmacode One-Track
52 | BARCODE_PZN | PZN
53 | BARCODE_PHARMA_TWO | Pharmacode Two-Track
55 | BARCODE_PDF417 | PDF417
2020-07-30 00:35:31 +03:00
56* | BARCODE_PDF417COMP | Compact PDF417 (Truncated PDF417)
2020-12-19 20:13:35 +03:00
57 | BARCODE_MAXICODE | MaxiCode
2019-12-05 22:47:35 +03:00
58 | BARCODE_QRCODE | QR Code
60 | BARCODE_CODE128B | Code 128 (Subset B)
63 | BARCODE_AUSPOST | Australia Post Standard Customer
66 | BARCODE_AUSREPLY | Australia Post Reply Paid
67 | BARCODE_AUSROUTE | Australia Post Routing
68 | BARCODE_AUSDIRECT | Australia Post Redirection
69 | BARCODE_ISBNX | ISBN (EAN-13 with verification stage)
70 | BARCODE_RM4SCC | Royal Mail 4 State (RM4SCC)
2019-12-21 03:51:38 +03:00
71 | BARCODE_DATAMATRIX | Data Matrix (ECC200)
2019-12-05 22:47:35 +03:00
72 | BARCODE_EAN14 | EAN-14
2020-06-04 20:45:25 +03:00
73 | BARCODE_VIN | Vehicle Identification Number
2019-12-05 22:47:35 +03:00
74 | BARCODE_CODABLOCKF | Codablock-F
2020-07-15 21:00:12 +03:00
75 | BARCODE_NVE18 | NVE-18 (SSCC-18)
2019-12-05 22:47:35 +03:00
76 | BARCODE_JAPANPOST | Japanese Postal Code
77 | BARCODE_KOREAPOST | Korea Post
2020-07-29 22:43:08 +03:00
79* | BARCODE_DBAR_STK | GS1 DataBar Stacked
80* | BARCODE_DBAR_OMNSTK | GS1 DataBar Stacked Omnidirectional
81* | BARCODE_DBAR_EXPSTK | GS1 DataBar Expanded Stacked
2019-12-05 22:47:35 +03:00
82 | BARCODE_PLANET | PLANET
84 | BARCODE_MICROPDF417 | MicroPDF417
2020-07-29 22:43:08 +03:00
85* | BARCODE_USPS_IMAIL | USPS Intelligent Mail (OneCode)
2019-12-05 22:47:35 +03:00
86 | BARCODE_PLESSEY | Plessey Code
87 | BARCODE_TELEPEN_NUM | Telepen Numeric
89 | BARCODE_ITF14 | ITF-14
90 | BARCODE_KIX | Dutch Post KIX Code
92 | BARCODE_AZTEC | Aztec Code
93 | BARCODE_DAFT | DAFT Code
2020-08-03 14:13:05 +03:00
96 | BARCODE_DPD | DPD Code
2019-12-05 22:47:35 +03:00
97 | BARCODE_MICROQR | Micro QR Code
98 | BARCODE_HIBC_128 | HIBC Code 128
99 | BARCODE_HIBC_39 | HIBC Code 39
102 | BARCODE_HIBC_DM | HIBC Data Matrix ECC200
104 | BARCODE_HIBC_QR | HIBC QR Code
106 | BARCODE_HIBC_PDF | HIBC PDF417
108 | BARCODE_HIBC_MICPDF | HIBC MicroPDF417
2021-01-15 17:22:32 +03:00
110 | BARCODE_HIBC_BLOCKF | HIBC Codablock-F
2019-12-05 22:47:35 +03:00
112 | BARCODE_HIBC_AZTEC | HIBC Aztec Code
115 | BARCODE_DOTCODE | DotCode
116 | BARCODE_HANXIN | Han Xin (Chinese Sensible) Code
121 | BARCODE_MAILMARK | Royal Mail 4-state Mailmark
128 | BARCODE_AZRUNE | Aztec Runes
129 | BARCODE_CODE32 | Code 32
130 | BARCODE_EANX_CC | Composite Symbol with EAN linear component
2020-07-29 22:43:08 +03:00
131* | BARCODE_GS1_128_CC | Composite Symbol with GS1-128 linear
2019-12-05 22:47:35 +03:00
| | component
2020-07-29 22:43:08 +03:00
132* | BARCODE_DBAR_OMN_CC | Composite Symbol with GS1 DataBar
2020-07-10 21:39:32 +03:00
| | Omnidirectional linear component
2020-07-29 22:43:08 +03:00
133* | BARCODE_DBAR_LTD_CC | Composite Symbol with GS1 DataBar Limited
2020-07-10 21:39:32 +03:00
| | linear component
2020-07-29 22:43:08 +03:00
134* | BARCODE_DBAR_EXP_CC | Composite Symbol with GS1 DataBar Expanded
2020-07-10 21:39:32 +03:00
| | linear component
135 | BARCODE_UPCA_CC | Composite Symbol with UPC-A linear component
136 | BARCODE_UPCE_CC | Composite Symbol with UPC-E linear component
2020-07-29 22:43:08 +03:00
137* | BARCODE_DBAR_STK_CC | Composite Symbol with GS1 DataBar Stacked
2019-12-05 22:47:35 +03:00
| | component
2020-07-29 22:43:08 +03:00
138* | BARCODE_DBAR_OMNSTK_CC | Composite Symbol with GS1 DataBar Stacked
2020-07-10 21:39:32 +03:00
| | Omnidirectional component
2020-07-29 22:43:08 +03:00
139* | BARCODE_DBAR_EXPSTK_CC | Composite Symbol with GS1 DataBar Expanded
2019-12-05 22:47:35 +03:00
| | Stacked component
140 | BARCODE_CHANNEL | Channel Code
141 | BARCODE_CODEONE | Code One
142 | BARCODE_GRIDMATRIX | Grid Matrix
143 | BARCODE_UPNQR | UPNQR (Univerzalnega Plačilnega Naloga QR)
2020-04-06 21:10:17 +03:00
144 | BARCODE_ULTRA | Ultracode
2019-12-05 22:47:35 +03:00
145 | BARCODE_RMQR | Rectangular Micro QR Code (rMQR)
--------------------------------------------------------------------------------
2020-07-29 22:43:08 +03:00
Note: Symbologies marked with an asterisk (*) in the above table used different
2020-07-30 12:09:17 +03:00
names in Zint before version 2.9.0. For example, symbology 29 used the name
2021-01-15 17:22:32 +03:00
"BARCODE_RSS14". These names are now deprecated but are still recognised by Zint
and will continue to be supported in future versions.
2020-07-29 22:43:08 +03:00
2021-07-06 21:53:31 +03:00
5.9 Adjusting other output options
2019-12-05 22:47:35 +03:00
----------------------------------
The output_options variable can be used to adjust various aspects of the output
2021-07-26 17:29:05 +03:00
file. To select more than one option from the table below simply OR them
2020-04-02 16:41:13 +03:00
together when adjusting this value:
2019-12-05 22:47:35 +03:00
2020-05-21 20:22:28 +03:00
my_symbol->output_options |= BARCODE_BIND | READER_INIT;
2019-12-05 22:47:35 +03:00
--------------------------------------------------------------------------------
2020-08-11 18:11:38 +03:00
Value | Effect
2019-12-05 22:47:35 +03:00
--------------------------------------------------------------------------------
2020-08-11 18:11:38 +03:00
0 | No options selected.
BARCODE_BIND | Boundary bars above and below the symbol and between
| rows if stacking multiple symbols. [2]
2021-06-19 15:11:23 +03:00
BARCODE_BOX | Add a box surrounding the symbol and whitespace.
2020-08-11 18:11:38 +03:00
BARCODE_STDOUT | Output the file to stdout.
READER_INIT | Add a reader initialisation symbol to the data before
| encoding.
2021-07-06 21:53:31 +03:00
SMALL_TEXT | Use a smaller font for the Human Readable Text.
BOLD_TEXT | Embolden the Human Readable Text.
2020-08-11 18:11:38 +03:00
CMYK_COLOUR | Select the CMYK colour space option for encapsulated
2021-07-06 21:53:31 +03:00
| PostScript and TIF files.
2020-08-11 18:11:38 +03:00
BARCODE_DOTTY_MODE | Plot a matrix symbol using dots rather than squares.
2020-09-30 14:19:12 +03:00
GS1_GS_SEPARATOR | Use GS instead of FNC1 as GS1 separator (Data Matrix)
2020-08-11 18:11:38 +03:00
OUT_BUFFER_INTERMEDIATE | Return the bitmap buffer as ASCII values instead of
| separate colour channels (OUT_BUFFER only).
2021-09-24 15:21:24 +03:00
BARCODE_QUIET_ZONES | Add compliant quiet zones (additional to any
| specified whitespace). [3]
BARCODE_NO_QUIET_ZONES | Disable quiet zones, notably those with defaults. [3]
2019-12-05 22:47:35 +03:00
--------------------------------------------------------------------------------
2021-09-24 15:21:24 +03:00
[2] This flag is always set for Codablock-F, Code 16K and Code 49. Special
2021-06-19 15:11:23 +03:00
considerations apply to ITF-14 - see the specific section 6.1.2.6 for that
symbology.
2021-09-24 15:21:24 +03:00
[3] Codablock-F, Code 16K, Code 49, ITF-14, EAN-2 to EAN-13, ISBN,
UPC-A and UPC-E have compliant quiet zones added by default.
2021-05-15 14:23:46 +03:00
2021-07-06 21:53:31 +03:00
5.10 Setting the Input Mode
---------------------------
2019-12-05 22:47:35 +03:00
The way in which the input data is encoded can be set using the input_mode
property. Valid values are shown in the table below.
2021-07-13 19:39:03 +03:00
-------------------------------------------------------------------------------
Value | Effect
-------------------------------------------------------------------------------
2021-07-26 17:29:05 +03:00
DATA_MODE | Uses full 8-bit range interpreted as Latin-1 or binary data.
2021-07-13 19:39:03 +03:00
UNICODE_MODE | Uses pre-formatted UTF-8 input.
GS1_MODE | Encodes GS1 data using FNC1 characters.
----------------|--------------------------------------------------------------
ESCAPE_MODE | Process input data for escape sequences.
GS1PARENS_MODE | Parentheses (round brackets) used in input data instead of
| square brackets to delimit GS1 Application Identifiers
| (parentheses must not otherwise occur in the data).
GS1NOCHECK_MODE | Do not check GS1 data for validity, i.e. suppress checks for
| valid AIs and data lengths. Invalid characters (e.g.
| control characters, extended ASCII characters) are still
| checked for.
-------------------------------------------------------------------------------
2019-12-05 22:47:35 +03:00
2021-05-26 15:10:34 +03:00
The default mode is DATA_MODE.
2021-07-13 19:39:03 +03:00
DATA_MODE, UNICODE_MODE and GS1_MODE are mutually exclusive, whereas ESCAPE_MODE,
GS1PARENS_MODE and GS1NOCHECK_MODE are optional. So, for example, you can set
2019-12-05 22:47:35 +03:00
2020-07-19 02:13:03 +03:00
my_symbol->input_mode = UNICODE_MODE | ESCAPE_MODE;
2019-12-05 22:47:35 +03:00
2021-05-15 14:23:46 +03:00
or
2021-07-13 19:39:03 +03:00
my_symbol->input_mode = GS1_MODE | GS1PARENS_MODE | GS1NOCHECK_MODE;
2021-05-15 14:23:46 +03:00
2019-12-05 22:47:35 +03:00
whereas
2020-07-19 02:13:03 +03:00
my_symbol->input_mode = DATA_MODE | GS1_MODE;
2019-12-05 22:47:35 +03:00
2021-07-13 19:39:03 +03:00
is not valid.
Permissible escape sequences are listed in section 4.1. An example of
GS1PARENS_MODE usage is given in section 6.1.11.3.
GS1NOCHECK_MODE is for use with legacy systems that have data that does not
conform to the current GS1 standard. Non-printable ASCII input is still checked
for, as is the validity of GS1 data specified without AIs (e.g. linear data for
GS1 DataBar Omnidirectional/Limited/etc.).
2019-12-05 22:47:35 +03:00
2021-07-06 21:53:31 +03:00
5.11 Verifying Symbology Availability
2019-12-05 22:47:35 +03:00
-------------------------------------
An additional function available in the API is defined as:
int ZBarcode_ValidID(int symbol_id);
This function allows you to check whether a given symbology is available. A
non-zero return value indicates that the given symbology is available. For
example:
2020-04-02 16:41:13 +03:00
if (ZBarcode_ValidID(BARCODE_PDF417) != 0) {
2020-09-30 14:19:12 +03:00
printf("PDF417 available\n");
} else {
printf("PDF417 not available\n");
}
2021-07-06 21:53:31 +03:00
5.12 Checking Symbology Capabilities
2020-09-30 14:19:12 +03:00
------------------------------------
It can be useful for frontend programs to know the capabilities of a symbology.
This can be determined using another additional function:
unsigned int ZBarcode_Cap(int symbol_id, unsigned int cap_flag);
2021-07-26 17:29:05 +03:00
by OR-ing the flags below in the "cap_flag" argument and checking the return to
2020-09-30 14:19:12 +03:00
see which are set.
-------------------------------------------------------------------------------
Value | Meaning
-------------------------------------------------------------------------------
ZINT_CAP_HRT | Can the symbology print Human Readable Text?
ZINT_CAP_STACKABLE | Is the symbology stackable?
ZINT_CAP_EXTENDABLE | Is the symbology extendable with add-on data?
| (i.e. is it UPC/EAN?)
ZINT_CAP_COMPOSITE | Does the symbology support composite data?
| (see 6.3 below)
ZINT_CAP_ECI | Does the symbology support Extended Channel
| Interpretations?
ZINT_CAP_GS1 | Does the symbology support GS1 data?
ZINT_CAP_DOTTY | Can the symbology be outputted as dots?
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
ZINT_CAP_QUIET_ZONES | Does the symbology have default quiet zones?
2020-09-30 14:19:12 +03:00
ZINT_CAP_FIXED_RATIO | Does the symbology have a fixed width-to-height
| (aspect) ratio?
ZINT_CAP_READER_INIT | Does the symbology support Reader Initialisation?
ZINT_CAP_FULL_MULTIBYTE | Is the ZINT_FULL_MULTIBYTE option applicable?
2020-11-27 15:54:44 +03:00
ZINT_CAP_MASK | Is mask selection applicable?
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
ZINT_CAP_STRUCTAPP | Does the symbology support Structured Append?
2020-09-30 14:19:12 +03:00
-------------------------------------------------------------------------------
For example:
unsigned int cap = ZBarcode_Cap(BARCODE_PDF417, ZINT_CAP_HRT | ZINT_CAP_ECI);
if (cap & ZINT_CAP_HRT) {
printf("PDF417 supports HRT\n");
2019-12-05 22:47:35 +03:00
} else {
2020-09-30 14:19:12 +03:00
printf("PDF417 does not support HRT\n");
2019-12-05 22:47:35 +03:00
}
2020-09-30 14:19:12 +03:00
if (cap & ZINT_CAP_ECI) {
printf("PDF417 supports ECI\n");
} else {
printf("PDF417 does not support ECI\n");
}
2021-07-06 21:53:31 +03:00
5.13 Zint Version
2020-09-30 14:19:12 +03:00
-----------------
Lastly, the version of the Zint library linked to is returned by:
2021-10-27 21:05:57 +03:00
int ZBarcode_Version(void);
2020-09-30 14:19:12 +03:00
The version parts are separated by hundreds. For instance, version "2.9.1" is
returned as "20901".
2019-12-05 22:47:35 +03:00
2020-09-30 14:19:12 +03:00
2019-12-05 22:47:35 +03:00
6. Types of Symbology
=====================
6.1 One-Dimensional Symbols
---------------------------
One-Dimensional Symbols are what most people associate with the term barcode.
They consist of a number of bars and a number of spaces of differing widths.
6.1.1 Code 11
-------------
Developed by Intermec in 1977, Code 11 is similar to Code 2 of 5 Matrix and is
primarily used in telecommunications. The symbol can encode any length string
2020-06-04 20:45:25 +03:00
consisting of the digits 0-9 and the dash character (-). Two modulo-11 check
digits are added by default. To add just one check digit, set option_2 = 1 or
--vers=1. To add no check digits, set option_2 = 2 or --vers=2.
2019-12-05 22:47:35 +03:00
6.1.2 Code 2 of 5
-----------------
Code 2 of 5 is a family of one-dimensional symbols, 8 of which are supported by
Zint. Note that the names given to these standards alters from one source to
another so you should take care to ensure that you have the right barcode type
before using these standards.
6.1.2.1 Standard Code 2 of 5
----------------------------
2020-09-30 14:19:12 +03:00
Also known as Code 2 of 5 Matrix this is a self-checking code used in industrial
2019-12-05 22:47:35 +03:00
applications and photo development. Standard Code 2 of 5 will encode any length
2021-05-17 22:04:00 +03:00
numeric input (digits 0-9). No check digit is added by default. To add a check
digit, set option_2 = 1 or --vers=1. To add a check digit but not show it in
2021-07-06 21:53:31 +03:00
the Human Readable Text, set option_2 = 2 or --vers=2.
2019-12-05 22:47:35 +03:00
6.1.2.2 IATA Code 2 of 5
------------------------
Used for baggage handling in the air-transport industry by the International
2020-04-02 16:41:13 +03:00
Air Transport Agency, this self-checking code will encode any length numeric
2021-05-17 22:04:00 +03:00
input (digits 0-9). No check digit is added by default. To add a check digit,
2021-09-13 20:49:25 +03:00
set option_2 = 1 or --vers=1. To add a check digit but not show it in the Human
Readable Text, set option_2 = 2 or --vers=2.
2019-12-05 22:47:35 +03:00
6.1.2.3 Industrial Code 2 of 5
------------------------------
2021-05-17 22:04:00 +03:00
Industrial Code 2 of 5 can encode any length numeric input (digits 0-9). No
check digit is added by default. To add a check digit, set option_2 = 1 or
2021-07-06 21:53:31 +03:00
--vers=1. To add a check digit but not show it in the Human Readable Text, set
2021-05-17 22:04:00 +03:00
option_2 = 2 or --vers=2.
2019-12-05 22:47:35 +03:00
2021-06-10 13:15:39 +03:00
6.1.2.4 Interleaved Code 2 of 5 (ISO 16390)
-------------------------------------------
2019-12-05 22:47:35 +03:00
This self-checking symbology encodes pairs of numbers, and so can only encode
an even number of digits (0-9). If an odd number of digits is entered a leading
2021-05-17 22:04:00 +03:00
zero is added by Zint. No check digit is added by default. To add a check digit,
2021-09-13 20:49:25 +03:00
set option_2 = 1 or --vers=1. To add a check digit but not show it in the Human
Readable Text, set option_2 = 2 or --vers=2.
2019-12-05 22:47:35 +03:00
6.1.2.5 Code 2 of 5 Data Logic
------------------------------
2021-05-17 22:04:00 +03:00
Data Logic does not include a check digit by default and can encode any length
numeric input (digits 0-9). To add a check digit, set option_2 = 1 or --vers=1.
2021-07-06 21:53:31 +03:00
To add a check digit but not show it in the Human Readable Text, set option_2 =
2021-05-17 22:04:00 +03:00
2 or --vers=2.
2019-12-05 22:47:35 +03:00
6.1.2.6 ITF-14
--------------
ITF-14, also known as UPC Shipping Container Symbol or Case Code is based on
Interleaved Code 2 of 5 and requires a 13 digit numeric input (digits 0-9). One
modulo-10 check digit is added by Zint.
2020-07-30 12:09:17 +03:00
If no border option is specified Zint defaults to adding a bounding box with a
2020-08-09 11:22:35 +03:00
border width of 5. This behaviour can be overridden by using the --bind option
2020-07-30 12:09:17 +03:00
(or adding BARCODE_BIND to symbol->output_options). Similarly the border width
2020-08-09 11:22:35 +03:00
can be overridden using --border= (or by setting symbol->border_width). If a
2020-07-30 12:09:17 +03:00
symbol with no border is explicitly required this can be achieved by setting
the border type to box or bind and setting the border width to 0.
2019-12-05 22:47:35 +03:00
6.1.2.7 Deutsche Post Leitcode
------------------------------
Leitcode is based on Interleaved Code 2 of 5 and is used by Deutsche Post for
mailing purposes. Leitcode requires a 13-digit numerical input and includes a
check digit.
6.1.2.8 Deutsche Post Identcode
-------------------------------
Identcode is based on Interleaved Code 2 of 5 and is used by Deutsche Post for
mailing purposes. Identcode requires an 11-digit numerical input and includes a
check digit.
6.1.3 Universal Product Code (EN 797)
-------------------------------------
6.1.3.1 UPC Version A
---------------------
UPC-A is used in the United States for retail applications. The symbol requires
an 11 digit article number. The check digit is calculated by Zint. In addition
EAN-2 and EAN-5 add-on symbols can be added using the + character. For example,
to draw a UPC-A symbol with the data 72527270270 with an EAN-5 add-on showing
the data 12345 use the command:
2021-01-21 00:15:03 +03:00
zint --barcode=UPCA -d 72527270270+12345
2019-12-05 22:47:35 +03:00
or encode a data string with the + character included:
my_symbol->symbology = BARCODE_UPCA;
2020-09-30 14:19:12 +03:00
error = ZBarcode_Encode_and_Print(my_symbol, "72527270270+12345", 0, 0);
2019-12-05 22:47:35 +03:00
2020-07-15 21:00:12 +03:00
If your input data already includes the check digit symbology BARCODE_UPCA_CHK
(35) can be used which takes a 12 digit input and validates the check digit
before encoding.
You can adjust the gap between the main symbol and an add-on in multiples of
the X-dimension by setting --addongap= (option_2) to a value between 9 (default)
2021-09-22 02:04:15 +03:00
and 12. The height in X-dimensions that the guard bars descend below the main
2021-09-29 17:06:33 +03:00
bars can be adjusted by setting --guarddescent= (variable guard_descent in the
2021-09-22 02:04:15 +03:00
symbol structure) to a value between 0 and 20 (default 5).
2019-12-05 22:47:35 +03:00
6.1.3.2 UPC Version E
---------------------
UPC-E is a zero-compressed version of UPC-A developed for smaller packages. The
code requires a 6 digit article number (digits 0-9). The check digit is
calculated by Zint. EAN-2 and EAN-5 add-on symbols can be added using the +
character as with UPC-A. In addition Zint also supports Number System 1
encoding by entering a 7-digit article number stating with the digit 1. For
example:
2021-01-21 00:15:03 +03:00
zint --barcode=UPCE -d 1123456
2019-12-05 22:47:35 +03:00
or
my_symbol->symbology = BARCODE_UPCE;
2020-09-30 14:19:12 +03:00
error = ZBarcode_Encode_and_Print(my_symbol, "1123456", 0, 0);
2019-12-05 22:47:35 +03:00
2020-07-15 21:00:12 +03:00
If your input data already includes the check digit symbology BARCODE_UPCE_CHK
(38) can be used which takes a 7 or 8 digit input and validates the check digit
before encoding.
You can adjust the gap between the main symbol and an add-on in multiples of
the X-dimension by setting --addongap= (option_2) to a value between 7 (default)
2021-09-22 02:04:15 +03:00
and 12. The height in X-dimensions that the guard bars descend below the main
2021-09-29 17:06:33 +03:00
bars can be adjusted by setting --guarddescent= (variable guard_descent in the
2021-09-22 02:04:15 +03:00
symbol structure) to a value between 0 and 20 (default 5).
2019-12-05 22:47:35 +03:00
6.1.4 European Article Number (EN 797)
--------------------------------------
6.1.4.1 EAN-2, EAN-5, EAN-8 and EAN-13
--------------------------------------
The EAN system is used in retail across Europe and includes standards for EAN-2
and EAN-5 add-on codes, EAN-8 and EAN-13 which encode 2, 5, 7 or 12 digit
numbers respectively. Zint will decide which symbology to use depending on the
length of the input data. In addition EAN-2 and EAN-5 add-on symbols can be
added using the + symbol as with UPC symbols. For example:
2021-01-21 00:15:03 +03:00
zint --barcode=EANX -d 54321
2019-12-05 22:47:35 +03:00
will encode a stand-alone EAN-5, whereas
2021-01-21 00:15:03 +03:00
zint --barcode=EANX -d 7432365+54321
2019-12-05 22:47:35 +03:00
will encode an EAN-8 symbol with an EAN-5 add-on. As before these results can
be achieved using the API:
my_symbol->symbology = BARCODE_EANX;
2020-09-30 14:19:12 +03:00
error = ZBarcode_Encode_and_Print(my_symbol, "54321", 0, 0);
2019-12-05 22:47:35 +03:00
2020-09-30 14:19:12 +03:00
error = ZBarcode_Encode_and_Print(my_symbol, "7432365+54321", 0, 0);
2019-12-05 22:47:35 +03:00
All of the EAN symbols include check digits which are added by Zint.
If you are encoding an EAN-8 or EAN-13 symbol and your data already includes
2020-07-15 21:00:12 +03:00
the check digit then you can use symbology BARCODE_EANX_CHK (14) which takes an
8 or 13 digit input and validates the check digit before encoding.
You can adjust the gap between the main symbol and an add-on in multiples of
the X-dimension by setting --addongap= (option_2) to a value between 7 (default)
2021-09-22 02:04:15 +03:00
and 12. The height in X-dimensions that the guard bars descend below the main
2021-09-29 17:06:33 +03:00
bars can be adjusted by setting --guarddescent= (variable guard_descent in the
2021-09-22 02:04:15 +03:00
symbol structure) to a value between 0 and 20 (default 5).
2019-12-05 22:47:35 +03:00
6.1.4.2 SBN, ISBN and ISBN-13
-----------------------------
EAN-13 symbols (also known as Bookland EAN-13) can also be produced from
2020-04-02 16:41:13 +03:00
9-digit SBN, 10-digit ISBN or 13-digit ISBN-13 data. The relevant check digit
needs to be present in the input data and will be verified before the symbol is
2019-12-05 22:47:35 +03:00
generated. In addition EAN-2 and EAN-5 add-on symbols can be added using the +
2020-07-15 21:00:12 +03:00
symbol as with UPC symbols, and the gap set with --addongap= (option_2) to
2021-09-22 02:04:15 +03:00
between 7 (default) and 12. The height that the guard bars descend can be
2021-09-29 17:06:33 +03:00
adjusted by setting --guarddescent= (variable guard_descent in the symbol
2021-09-22 02:04:15 +03:00
structure) to a value between 0 and 20 (default 5).
2019-12-05 22:47:35 +03:00
6.1.5 Plessey
-------------
Also known as Plessey Code, this symbology was developed by the Plessey Company
Ltd. in the UK. The symbol can encode any length data consisting of digits
(0-9) or letters A-F and includes a CRC check digit.
6.1.6 MSI Plessey
-----------------
Based on Plessey and developed by MSE Data Corporation, MSI Plessey is
available with a range of check digit options available by setting option_2 or
2020-06-04 20:45:25 +03:00
by using the --vers= switch. Any length numeric (digits 0-9) input can be
2019-12-05 22:47:35 +03:00
encoded. The table below shows the options available:
-------------------------------------------
Value of option_2 | Check Digits
-------------------------------------------
0 | None
2021-06-10 13:15:39 +03:00
1 | Modulo-10 (Luhn)
2019-12-05 22:47:35 +03:00
2 | Modulo-10 & Modulo-10
2021-06-10 13:15:39 +03:00
3 | Modulo-11 (IBM)
4 | Modulo-11 (IBM) & Modulo-10
5 | Modulo-11 (NCR)
6 | Modulo-11 (NCR) & Modulo-10
2019-12-05 22:47:35 +03:00
-------------------------------------------
2021-07-06 21:53:31 +03:00
To not show the check digit or digits in the Human Readable Text, add 10 to the
2021-06-10 13:15:39 +03:00
option_2 value.
2019-12-05 22:47:35 +03:00
6.1.7 Telepen
-------------
6.1.7.1 Telepen Alpha
---------------------
Telepen Alpha was developed by SB Electronic Systems Limited and can encode any
length of ASCII text input. Telepen includes a modulo-127 check digit.
6.1.7.2 Telepen Numeric
-----------------------
Telepen Numeric allows compression of numeric data into a Telepen symbol. Data
can consist of pairs of numbers or pairs consisting of a numerical digit
followed an X character. For example: 466333 and 466X33 are valid codes whereas
46X333 is not (the digit pair "X3" is not valid). Telepen Numeric includes a
modulo-127 check digit which is added by Zint.
6.1.8 Code 39
-------------
6.1.8.1 Standard Code 39 (ISO 16388)
------------------------------------
Standard Code 39 was developed in 1974 by Intermec. Input data can be of any
length and can include the characters 0-9, A-Z, dash (-), full stop (.), space,
asterisk (*), dollar ($), slash (/), plus (+) and percent (%). The standard
does not require a check digit but a modulo-43 check digit can be added if
2020-06-04 20:45:25 +03:00
required by setting option_2 = 1 or using --vers=1.
2019-12-05 22:47:35 +03:00
6.1.8.2 Extended Code 39
------------------------
Also known as Code 39e and Code39+, this symbology expands on Standard Code 39
to provide support to the full ASCII character set. The standard does not
require a check digit but a modulo-43 check digit can be added if required by
2020-06-04 20:45:25 +03:00
setting option_2 = 1 or using --vers=1.
2019-12-05 22:47:35 +03:00
6.1.8.3 Code 93
---------------
A variation of Extended Code 39, Code 93 also supports full ASCII text. Two
2021-09-13 20:49:25 +03:00
check characters are added by Zint. By default these check characters are not
shown in the Human Readable Text, but may be shown by setting option_2 = 1 or
2021-10-27 21:05:57 +03:00
using --vers=1.
2019-12-05 22:47:35 +03:00
2020-06-04 20:45:25 +03:00
6.1.8.4 PZN (Pharmazentralnummer)
---------------------------------
PZN is a Code 39 based symbology used by the pharmaceutical industry in Germany.
PZN encodes a 7 digit number to which Zint will add a modulo-11 check digit.
2019-12-05 22:47:35 +03:00
6.1.8.5 LOGMARS
---------------
LOGMARS (Logistics Applications of Automated Marking and Reading Symbols) is a
2021-01-12 17:11:53 +03:00
variation of the Code 39 symbology used by the US Department of Defense.
2020-06-04 20:45:25 +03:00
LOGMARS encodes the same character set as Standard Code 39. It does not require
a check digit but a modulo-43 check digit can be added by setting option_2 = 1
or using --vers=1.
2019-12-05 22:47:35 +03:00
6.1.8.6 Code 32
---------------
A variation of Code 39 used by the Italian Ministry of Health ("Ministero della
Sanità") for encoding identifiers on pharmaceutical products. This symbology
2020-04-02 16:41:13 +03:00
requires a numeric input up to 8 digits in length. A check digit is added by
Zint.
2019-12-05 22:47:35 +03:00
6.1.8.7 HIBC Code 39
--------------------
This option adds a leading '+' character and a trailing modulo-49 check digit
to a standard Code 39 symbol as required by the Health Industry Barcode
standards.
6.1.8.8 Vehicle Identification Number (VIN)
-------------------------------------------
2020-06-04 20:45:25 +03:00
A variation of Code 39 that for vehicle identification numbers used in North
America (first character '1' to '5') has a check character verification stage.
An Import character prefix 'I' can be added by setting option_2 = 1 or using
--vers=1.
2019-12-05 22:47:35 +03:00
6.1.9 Codabar (EN 798)
----------------------
Also known as NW-7, Monarch, ABC Codabar, USD-4, Ames Code and Code 27, this
symbology was developed in 1972 by Monarch Marketing Systems for retail
purposes. The American Blood Commission adopted Codabar in 1977 as the standard
symbology for blood identification. Codabar can encode any length string
starting and ending with the letters A-D and containing between these letters
the numbers 0-9, dash (-), dollar ($), colon (:), slash (/), full stop (.) or
Add compliant height, using ZINT_COMPLIANT_HEIGHT flag for back-compatibility
Rename barcode funcs to same as BARCODE_XXX name
library: barcode funcs array for dispatch, used for ZBarcode_ValidID() also
general: change is_sane() comparison to nonzero from ZINT_ERROR_INVALID_OPTION
MAILMARK: fuller error messages
CODABAR: add option to show check character in HRT
zint.h: use 0xNNNN for OR-able defines
GUI: add guard descent height reset button, add Zint version to window title,
static get_zint_version() method, use QStringLiteral (QSL shorthand),
use SIGNAL(toggled()), add errtxt "popup" and status bar, add icons,
add saveAs shortcut, add main menu, context menus and actions, add help,
reset_view() -> reset_colours(), add copy to clipboard as EMF/GIF/PNG/TIF,
lessen triggering of update_preview(), shorten names of getters/setters,
simplify/shorten some update_preview() logic in switch,
CODEONE disable structapp for Version S
qzint.cpp: add on_errored signal, add missing getters, add test
2021-10-09 02:13:39 +03:00
plus (+). No check characater is generated by default, but a modulo-16 one can
be added by setting option_2 = 1 or using --vers=1. To have the check character
appear in the Human Readable Text, set option_2 = 2 or --vers=2.
2019-12-05 22:47:35 +03:00
6.1.10 Pharmacode
-----------------
Developed by Laetus, Pharmacode is used for the identification of
pharmaceuticals. The symbology is able to encode whole numbers between 3 and
131070.
6.1.11 Code 128
---------------
6.1.11.1 Standard Code 128 (ISO 15417)
--------------------------------------
One of the most ubiquitous one-dimensional barcode symbologies, Code 128 was
developed in 1981 by Computer Identics. This symbology supports full ASCII text
and uses a three-mode system to compress the data into a smaller symbol. Zint
automatically switches between modes and adds a modulo-103 check digit. Code
128 is the default barcode symbology used by Zint. In addition Zint supports
2021-05-15 14:23:46 +03:00
the encoding of Latin-1 (non-English) characters in Code 128 symbols. The
2019-12-05 22:47:35 +03:00
Latin-1 character set is shown in Appendix A.
6.1.11.2 Code 128 Subset B
--------------------------
It is sometimes advantageous to stop Code 128 from using subset mode C which
2020-10-04 00:51:08 +03:00
compresses numerical data. The BARCODE_CODE128B option (symbology 60) suppresses
mode C in favour of mode B.
2019-12-05 22:47:35 +03:00
6.1.11.3 GS1-128
----------------
2020-07-10 21:39:32 +03:00
A variation of Code 128 previously known as UCC/EAN-128, this symbology is
defined by the GS1 General Specifications. Application Identifiers (AIs) should
2021-05-30 18:53:13 +03:00
be entered using [square bracket] notation. These will be converted to
2021-07-06 21:53:31 +03:00
parentheses (round brackets) for the Human Readable Text. This will allow round
2021-05-30 18:53:13 +03:00
brackets to be used in the data strings to be encoded.
For compatibility with data entry in other systems, if the data does not include
round brackets, the option --gs1parens (API input_mode |= GS1PARENS_MODE;) may
be used to signal that AIs are encased in round brackets instead of square ones.
Fixed length data should be entered at the appropriate length for correct
encoding. GS1-128 does not support extended ASCII characters. Check digits for
GTIN data (AI 01) are not generated and need to be included in the input data.
The following is an example of a valid GS1-128 input:
2019-12-05 22:47:35 +03:00
zint --barcode=16 -d "[01]98898765432106[3202]012345[15]991231"
2021-05-30 18:53:13 +03:00
or using the --gs1parens option:
zint --barcode=16 --gs1parens -d "(01)98898765432106(3202)012345(15)991231"
2019-12-05 22:47:35 +03:00
6.1.11.4 EAN-14
---------------
A shorter version of GS1-128 which encodes GTIN data only. A 13 digit number is
required. The GTIN check digit and AI (01) are added by Zint.
2020-07-15 21:00:12 +03:00
6.1.11.5 NVE-18 (SSCC-18)
-------------------------
A variation of Code 128 the "Nummer der Versandeinheit" standard, also known as
SSCC-18 (Serial Shipping Container Code), includes both modulo-10 and modulo-103
check digits. NVE-18 requires a 17 digit numerical input. Check digits and AI
(00) are added by Zint.
2019-12-05 22:47:35 +03:00
6.1.11.6 HIBC Code 128
----------------------
This option adds a leading '+' character and a trailing modulo-49 check digit
to a standard Code 128 symbol as required by the Health Industry Barcode
standards.
2020-08-03 14:13:05 +03:00
6.1.11.7 DPD Code
-----------------
Another variation of Code 128 as used by DPD (Deutsher Paket Dienst). Requires
2021-07-06 21:53:31 +03:00
a 28 character alphanumeric input. Zint formats Human Readable Text as
2020-08-03 14:13:05 +03:00
specified by DPD and adds a modulo-36 check character.
2019-12-05 22:47:35 +03:00
6.1.12 GS1 DataBar (ISO 24724)
------------------------------
2020-07-10 21:39:32 +03:00
Previously known as RSS (Reduced Spaced Symbology) these symbols are due to
replace GS1-128 symbols in accordance with the GS1 General Specifications. If a
GS1 DataBar symbol is to be printed with a 2D component as specified in ISO
24723 set option_1 = 2 or use the option --mode=2 at the command prompt. See
section 6.3 of this manual to find out how to generate DataBar symbols with 2D
2020-04-02 16:41:13 +03:00
components.
2019-12-05 22:47:35 +03:00
2020-07-10 21:39:32 +03:00
6.1.12.1 DataBar Omnidirectional and DataBar Truncated
------------------------------------------------------
Previously known as RSS-14 this standard encodes a 13 digit item code. A check
2021-07-07 12:46:26 +03:00
digit and Application Identifier of (01) are added by Zint. (A 14 digit code
2020-07-10 21:39:32 +03:00
that appends the check digit may be given, in which case the check digit will be
verified.) To produce a truncated symbol set the symbol height to a value
between 32 and 13. Normal DataBar Omnidirectional symbols should have a height
of 33 or greater.
2019-12-05 22:47:35 +03:00
6.1.12.2 DataBar Limited
------------------------
2020-07-10 21:39:32 +03:00
Previously known as RSS Limited this standard encodes a 13 digit item code and
can be used in the same way as DataBar above. DataBar Limited, however, is
limited to data starting with digits 0 and 1 (i.e. numbers in the range 0 to
1999999999999). As with DataBar Omnidirectional a check digit and application
identifier of (01) are added by Zint, and a 14 digit code may be given in which
case the check digit will be verified.
2019-12-05 22:47:35 +03:00
6.1.12.3 DataBar Expanded
-------------------------
2020-07-10 21:39:32 +03:00
Previously known as RSS Expanded this is a variable length symbology capable of
2019-12-05 22:47:35 +03:00
encoding data from a number of AIs in a single symbol. AIs should be encased in
2021-05-15 14:23:46 +03:00
[square brackets] in the input data. This will be converted to parentheses
2021-07-06 21:53:31 +03:00
(round brackets) before it is included in the Human Readable Text attached to
2021-05-15 14:23:46 +03:00
the symbol. This method allows the inclusion of parentheses in the data to be
2021-05-30 18:53:13 +03:00
encoded. If the data does not include parentheses, the AIs may alternatively
be encased in parentheses using the --gs1parens switch. See section 6.1.11.3.
2021-05-15 14:23:46 +03:00
GTIN data (AI 01) should also include the check digit data as this is not
calculated by Zint when this symbology is encoded. Fixed length data should be
entered at the appropriate length for correct encoding. The following is an
2020-07-10 21:39:32 +03:00
example of a valid DataBar Expanded input:
2019-12-05 22:47:35 +03:00
zint --barcode=31 -d "[01]98898765432106[3202]012345[15]991231"
6.1.13 Korea Post Barcode
-------------------------
The Korean Postal Barcode is used to encode a six-digit number and includes one
check digit.
6.1.14 Channel Code
-------------------
A highly compressed symbol for numeric data. The number of channels in the
symbol can be between 3 and 8 and this can be specified by setting the value of
2020-06-04 20:45:25 +03:00
option_2 or using the --vers= option. It can also be determined by the length of
the input data e.g. a three character input string generates a 4 channel code by
default. The maximum values permitted depend on the number of channels used as
shown in the table below:
2019-12-05 22:47:35 +03:00
--------------------------------------------
Channels | Minimum Value | Maximum Value
--------------------------------------------
3 | 00 | 26
4 | 000 | 292
5 | 0000 | 3493
6 | 00000 | 44072
7 | 000000 | 576688
8 | 0000000 | 7742862
--------------------------------------------
6.2 Stacked Symbologies
-----------------------
6.2.1 Basic Symbol Stacking
---------------------------
An early innovation to get more information into a symbol, used primarily in
the vehicle industry, is to simply stack one-dimensional codes on top of each
other. This can be achieved at the command prompt by giving more than one set
of input data. For example
2020-09-30 14:19:12 +03:00
zint -d "This" -d "That"
2019-12-05 22:47:35 +03:00
will draw two Code 128 symbols, one on top of the other. The same result can be
achieved using the API by executing the ZBarcode_Encode() function more than
once on a symbol. For example:
my_symbol->symbology = BARCODE_CODE128;
2020-09-30 14:19:12 +03:00
error = ZBarcode_Encode(my_symbol, "This", 0);
2019-12-05 22:47:35 +03:00
2020-09-30 14:19:12 +03:00
error = ZBarcode_Encode(my_symbol, "That", 0);
2019-12-05 22:47:35 +03:00
error = ZBarcode_Print(my_symbol);
2020-05-16 12:22:33 +03:00
The stacked barcode rows can be separated by row separator bars by specifying
2020-05-21 20:22:28 +03:00
--bind (output_options |= BARCODE_BIND). The height of the row separator bars in
multiples of the X-dimension (minimum and default 1, maximum 4) can be set by
2020-05-16 12:22:33 +03:00
--separator= (option_3):
2020-09-30 14:19:12 +03:00
zind --bind --separator=2 -d "This" -d "That"
2020-05-16 12:22:33 +03:00
2020-04-02 16:41:13 +03:00
A more sophisticated method is to use some type of line indexing which indicates
to the barcode reader which order the symbols should be read. This is
2019-12-05 22:47:35 +03:00
demonstrated by the symbologies below.
6.2.2 Codablock-F
-----------------
2020-05-16 12:22:33 +03:00
This is a stacked symbology based on Code 128 which can encode extended ASCII
code set data up to a maximum length of 2725 characters. The width of the
Codablock-F symbol can be set using the --cols= option at the command line or
option_2. The height (number of rows) can be set using the --rows= option at the
command line or by setting option_1. Zint does not support encoding of GS1 data
in Codablock-F symbols.
2019-12-05 22:47:35 +03:00
2021-09-24 15:21:24 +03:00
6.2.3 Code 16K (EN 12323)
2019-12-05 22:47:35 +03:00
-------------------------
2021-09-24 15:21:24 +03:00
Code 16K uses a Code 128 based system which can stack up to 16 rows in a block.
2019-12-05 22:47:35 +03:00
This gives a maximum data capacity of 77 characters or 154 numerical digits and
2021-09-24 15:21:24 +03:00
includes two modulo-107 check digits. Code 16K also supports extended ASCII
Add compliant height, using ZINT_COMPLIANT_HEIGHT flag for back-compatibility
Rename barcode funcs to same as BARCODE_XXX name
library: barcode funcs array for dispatch, used for ZBarcode_ValidID() also
general: change is_sane() comparison to nonzero from ZINT_ERROR_INVALID_OPTION
MAILMARK: fuller error messages
CODABAR: add option to show check character in HRT
zint.h: use 0xNNNN for OR-able defines
GUI: add guard descent height reset button, add Zint version to window title,
static get_zint_version() method, use QStringLiteral (QSL shorthand),
use SIGNAL(toggled()), add errtxt "popup" and status bar, add icons,
add saveAs shortcut, add main menu, context menus and actions, add help,
reset_view() -> reset_colours(), add copy to clipboard as EMF/GIF/PNG/TIF,
lessen triggering of update_preview(), shorten names of getters/setters,
simplify/shorten some update_preview() logic in switch,
CODEONE disable structapp for Version S
qzint.cpp: add on_errored signal, add missing getters, add test
2021-10-09 02:13:39 +03:00
character encoding in the same manner as Code 128. GS1 data encoding is also
supported.
2019-12-05 22:47:35 +03:00
6.2.4 PDF417 (ISO 15438)
------------------------
Heavily used in the parcel industry, the PDF417 symbology can encode a vast
amount of data into a small space. Zint supports encoding up to the ISO
standard maximum symbol size of 925 codewords which (at error correction level
0) allows a maximum data size of 1850 text characters, or 2710 digits. The
width of the generated PDF417 symbol can be specified at the command line using
the --cols switch followed by a number between 1 and 30, and the amount of
2021-08-05 18:34:45 +03:00
error correction information can be specified by using the --secure switch
2019-12-05 22:47:35 +03:00
followed by a number between 0 and 8 where the number of codewords used for
2021-08-05 18:34:45 +03:00
error correction is determined by 2^(value + 1). If using the API these values
are assigned to option_2 and option_1 respectively. The default level of error
correction is determined by the amount of data being encoded. This symbology
2019-12-05 22:47:35 +03:00
uses Latin-1 character encoding by default but also supports the ECI encoding
mechanism. A separate symbology ID can be used to encode Health Industry
Barcode (HIBC) data which adds a leading '+' character and a modulo-49 check
digit to the encoded data.
2021-09-29 17:06:33 +03:00
PDF417 supports Structured Append of up to a 99,999 symbols and an optional
numeric ID of up to 30 digits, which can be set by using the --structapp option
(see section 4.15) or the API structapp variable. The ID consists of up to 10
triplets, each ranging from "000" to "899". For instance "123456789" would be a
valid ID of 3 triplets. However "123456900" would not, as the last triplet "900"
exceeds "899". The triplets are 0-filled, for instance "1234" becomes "123004".
If an ID is not given, no ID is encoded.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
2019-12-05 22:47:35 +03:00
6.2.5 Compact PDF417
--------------------
2020-07-17 18:39:01 +03:00
Previously known as Truncated PDF417. Options are the same as for PDF417 above.
2019-12-05 22:47:35 +03:00
6.2.6 MicroPDF417 (ISO 24728)
-----------------------------
A variation of the PDF417 standard, MicroPDF417 is intended for applications
where symbol size needs to be kept to a minimum. 34 predefined symbol sizes are
available with 1 - 4 columns and 4 - 44 rows. The maximum size MicroPDF417
symbol can hold 250 alphanumeric characters or 366 digits. The amount of error
correction used is dependent on symbol size. The number of columns used can be
2019-12-21 04:04:42 +03:00
determined using the --cols switch or option_2 as with PDF417. This symbology
2019-12-05 22:47:35 +03:00
uses Latin-1 character encoding by default but also supports the ECI encoding
mechanism. A separate symbology ID can be used to encode Health Industry
Barcode (HIBC) data which adds a leading '+' character and a modulo-49 check
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
digit to the encoded data. MicroPDF417 supports Structured Append the same as
PDF417, for which see details.
2019-12-05 22:47:35 +03:00
2020-07-10 21:39:32 +03:00
6.2.7 GS1 DataBar Stacked (ISO 24724)
-------------------------------------
A stacked variation of the GS1 DataBar Truncated symbol requiring the same input
(see section 6.1.12.1). The height of this symbol is fixed. The data is encoded
in two rows of bars with a central finder pattern. This symbol can be generated
2019-12-05 22:47:35 +03:00
with a two-dimensional component to make a composite symbol.
2020-07-10 21:39:32 +03:00
6.2.8 GS1 DataBar Stacked Omnidirectional (ISO 24724)
-----------------------------------------------------
A stacked variation of the GS1 DataBar Omnidirectional symbol requiring the same
input (see section 6.1.12.1). The data is encoded in two rows of bars with a
central finder pattern. This symbol can be generated with a two-dimensional
component to make a composite symbol.
2019-12-05 22:47:35 +03:00
6.2.9 GS1 DataBar Expanded Stacked (ISO 24724)
----------------------------------------------
A stacked variation of the GS1 DataBar Expanded symbol for smaller packages.
Input is the same as for GS1 DataBar Expanded (see section 6.1.12.3). In
addition the width of the symbol can be altered using the --cols switch or
option_2. In this case the number of columns relates to the number of character
pairs on each row of the symbol. This symbol can be generated with a two-
2020-04-02 16:41:13 +03:00
dimensional component to make a composite symbol. For symbols with a 2D
component the number of columns must be at least 2.
2019-12-05 22:47:35 +03:00
6.2.10 Code 49
2021-09-24 15:21:24 +03:00
--------------
2019-12-05 22:47:35 +03:00
Developed in 1987 at Intermec, Code 49 is a cross between UPC and Code 39. It
2021-08-13 17:05:35 +03:00
is one of the earliest stacked symbologies and influenced the design of Code
2019-12-05 22:47:35 +03:00
16K a few years later. It supports full 7-bit ASCII input up to a maximum of 49
characters or 81 numeric digits. GS1 data encoding is also supported.
6.3 Composite Symbols (ISO 24723)
---------------------------------
Composite symbols employ a mixture of components to give more comprehensive
information about a product. The permissible contents of a composite symbol is
2020-07-10 21:39:32 +03:00
determined by the terms of the GS1 General Specifications. Composite symbols
2019-12-05 22:47:35 +03:00
consist of a linear component which can be an EAN, UPC, GS1-128 or GS1 DataBar
symbol, a 2D component which is based on PDF417 or MicroPDF417, and a separator
pattern. The type of linear component to be used is determined using the -b or
--barcode= switch or by adjusting symbol->symbology as with other encoding
methods. Valid values are shown below.
--------------------------------------------------------------------------------
Numeric | Name | Barcode Name
Value |
--------------------------------------------------------------------------------
130 | BARCODE_EANX_CC | Composite Symbol with EAN linear component
2020-07-29 22:43:08 +03:00
131 | BARCODE_GS1_128_CC | Composite Symbol with GS1-128 linear
2019-12-05 22:47:35 +03:00
| | component
2020-07-29 22:43:08 +03:00
132 | BARCODE_DBAR_OMN_CC | Composite Symbol with GS1 DataBar
2020-07-10 21:39:32 +03:00
| | Omnidirectional linear component
2020-07-29 22:43:08 +03:00
133 | BARCODE_DBAR_LTD_CC | Composite Symbol with GS1 DataBar Limited
2020-07-10 21:39:32 +03:00
| | linear component
2020-07-29 22:43:08 +03:00
134 | BARCODE_DBAR_EXP_CC | Composite Symbol with GS1 DataBar Expanded
2020-07-10 21:39:32 +03:00
| | linear component
135 | BARCODE_UPCA_CC | Composite Symbol with UPC-A linear component
136 | BARCODE_UPCE_CC | Composite Symbol with UPC-E linear component
2020-07-29 22:43:08 +03:00
137 | BARCODE_DBAR_STK_CC | Composite Symbol with GS1 DataBar Stacked
2019-12-05 22:47:35 +03:00
| | component
2020-07-29 22:43:08 +03:00
138 | BARCODE_DBAR_OMNSTK_CC | Composite Symbol with GS1 DataBar Stacked
2020-07-10 21:39:32 +03:00
| | Omnidirectional component
2020-07-29 22:43:08 +03:00
139 | BARCODE_DBAR_EXPSTK_CC | Composite Symbol with GS1 DataBar Expanded
2019-12-05 22:47:35 +03:00
| | Stacked component
--------------------------------------------------------------------------------
The data to be encoded in the linear component of a composite symbol should be
entered into a primary string with the data for the 2D component being entered
in the normal way. To do this at the command prompt use the --primary= command.
For example:
2021-01-21 00:15:03 +03:00
zint -b EANX_CC --mode=1 --primary=331234567890 -d "[99]1234-abcd"
2019-12-05 22:47:35 +03:00
This creates an EAN-13 linear component with the data "331234567890" and a 2D
CC-A (see below) component with the data "(99)1234-abcd". The same results can
be achieved using the API as shown below:
2020-09-30 14:19:12 +03:00
my_symbol->symbology = BARCODE_EANX_CC;
2019-12-05 22:47:35 +03:00
my_symbol->option_1 = 1;
strcpy(my_symbol->primary, "331234567890");
2020-09-30 14:19:12 +03:00
ZBarcode_Encode_and_Print(my_symbol, "[99]1234-abcd", 0, 0);
2019-12-05 22:47:35 +03:00
EAN-2 and EAN-5 add-on data can be used with EAN and UPC symbols using the +
2021-05-15 14:23:46 +03:00
symbol as described in sections 6.1.3 and 6.1.4.
2019-12-05 22:47:35 +03:00
The 2D component of a composite symbol can use one of three systems: CC-A, CC-B
and CC-C as described below. The 2D component type can be selected
2021-01-12 17:11:53 +03:00
automatically by Zint dependent on the length of the input string.
2019-12-05 22:47:35 +03:00
Alternatively the three methods can be accessed using the --mode= prompt
followed by 1, 2 or 3 for CC-A, CC-B or CC-C respectively, or by using the
option_1 variable as shown above.
6.3.1 CC-A
----------
This system uses a variation of MicroPDF417 which optimised to fit into a small
space. The size of the 2D component and the amount of error correction is
determined by the amount of data to be encoded and the type of linear component
which is being used. CC-A can encode up to 56 numeric digits or an alphanumeric
string of shorter length. To select CC-A use --mode=1.
6.3.2 CC-B
----------
This system uses MicroPDF417 to encode the 2D component. The size of the 2D
component and the amount of error correction is determined by the amount of
data to be encoded and the type of linear component which is being used. CC-B
can encode up to 338 numeric digits or an alphanumeric string of shorter
length. To select CC-B use --mode=2.
6.3.3 CC-C
----------
This system uses PDF417 and can only be used in conjunction with a GS1-128
linear component. CC-C can encode up to 2361 numeric digits or an alphanumeric
string of shorter length. To select CC-C use --mode=3.
6.4 Two-Track Symbols
---------------------
6.4.1 Two-Track Pharmacode
--------------------------
Developed by Laetus, Pharmacode Two-Track is an alternative system to
Pharmacode One-Track used for the identification of pharmaceuticals. The
symbology is able to encode whole numbers between 4 and 64570080.
2020-10-04 00:51:08 +03:00
6.4.2 POSTNET
2019-12-05 22:47:35 +03:00
-------------
2020-10-04 00:51:08 +03:00
Used by the United States Postal Service until 2009, the POSTNET barcode was
used for encoding zip-codes on mail items. POSTNET uses numerical input data
and includes a modulo-10 check digit. While Zint will encode POSTNET symbols of
2021-07-13 21:56:53 +03:00
up to 38 digits in length, standard lengths as used by USPS were PostNet6 (5
digit ZIP input), PostNet10 (5 digit ZIP + 4 digit user data) and PostNet12 (5
digit ZIP + 6 digit user data).
2019-12-05 22:47:35 +03:00
6.4.3 PLANET
------------
Used by the United States Postal Service until 2009, the PLANET (Postal Alpha
Numeric Encoding Technique) barcode was used for encoding routing data on mail
2019-12-21 03:51:38 +03:00
items. PLANET uses numerical input data and includes a modulo-10 check digit.
2021-07-13 21:56:53 +03:00
While Zint will encode PLANET symbols of up to 38 digits in length, standard
lengths used by USPS were Planet12 (11 digit input) and Planet14 (13 digit
input).
2019-12-05 22:47:35 +03:00
6.5 4-State Postal Codes
------------------------
6.5.1 Australia Post 4-State Symbols
------------------------------------
6.5.1.1 Customer Barcodes
-------------------------
Australia Post Standard Customer Barcode, Customer Barcode 2 and Customer
Barcode 3 are 37-bar, 52-bar and 67-bar specifications respectively, developed
by Australia Post for printing Delivery Point ID (DPID) and customer
information on mail items. Valid data characters are 0-9, A-Z, a-z, space and
hash (#). A Format Control Code (FCC) is added by Zint and should not be
included in the input data. Reed-Solomon error correction data is generated by
Zint. Encoding behaviour is determined by the length of the input data
according to the formula shown in the following table:
-----------------------------------------------------------------
Input | Required Input Format | Symbol | FCC | Encoding
Length | | Length | | Table
-----------------------------------------------------------------
8 | 99999999 | 37-bar | 11 | None
13 | 99999999AAAAA | 52-bar | 59 | C
16 | 9999999999999999 | 52-bar | 59 | N
18 | 99999999AAAAAAAAAA | 67-bar | 62 | C
23 | 99999999999999999999999 | 67-bar | 62 | N
-----------------------------------------------------------------
6.5.1.2 Reply Paid Barcode
--------------------------
A Reply Paid version of the Australia Post 4-State Barcode (FCC 45) which
requires an 8-digit DPID input.
6.5.1.3 Routing Barcode
-----------------------
A Routing version of the Australia Post 4-State Barcode (FCC 87) which requires
an 8-digit DPID input.
6.5.1.4 Redirect Barcode
------------------------
A Redirection version of the Australia Post 4-State Barcode (FCC 92) which
requires an 8-digit DPID input.
6.5.2 Dutch Post KIX Code
-------------------------
2020-04-02 16:41:13 +03:00
This symbology is used by Royal Dutch TPG Post (Netherlands) for Postal code
2019-12-05 22:47:35 +03:00
and automatic mail sorting. Data input can consist of numbers 0-9 and letters
A-Z and needs to be 11 characters in length. No check digit is included.
2020-04-02 16:41:13 +03:00
6.5.3 Royal Mail 4-State Customer Code (RM4SCC)
2020-10-06 01:22:06 +03:00
-----------------------------------------------
2019-12-05 22:47:35 +03:00
The RM4SCC standard is used by the Royal Mail in the UK to encode postcode and
customer data on mail items. Data input can consist of numbers 0-9 and letters
A-Z and usually includes delivery postcode followed by house number. For
2019-12-21 03:51:38 +03:00
example "W1J0TR01" for 1 Piccadilly Circus in London. Check digit data is
2019-12-05 22:47:35 +03:00
generated by Zint.
6.5.4 Royal Mail 4-State Mailmark
---------------------------------
Developed in 2014 as a replacement for RM4SCC this 4-state symbol includes
2019-12-21 03:51:38 +03:00
Reed Solomon error correction. Input is a pre-formatted alphanumeric string of
2019-12-05 22:47:35 +03:00
22 (for Barcode C) or 26 (for Barcode L) characters, producing a symbol with
66 or 78 bars respectively. Some of the permitted inputs include a number of
trailing space characters - these will be appended by Zint if not included in
the input data.
2020-07-10 21:39:32 +03:00
6.5.5 USPS Intelligent Mail
---------------------------
Also known as the OneCode barcode and used in the US by the United States Postal
2020-10-04 00:51:08 +03:00
Service (USPS), the Intelligent Mail system replaced the POSTNET and PLANET
2020-07-10 21:39:32 +03:00
symbologies in 2009. Intelligent Mail is a fixed length (65-bar) symbol which
2019-12-05 22:47:35 +03:00
combines routing and customer information in a single symbol. Input data
consists of a 20 digit tracking code, followed by a dash (-), followed by a
2020-07-10 21:39:32 +03:00
delivery point zip-code which can be 0, 5, 9 or 11 digits in length. For example
all of the following inputs are valid data entries:
2019-12-05 22:47:35 +03:00
"01234567094987654321"
"01234567094987654321-01234"
"01234567094987654321-012345678"
"01234567094987654321-01234567891"
6.5.6 Japanese Postal Code
--------------------------
Used for address data on mail items for Japan Post. Accepted values are 0-9,
A-Z and Dash (-). A modulo 19 check digit is added by Zint.
6.6 Two-Dimensional Matrix Symbols
----------------------------------
2019-12-21 03:51:38 +03:00
6.6.1 Data Matrix (ISO 16022)
-----------------------------
2019-12-05 22:47:35 +03:00
Also known as Semacode this symbology was developed in 1989 by Acuity CiMatrix
in partnership with the US DoD and NASA. The symbol can encode a large amount
2021-07-13 21:56:53 +03:00
of data in a small area. Data Matrix encodes characters in the Latin-1 set by
default but also supports encoding in other character sets using the ECI
mechanism. It can also encode GS1 data. The size of the generated symbol can
also be adjusted using the --vers= option or by setting option_2 as shown in the
table below. A separate symbology ID can be used to encode Health Industry
Barcode (HIBC) data which adds a leading '+' character and a modulo-49 check
digit to the encoded data. Note that only ECC200 encoding is supported, the
older standards have now been removed from Zint.
2019-12-05 22:47:35 +03:00
---------------------
Input | Symbol Size
---------------------
1 | 10 x 10
2 | 12 x 12
3 | 14 x 14
4 | 16 x 16
5 | 18 x 18
6 | 20 x 20
7 | 22 x 22
8 | 24 x 24
9 | 26 x 26
10 | 32 x 32
11 | 36 x 36
12 | 40 x 40
13 | 44 x 44
14 | 48 x 48
15 | 52 x 52
16 | 64 x 64
17 | 72 x 72
18 | 80 x 80
19 | 88 x 88
20 | 96 x 96
21 | 104 x 104
22 | 120 x 120
23 | 132 x 132
24 | 144 x 144
25 | 8 x 18
26 | 8 x 32
28 | 12 x 26
28 | 12 x 36
29 | 16 x 36
30 | 16 x 48
---------------------
When using automatic symbol sizes you can force Zint to use square symbols
(versions 1-24) at the command line by using the option --square and when
using the API by setting the value option_3 = DM_SQUARE.
2021-01-11 21:11:41 +03:00
Data Matrix Rectangular Extension (ISO/IEC 21471) codes may be generated with
the following values as before:
2019-12-05 22:47:35 +03:00
---------------------
Input | Symbol Size
---------------------
31 | 8 x 48
32 | 8 x 64
33 | 8 x 80
34 | 8 x 96
35 | 8 x 120
36 | 8 x 144
37 | 12 x 64
38 | 12 x 88
39 | 16 x 64
40 | 20 x 36
41 | 20 x 44
42 | 20 x 64
43 | 22 x 48
44 | 24 x 48
45 | 24 x 64
46 | 26 x 40
47 | 26 x 48
48 | 26 x 64
---------------------
DMRE symbol sizes may be activated in automatic size mode using the option
--dmre or by the API option_3 = DM_DMRE
2020-05-21 20:22:28 +03:00
GS1 data may be encoded using FNC1 (preferred) or GS as separator.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
Use the option --gssep to change to GS or use the API output_options |=
GS1_GS_SEPARATOR
Data Matrix supports Structured Append of up to 16 symbols and a numeric ID
(file identifications), which can be set by using the --structapp option (see
section 4.15) or the API structapp variable. The ID consists of 2 numbers ID1
and ID2, each of which can range from 1 to 254, and is specified as the single
number ID1 * 1000 + ID2, so for instance ID1 "123" and ID2 "234" would be given
as "123234". Note that both ID1 and ID2 must be non-zero, so e.g. "123000" or
"000123" would be invalid IDs. If an ID is not given it defaults to "001001".
2019-12-05 22:47:35 +03:00
6.6.2 QR Code (ISO 18004)
-------------------------
Also known as Quick Response Code this symbology was developed by Denso. Four
levels of error correction are available using the --secure= option or by
setting option_1 as shown in the following table.
-------------------------------------------------------------------------
Input | ECC Level | Error Correction Capacity | Recovery Capacity
-------------------------------------------------------------------------
1 | L (default) | Approx 20% of symbol | Approx 7%
2 | M | Approx 37% of symbol | Approx 15%
3 | Q | Approx 55% of symbol | Approx 25%
4 | H | Approx 65% of symbol | Approx 30%
-------------------------------------------------------------------------
The size of the symbol can be set by using the --vers= option or setting
option_2 to the QR Code version required (1-40). The size of symbol generated
is shown in the table below.
---------------------
Input | Symbol Size
---------------------
1 | 21 x 21
2 | 25 x 25
3 | 29 x 29
4 | 33 x 33
5 | 37 x 37
6 | 41 x 41
7 | 45 x 45
8 | 49 x 49
9 | 53 x 53
10 | 57 x 57
11 | 61 x 61
12 | 65 x 65
13 | 69 x 69
14 | 73 x 73
15 | 77 x 77
16 | 81 x 81
17 | 85 x 85
18 | 89 x 89
19 | 93 x 93
20 | 97 x 97
21 | 101 x 101
22 | 105 x 105
23 | 109 x 109
24 | 113 x 113
25 | 117 x 117
26 | 121 x 121
28 | 125 x 125
28 | 129 x 129
29 | 133 x 133
30 | 137 x 137
31 | 141 x 141
32 | 145 x 145
33 | 149 x 149
34 | 153 x 153
35 | 157 x 157
36 | 161 x 161
38 | 165 x 165
38 | 169 x 169
39 | 173 x 173
40 | 177 x 177
---------------------
The maximum capacity of a (version 40) QR Code symbol is 7089 numeric digits,
4296 alphanumeric characters or 2953 bytes of data. QR Code symbols can also be
used to encode GS1 data. QR Code symbols can by default encode characters in
2021-01-11 21:11:41 +03:00
the Latin-1 set and Kanji characters which are members of the Shift JIS
2019-12-05 22:47:35 +03:00
encoding scheme. In addition QR Code supports using other character sets using
the ECI mechanism. Input should usually be entered as Unicode (UTF-8) with
2021-01-11 21:11:41 +03:00
conversion to Shift JIS being carried out by Zint. A separate symbology ID can
2019-12-05 22:47:35 +03:00
be used to encode Health Industry Barcode (HIBC) data which adds a leading '+'
character and a modulo-49 check digit to the encoded data.
2020-04-02 16:41:13 +03:00
Non-ASCII data density may be maximized by using the --fullmultibyte switch or
by setting option_3 to ZINT_FULL_MULTIBYTE, but check that your barcode reader
supports this before using.
2020-11-27 15:54:44 +03:00
QR Code has eight different masks designed to minimize unwanted patterns. The
best mask to use is selected automatically by Zint but may be manually specified
by using the --mask= switch with values 0-7, or by setting option_3 to
(N + 1) << 8 where N is 0-7. To use with ZINT_FULL_MULTIBYTE set option_3 =
ZINT_FULL_MULTIBYTE | (N + 1) << 8.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
QR Code supports Structured Append of up to 16 symbols and a numeric ID
(parity), which can be set by using the --structapp option (see section 4.15) or
2021-09-29 17:06:33 +03:00
the API structapp variable. The parity ID ranges from 0 (default) to 255, and
for full compliance should be set to the value obtained by XOR-ing together each
byte of the complete data forming the sequence. Currently this calculation must
be done outside of Zint.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
2019-12-05 22:47:35 +03:00
6.6.3 Micro QR Code (ISO 18004)
-------------------------------
A miniature version of the QR Code symbol for short messages. ECC levels can be
selected as for QR Code (above). QR Code symbols can encode characters in the
2021-01-11 21:11:41 +03:00
Latin-1 set and Kanji characters which are members of the Shift JIS encoding
scheme. Input should be entered as a UTF-8 stream with conversion to Shift JIS
2019-12-05 22:47:35 +03:00
being carried out automatically by Zint. A preferred symbol size can be
selected by using the --vers= option or by setting option_2 although the actual
version used by Zint may be different if required by the input data. The table
below shows the possible sizes:
---------------------------------
Input | Version | Symbol Size
---------------------------------
1 | M1 | 11 x 11
2 | M2 | 13 x 13
3 | M3 | 15 x 15
4 | M4 | 17 x 17
---------------------------------
2020-04-02 16:41:13 +03:00
For barcode readers that support it, non-ASCII data density may be maximized by
using the --fullmultibyte switch or by setting option_3 to ZINT_FULL_MULTIBYTE.
2020-11-27 15:54:44 +03:00
Micro QR Code has four different masks designed to minimize unwanted patterns.
The best mask to use is selected automatically by Zint but may be manually
specified by using the --mask= switch with values 0-3, or by setting option_3
to (N + 1) << 8 where N is 0-3. To use with ZINT_FULL_MULTIBYTE set option_3 =
ZINT_FULL_MULTIBYTE | (N + 1) << 8.
2019-12-05 22:47:35 +03:00
6.6.4 Rectangular Micro QR Code (rMQR)
--------------------------------------
2021-08-10 14:04:25 +03:00
A rectangular version of QR Code, it is still under development, so it is
recommended it should not yet be used for a production environment. Like QR
Code, rMQR supports encoding of GS1 data, and Latin-1 characters in the ISO/IEC
8859-1 set and Kanji characters in the Shift JIS encoding scheme. It does not
support other ISO/IEC 8859 character sets or encodings. As with other
symbologies data should be entered as UTF-8 with the conversion to Latin-1 or
Shift JIS being handled by Zint. The amount of ECC codewords can be adjusted
using the --secure= option (API option_1), however only ECC levels M and H are
valid for this type of symbol.
2019-12-05 22:47:35 +03:00
-------------------------------------------------------------------------
Input | ECC Level | Error Correction Capacity | Recovery Capacity
-------------------------------------------------------------------------
2 | M (default) | Approx 37% of symbol | Approx 15%
4 | H | Approx 65% of symbol | Approx 30%
-------------------------------------------------------------------------
2021-01-11 21:11:41 +03:00
The preferred symbol sizes can be selected using the --vers= option (API
option_2) as shown in the table below. Input values between 33 and 38 fix the
height of the symbol while allowing Zint to determine the minimum symbol width.
2019-12-05 22:47:35 +03:00
2021-07-06 14:13:34 +03:00
---------------------------------------
Input | Version | Symbol Size (HxW)
---------------------------------------
2019-12-05 22:47:35 +03:00
1 | R7x43 | 7 x 73
2 | R7x59 | 7 x 59
3 | R7x77 | 7 x 77
4 | R7x99 | 7 x 99
5 | R7x139 | 7 x 139
6 | R9x43 | 9 x 43
7 | R9x59 | 9 x 59
8 | R9x77 | 9 x 77
9 | R9x99 | 9 x 99
10 | R9x139 | 9 x 139
11 | R11x27 | 11 x 27
12 | R11x43 | 11 x 43
13 | R11x59 | 11 x 59
14 | R11x77 | 11 x 77
15 | R11x99 | 11 x 99
16 | R11x139 | 11 x 139
17 | R13x27 | 13 x 27
18 | R13x43 | 13 x 43
19 | R13x59 | 13 x 59
20 | R13x77 | 13 x 77
21 | R13x99 | 13 x 99
22 | R13x139 | 13 x 139
23 | R15x43 | 15 x 43
24 | R15x59 | 15 x 59
25 | R15x77 | 15 x 77
26 | R15x99 | 15 x 99
27 | R15x139 | 15 x 139
28 | R17x43 | 17 x 43
29 | R17x59 | 17 x 59
30 | R17x77 | 17 x 77
31 | R17x99 | 17 x 99
32 | R17x139 | 17 x 139
2021-07-06 14:13:34 +03:00
---------------------------------------
33 | R7 x automatic width
34 | R9 x automatic width
35 | R11 x automatic width
36 | R13 x automatic width
37 | R15 x automatic width
38 | R17 x automatic width
---------------------------------------
2019-12-05 22:47:35 +03:00
2020-04-02 16:41:13 +03:00
For barcode readers that support it, non-ASCII data density may be maximized by
using the --fullmultibyte switch or by setting option_3 to ZINT_FULL_MULTIBYTE.
2019-12-05 22:47:35 +03:00
6.6.5 UPNQR (Univerzalnega Plačilnega Naloga QR)
------------------------------------------------
A variation of QR Code used by Združenje Bank Slovenije (Bank Association of
Slovenia). The size, error correction level and ECI are set by Zint and do not
2021-01-11 21:11:41 +03:00
need to be specified. UPNQR is unusual in that it uses ISO/IEC 8859-2 formatted
data. Zint will accept UTF-8 data and convert it to ISO/IEC 8859-2, or if your
data is already ISO/IEC 8859-2 formatted use the --binary switch or if using the
API set symbol->input_mode = DATA MODE;
2019-12-05 22:47:35 +03:00
2021-01-11 21:11:41 +03:00
The following example creates a symbol from data saved as an ISO/IEC 8859-2
file:
2019-12-05 22:47:35 +03:00
zint -o upnqr.png -b 143 --border=5 --scale=3 --binary -i ./upn.txt
2020-12-19 20:13:35 +03:00
6.6.6 MaxiCode (ISO 16023)
2019-12-05 22:47:35 +03:00
--------------------------
2020-12-19 20:13:35 +03:00
Developed by UPS the MaxiCode symbology employs a grid of hexagons surrounding
2019-12-05 22:47:35 +03:00
a 'bulls-eye' finder pattern. This symbology is designed for the identification
2020-12-19 20:13:35 +03:00
of parcels. MaxiCode symbols can be encoded in one of five modes. In modes 2
and 3 MaxiCode symbols are composed of two parts named the primary and
2021-09-29 17:06:33 +03:00
secondary messages. The primary message consists of a Structured Carrier Message
2019-12-05 22:47:35 +03:00
which includes various data about the package being sent and the secondary
message usually consists of address data in a data structure. The format of the
primary message required by Zint is given in the following table:
----------------------------------------------------------------------------
Characters | Meaning
----------------------------------------------------------------------------
1 - 9 | Postcode data which can consist of up to 9 digits (for mode 2)
| or up to 6 alphanumeric characters (for mode 3). Remaining
2020-12-19 20:13:35 +03:00
| unused characters can be filled with the SPACE character
| (ASCII 32) or omitted (if omitted adjust the following
| character positions).
2021-09-29 17:06:33 +03:00
10 - 12 | Three digit country code according to ISO 3166-1.
2019-12-05 22:47:35 +03:00
13 - 15 | Three digit service code. This depends on your parcel courier.
----------------------------------------------------------------------------
2020-04-02 16:41:13 +03:00
The primary message can be set at the command prompt using the --primary=
switch. The secondary message uses the normal data entry method. For example:
2019-12-05 22:47:35 +03:00
2020-12-19 20:13:35 +03:00
zint -o test.eps -b 57 --primary="999999999840012" -d "Secondary Message Here"
2019-12-05 22:47:35 +03:00
When using the API the primary message must be placed in the symbol->primary
string. The secondary is entered in the same way as described in section 5.2.
When either of these modes is selected Zint will analyse the primary message
and select either mode 2 or mode 3 as appropriate.
2020-12-19 20:13:35 +03:00
As a convenience the secondary message for modes 2 and 3 can be set to be
prefixed by the ISO 15434 Format "01" (transportation) sequence "[)>\R01\Gvv",
where "vv" is a 2-digit version, by using the --scmvv= switch or by setting
option_2 = vv + 1. For example to use the common version "96" (ASC MH10/SC 8):
zint -b 57 --primary="152382802840001" --scmvv=96 --esc \
-d "1Z00004951\GUPSN\G06X610\G159\G1234567\G1/1\G\GY\G1 MAIN ST\GTOWN\GNY\R\E"
will prefix "[)>\R01\G96" to the secondary message. ("\R", "\G" and "\E" are the
escape sequences for Record Separator, Group Separator and End of Transmission
respectively - see section 4.1.)
2019-12-05 22:47:35 +03:00
Modes 4 to 6 can be accessed using the --mode= switch or by setting option_1.
2020-12-19 20:13:35 +03:00
Modes 4 to 6 do not have a primary message. For example:
2019-12-05 22:47:35 +03:00
2020-12-19 20:13:35 +03:00
zint -o test.eps -b 57 --mode=4 -d "A MaxiCode Message in Mode 4"
2019-12-05 22:47:35 +03:00
Mode 6 is reserved for the maintenance of scanner hardware and should not be
used to encode user data.
This symbology uses Latin-1 character encoding by default but also supports the
ECI encoding mechanism. The maximum length of text which can be placed in a
2020-12-19 20:13:35 +03:00
MaxiCode symbol depends on the type of characters used in the text.
2019-12-05 22:47:35 +03:00
Example maximum data lengths are given in the table below:
-----------------------------------------------------------------------------
2020-12-19 20:13:35 +03:00
Mode | Maximum Data Length | Maximum Data Length | Number of Error
2019-12-05 22:47:35 +03:00
| for Capital Letters | for Numeric Digits | Correction Codewords
-----------------------------------------------------------------------------
2* | 84 | 126 | 50
3* | 84 | 126 | 50
2020-12-19 20:13:35 +03:00
4 | 93 | 138 | 50
5 | 77 | 113 | 66
6 | 93 | 138 | 50
2019-12-05 22:47:35 +03:00
-----------------------------------------------------------------------------
* - secondary only
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
MaxiCode supports Structured Append of up to 8 symbols, which can be set by
using the --structapp option (see section 4.15) or the API structapp variable.
It does not support specifying an ID.
2021-05-16 18:34:42 +03:00
MaxiCode uses a different scaling than other symbols for raster output, see
4.9.2.
2019-12-05 22:47:35 +03:00
6.6.7 Aztec Code (ISO 24778)
----------------------------
Invented by Andrew Longacre at Welch Allyn Inc in 1995 the Aztec Code symbol is
a matrix symbol with a distinctive bulls-eye finder pattern. Zint can generate
Compact Aztec Code (sometimes called Small Aztec Code) as well as "full-range"
Aztec Code symbols and by default will automatically select symbol type and
size dependent on the length of the data to be encoded. Error correction
codewords will normally be generated to fill at least 23% of the symbol. Two
options are available to change this behaviour:
2020-06-04 20:45:25 +03:00
The size of the symbol can be specified using the --vers= option or setting
2019-12-05 22:47:35 +03:00
option_2 to a value between 1 and 36 according to the following table. The
symbols marked with an asterisk (*) in the table below are "compact" symbols,
meaning they have a smaller bulls-eye pattern at the centre of the symbol.
---------------------
Input | Symbol Size
---------------------
1 | 15 x 15*
2 | 19 x 19*
3 | 23 x 23*
4 | 27 x 27*
5 | 19 x 19
6 | 23 x 23
7 | 27 x 27
8 | 31 x 31
9 | 37 x 37
10 | 41 x 41
11 | 45 x 45
12 | 49 x 49
13 | 53 x 53
14 | 57 x 57
15 | 61 x 61
16 | 67 x 67
17 | 71 x 71
18 | 75 x 75
19 | 79 x 79
20 | 83 x 83
21 | 87 x 87
22 | 91 x 91
23 | 95 x 95
24 | 101 x 101
25 | 105 x 105
26 | 109 x 109
2020-10-26 15:21:43 +03:00
27 | 113 x 113
2019-12-05 22:47:35 +03:00
28 | 117 x 117
29 | 121 x 121
30 | 125 x 125
31 | 131 x 131
32 | 135 x 135
33 | 139 x 139
34 | 143 x 143
35 | 147 x 147
36 | 151 x 151
---------------------
Note that in symbols which have a specified size the amount of error correction
is dependent on the length of the data input and Zint will allow error
correction capacities as low as 3 codewords.
2020-06-24 00:06:18 +03:00
Alternatively the amount of error correction data can be specified by use of the
--secure= option or by setting option_1 to a value from the following table:
2019-12-05 22:47:35 +03:00
----------------------------------
Mode | Error Correction Capacity
----------------------------------
1 | >10% + 3 codewords
2 | >23% + 3 codewords
3 | >36% + 3 codewords
4 | >50% + 3 codewords
----------------------------------
It is not possible to select both symbol size and error correction capacity for
the same symbol. If both options are selected then the error correction
capacity selection will be ignored.
Aztec Code supports ECI encoding and can encode up to a maximum length of
approximately 3823 numeric or 3067 alphabetic characters or 1914 bytes of data.
A separate symbology ID can be used to encode Health Industry Barcode (HIBC)
data which adds a leading '+' character and a modulo-49 check digit to the
encoded data.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
Aztec Code supports Structured Append of up to 26 symbols and an optional
alphanumeric ID of up to 32 characters, which can be set by using the
--structapp option (see section 4.15) or the API structapp variable. The ID
cannot contain spaces. If an ID is not given, no ID is encoded.
2019-12-05 22:47:35 +03:00
6.6.8 Aztec Runes
-----------------
A truncated version of compact Aztec Code for encoding whole integers between 0
and 255. Includes Reed-Solomon error correction. As defined in ISO/IEC 24778
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
Annex A. It does not support Structured Append.
2019-12-05 22:47:35 +03:00
6.6.9 Code One
--------------
A matrix symbology developed by Ted Williams in 1992 which encodes data in a
2021-06-19 15:11:23 +03:00
way similar to Data Matrix. Code One is able to encode the Latin-1 character
set or GS1 data. There are two types of Code One symbol - fixed-ratio symbols
which are roughly square (versions A through to H) and variable-width versions
(version S and T). These can be selected by using --vers= or setting option_2
as shown in the table below:
2019-12-05 22:47:35 +03:00
--------------------------------------------------------------------
Input | Version | Size | Numeric | Alphanumeric
2021-06-19 15:11:23 +03:00
| | (W x H) | Data Capacity | Data Capacity
2019-12-05 22:47:35 +03:00
--------------------------------------------------------------------
1 | A | 16 x 18 | 22 | 13
2 | B | 22 x 22 | 44 | 27
3 | C | 28 x 28 | 104 | 64
4 | D | 40 x 42 | 217 | 135
5 | E | 52 x 54 | 435 | 271
6 | F | 70 x 76 | 886 | 553
7 | G | 104 x 98 | 1755 | 1096
8 | H | 148 x 134 | 3550 | 2218
2021-06-19 15:11:23 +03:00
9 | S | width x 8 | 18 | N/A
10 | T | width x 16 | 90 | 55
2019-12-05 22:47:35 +03:00
--------------------------------------------------------------------
Version S symbols can only encode numeric data. The width of version S and
version T symbols is determined by the length of the input data.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
Code One supports Structured Append of up to 128 symbols, which can be set by
using the --structapp option (see section 4.15) or the API structapp variable.
It does not support specifying an ID. Structured Append is not supported with
GS1 data nor for Version S symbols.
2019-12-05 22:47:35 +03:00
6.6.10 Grid Matrix
-----------------
By default Grid Matrix supports encoding in Latin-1 and Chinese characters
2019-12-21 03:51:38 +03:00
within the GB 2312 standard set to be encoded in a chequerboard pattern. Input
2019-12-05 22:47:35 +03:00
should be entered as Unicode (UTF-8) with conversion to GB 2312 being carried
out automatically by Zint. The symbology also supports the ECI mechanism. The
size of the symbol and the error correction capacity can be specified. If you
specify both of these values then Zint will make a 'best-fit' attempt to
2020-06-04 20:45:25 +03:00
satisfy both conditions. The symbol size can be specified using the --vers=
2019-12-05 22:47:35 +03:00
option or by setting option_2, and the error correction capacity can be
specified by using the --secure= option or by setting option_1 according to
the following tables:
---------------------
Input | Symbol Size
---------------------
1 | 18 x 18
2 | 30 x 30
3 | 42 x 42
4 | 54 x 54
5 | 66 x 66
6 | 78 x 78
7 | 90 x 90
8 | 102 x 102
9 | 114 x 114
10 | 126 x 126
11 | 138 x 138
12 | 150 x 150
13 | 162 x 162
---------------------
----------------------------------
Mode | Error Correction Capacity
----------------------------------
1 | Approximately 10%
2 | Approximately 20%
3 | Approximately 30%
4 | Approximately 40%
5 | Approximately 50%
----------------------------------
2020-04-02 16:41:13 +03:00
Non-ASCII data density may be maximized by using the --fullmultibyte switch or
by setting option_3 to ZINT_FULL_MULTIBYTE, but check that your barcode reader
supports this before using.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
Grid Matrix supports Structured Append of up to 16 symbols and a numeric ID
(file signature), which can be set by using the --structapp option (see section
2021-09-29 17:06:33 +03:00
4.15) or the API structapp variable. The ID ranges from 0 (default) to 255.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
2019-12-05 22:47:35 +03:00
6.6.11 DotCode
-------------
DotCode uses a grid of dots in a rectangular formation to encode characters up
to a maximum of approximately 450 characters (or 900 numeric digits). The
2020-06-04 20:45:25 +03:00
symbology supports ECI encoding and GS1 data encoding. By default Zint will
2019-12-05 22:47:35 +03:00
produce a symbol which is approximately square, however the width of the symbol
2021-01-22 21:07:59 +03:00
can be adjusted by using the --cols= option or by setting option_2 (maximum
2021-07-26 17:29:05 +03:00
200). Outputting DotCode to raster images (PNG, GIF, BMP, PCX, TIF) will require
2021-01-22 21:07:59 +03:00
setting the scale of the image to a larger value than the default (e.g. approx
10) for the dots to be plotted correctly. Approximately 33% of the resulting
symbol is comprised of error correction codewords.
DotCode has two sets of 4 masks, designated 0-3 and 0'-3', the second "prime"
set being the same as the first with corners lit. The best mask to use is
selected automatically by Zint but may be manually specified by using the
--mask= switch with values 0-7, where 4-7 denote 0'-3', or by setting option_3
to (N + 1) << 8 where N is 0-7.
2019-12-05 22:47:35 +03:00
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
DotCode supports Structured Append of up to 35 symbols, which can be set by
using the --structapp option (see section 4.15) or the API structapp variable.
It does not support specifying an ID.
2019-12-05 22:47:35 +03:00
6.6.12 Han Xin Code
-------------------
2020-04-02 16:41:13 +03:00
Also known as Chinese Sensible Code, Han Xin is a symbology which is still under
2019-12-05 22:47:35 +03:00
development, so it is recommended it should not yet be used for a production
2021-07-26 17:29:05 +03:00
environment. The symbology is capable of encoding characters in the GB 18030
2019-12-05 22:47:35 +03:00
character set (up to 4-byte characters) and is also able to support the ECI
2020-06-04 20:45:25 +03:00
mechanism. Support for the encoding of GS1 data has not yet been implemented.
2019-12-05 22:47:35 +03:00
2020-06-04 20:45:25 +03:00
The size of the symbol can be specified using the --vers= option or setting
2019-12-05 22:47:35 +03:00
option_2 to a value between 1 and 84 according to the following table.
---------------------
Input | Symbol Size
---------------------
1 | 23 x 23
2 | 25 x 25
3 | 27 x 27
4 | 29 x 29
5 | 31 x 31
6 | 33 x 33
7 | 35 x 35
8 | 37 x 37
9 | 39 x 39
10 | 41 x 41
11 | 43 x 43
12 | 45 x 45
13 | 47 x 47
14 | 49 x 49
15 | 51 x 51
16 | 53 x 53
17 | 55 x 55
18 | 57 x 57
19 | 59 x 59
20 | 61 x 61
21 | 63 x 63
22 | 65 x 65
23 | 67 x 67
24 | 69 x 69
25 | 71 x 71
26 | 73 x 73
28 | 75 x 75
28 | 77 x 77
29 | 79 x 79
30 | 81 x 81
31 | 83 x 83
32 | 85 x 85
33 | 87 x 87
34 | 89 x 89
35 | 91 x 91
36 | 93 x 93
37 | 95 x 95
38 | 97 x 97
39 | 99 x 99
40 | 101 x 101
41 | 103 x 103
42 | 105 x 105
43 | 107 x 107
44 | 109 x 109
45 | 111 x 111
46 | 113 x 113
47 | 115 x 115
48 | 117 x 117
49 | 119 x 119
50 | 121 x 121
51 | 123 x 123
52 | 125 x 125
53 | 127 x 127
54 | 129 x 129
55 | 131 x 131
56 | 133 x 133
57 | 135 x 135
58 | 137 x 137
59 | 139 x 139
60 | 141 x 141
61 | 143 x 143
62 | 145 x 145
63 | 147 x 147
64 | 149 x 149
65 | 151 x 151
66 | 153 x 153
67 | 155 x 155
68 | 157 x 157
69 | 159 x 159
70 | 161 x 161
71 | 163 x 163
72 | 165 x 165
73 | 167 x 167
74 | 169 x 169
75 | 171 x 171
76 | 173 x 173
77 | 175 x 175
78 | 177 x 177
79 | 179 x 179
80 | 181 x 181
81 | 183 x 183
82 | 185 x 185
83 | 187 x 187
84 | 189 x 189
---------------------
There are four levels of error correction capacity available for Han Xin Code
2020-06-24 00:06:18 +03:00
which can be set by using the --secure= option or by setting option_1 to a value
2019-12-05 22:47:35 +03:00
from the following table:
--------------------------
Mode | Recovery Capacity
--------------------------
1 | Approx 8%
2 | Approx 15%
3 | Approx 23%
4 | Approx 30%
--------------------------
2020-04-02 16:41:13 +03:00
Non-ASCII data density may be maximized by using the --fullmultibyte switch or
by setting option_3 to ZINT_FULL_MULTIBYTE, but check that your barcode reader
supports this before using.
2020-11-27 15:54:44 +03:00
Han Xin has four different masks designed to minimize unwanted patterns. The
best mask to use is selected automatically by Zint but may be manually specified
by using the --mask= switch with values 0-3, or by setting option_3 to
(N + 1) << 8 where N is 0-3. To use with ZINT_FULL_MULTIBYTE set option_3 =
ZINT_FULL_MULTIBYTE | (N + 1) << 8.
2020-04-06 21:10:17 +03:00
6.6.13 Ultracode
----------------
2020-06-04 20:45:25 +03:00
This symbology uses a grid of coloured elements to encode data. ECI and GS1
2020-04-06 21:10:17 +03:00
modes are supported. The amount of error correction can be set using the
--secure= option or by setting option_1 to a value as shown in the following
table:
-----------------------------------------------------------------
Value | EC Level | Amount of symbol holding error correction data
-----------------------------------------------------------------
1 | EC0 | 0% - Error detection only
2 | EC1 | Approx 5%
3 | EC2 | Approx 9% - Default value
4 | EC3 | Approx 17%
5 | EC4 | Approx 25%
6 | EC5 | Approx 33%
-----------------------------------------------------------------
Zint does not currently implement data compression by default, but this can
be initiated through the API by setting
symbol->option_3 = ULTRA_COMPRESSION;
WARNING: Ultracode data compression is experimental and should not be used
in a production environment.
2021-09-29 18:25:59 +03:00
Revision 2 of Ultracode (2021) which swops and inverts the DCCU and DCCL tiles
may be specified using the --vers= switch with a value of 2 or by setting
option_2 to 2.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
Ultracode supports Structured Append of up to 8 symbols and an optional numeric
ID (File Number), which can be set by using the --structapp option (see section
2021-09-29 17:06:33 +03:00
4.15) or the API structapp variable. The ID ranges from 1 to 80088. If an ID is
not given, no ID is encoded.
Add Structured Append support for AZTEC, CODEONE, DATAMATRIX, DOTCODE,
GRIDMATRIX, MAXICODE, MICROPDF417, PDF417, QRCODE, ULTRA
DOTCODE: use pre-calculated generator poly coeffs in Reed-Solomon for
performance improvement
PDF417/MICROPDF417: use common routine pdf417_initial()
GUI: code lines <= 118, shorthand widget_obj(),
shorten calling upcean_addon_gap(), upcean_guard_descent()
various backend: var name debug -> debug_print
2021-09-28 23:42:44 +03:00
2019-12-05 22:47:35 +03:00
6.7 Other Barcode-Like Markings
-------------------------------
6.7.1. Facing Identification Mark (FIM)
---------------------------------------
Used by the United States Postal Service (USPS), the FIM symbology is used to
assist automated mail processing. There are only 4 valid symbols which can be
generated using the characters A-D as shown in the table below.
----------------------------------------------------------------------------
Code Letter | Usage
----------------------------------------------------------------------------
A | Used for courtesy reply mail and metered reply mail with a
2020-10-04 00:51:08 +03:00
| pre-printed POSTNET symbol.
2019-12-05 22:47:35 +03:00
B | Used for business reply mail without a pre-printed zip code.
C | Used for business reply mail with a pre-printed zip code.
D | Used for Information Based Indicia (IBI) postage.
----------------------------------------------------------------------------
6.7.2 Flattermarken
-------------------
Used for the recognition of page sequences in print-shops, the Flattermarken is
not a true barcode symbol and requires precise knowledge of the position of the
mark on the page. The Flattermarken system can encode any length numeric data
and does not include a check digit.
6.7.3 DAFT Code
---------------
This is a method for creating 4-state codes where the data encoding is provided
by an external program. Input data should consist of the letters 'D', 'A', 'F'
and 'T' where these refer to descender, ascender, full (ascender and descender)
and tracker (neither ascender nor descender) respectively. All other characters
2021-06-19 15:11:23 +03:00
are invalid. The ratio of the tracker size to full height can be given in
thousandths (permille) using the --vers= option or by setting option_2. The
default value is 250 (25%).
2019-12-05 22:47:35 +03:00
2020-09-30 14:19:12 +03:00
2019-12-05 22:47:35 +03:00
7. Legal and Version Information
================================
7.1 License
-----------
2021-01-11 21:11:41 +03:00
Zint, libzint and Zint Barcode Studio are Copyright © 2021 Robin Stuart. All
2019-12-05 22:47:35 +03:00
historical versions are distributed under the GNU General Public License
version 3 or later. Version 2.5 is released under a dual license: the encoding
library is released under the BSD license whereas the GUI, Zint Barcode Studio,
is released under the GNU General Public License version 3 or later.
Telepen is a trademark of SB Electronic Systems Ltd.
QR Code is a registered trademark of Denso Wave Incorporated.
Microsoft, Windows and the Windows logo are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.
Linux is the registered trademark of Linus Torvalds in the U.S. and other
countries.
2019-12-21 04:04:42 +03:00
Mac and macOS are trademarks of Apple Inc., registered in the U.S. and other
countries.
2019-12-05 22:47:35 +03:00
Zint.org.uk website design and hosting provided by Robert Elliott.
7.2 Patent Issues
-----------------
All of the code in Zint is developed using information in the public domain,
usually freely available on the Internet. Some of the techniques used may be
subject to patents and other intellectual property legislation. It is my belief
that any patents involved in the technology underlying symbologies utilised by
Zint are 'unadopted', that is the holder does not object to their methods being
used.
Any methods patented or owned by third parties or trademarks or registered
trademarks used within Zint or in this document are and remain the property of
their respective owners and do not indicate endorsement or affiliation with
those owners, companies or organisations.
7.3 Version Information
-----------------------
2021-08-14 18:11:25 +03:00
The current version of Zint is 2.10.0.9. See "ChangeLog" in the project root
2021-08-13 17:05:35 +03:00
directory for information on all releases.
2019-12-05 22:47:35 +03:00
7.4 Sources of Information
--------------------------
Below is a list of some of the sources used in rough chronological order:
Nick Johnson's Barcode Specifications
Bar Code 1 Specification Source Page
SB Electronic Systems Telepen website
Pharmacode specifications from Laetus
Morovia RM4SCC specification
2021-01-12 17:11:53 +03:00
Australia Post's 'A Guide to Printing the 4-State Barcode' and bcsample source
2019-12-05 22:47:35 +03:00
code
Plessey algorithm from GNU-Barcode v0.98 by Leonid A. Broukhis
GS1 General Specifications v 8.0 Issue 2
PNG: The Definitive Guide and wpng source code by Greg Reolofs
PDF417 specification and pdf417 source code by Grand Zebu
Barcode Reference, TBarCode/X User Documentation and TBarCode/X demonstration
program from Tec-It
IEC16022 source code by Stefan Schmidt et al
United States Postal Service Specification USPS-B-3200
Adobe Systems Incorporated Encapsulated PostScript File Format Specification
BSI Online Library
Libdmtx Data Matrix ECC200 decoding library
7.5 Standard Compliance
-----------------------
Zint was developed to provide compliance with the following British and
international standards:
> BS EN 797:1996 Bar coding - Symbology specifications - 'EAN/UPC'
> BS EN 798:1996 Bar coding - Symbology specifications - 'Codabar'
Add compliant height, using ZINT_COMPLIANT_HEIGHT flag for back-compatibility
Rename barcode funcs to same as BARCODE_XXX name
library: barcode funcs array for dispatch, used for ZBarcode_ValidID() also
general: change is_sane() comparison to nonzero from ZINT_ERROR_INVALID_OPTION
MAILMARK: fuller error messages
CODABAR: add option to show check character in HRT
zint.h: use 0xNNNN for OR-able defines
GUI: add guard descent height reset button, add Zint version to window title,
static get_zint_version() method, use QStringLiteral (QSL shorthand),
use SIGNAL(toggled()), add errtxt "popup" and status bar, add icons,
add saveAs shortcut, add main menu, context menus and actions, add help,
reset_view() -> reset_colours(), add copy to clipboard as EMF/GIF/PNG/TIF,
lessen triggering of update_preview(), shorten names of getters/setters,
simplify/shorten some update_preview() logic in switch,
CODEONE disable structapp for Version S
qzint.cpp: add on_errored signal, add missing getters, add test
2021-10-09 02:13:39 +03:00
> BS EN 12323:2005 AIDC technologies - Symbology specifications - Code 16K
2019-12-05 22:47:35 +03:00
> ISO/IEC 15417:2007 Information technology - Automatic identification and data
capture techniques - Code 128 bar code symbology specification
2020-04-02 16:41:13 +03:00
> ISO/IEC 15438:2015 Information technology - Automatic identification and data
capture techniques - PDF417 bar code symbology specification
2019-12-05 22:47:35 +03:00
> ISO/IEC 16022:2006 Information technology - Automatic identification and data
capture techniques - Data Matrix ECC200 bar code symbology specification
> ISO/IEC 16023:2000 Information technology - International symbology
2021-08-05 18:34:45 +03:00
specification - MaxiCode
2019-12-05 22:47:35 +03:00
> ISO/IEC 16388:2007 Information technology - Automatic identification and data
capture techniques - Code 39 bar code symbology specification
> ISO/IEC 18004:2015 Information technology - Automatic identification and data
capture techniques - QR Code bar code symbology specification
2020-04-02 16:41:13 +03:00
> ISO/IEC DIS 20830:2019 (Draft 2019-10-10) Information technology - Automatic
identification and data capture techniques - Han Xin Code bar code
symbology specification
2019-12-05 22:47:35 +03:00
> ISO/IEC 24723:2010 Information technology - Automatic identification and data
capture techniques - GS1 Composite bar code symbology specification
> ISO/IEC 24724:2011 Information technology - Automatic identification and data
capture techniques - GS1 DataBar bar code symbology specification
> ISO/IEC 24728:2006 Information technology - Automatic identification and data
capture techniques - MicroPDF417 bar code symbology specification
> ISO/IEC 24778:2008 Information technology - Automatic identification and data
capture techniques - Aztec Code bar code symbology specification
2021-08-10 14:04:25 +03:00
> ISO/IEC JTC1/SC31N000 (Draft 2019-6-24) Information technology - Automatic
2020-04-02 16:41:13 +03:00
identification and data capture techniques - Rectangular Micro QR Code
(rMQR) bar code symbology specification
2021-06-10 13:15:39 +03:00
> ISO/IEC 16390:2007 Information technology - Automatic identification and data
capture techniques - Interleaved 2 of 5 bar code symbology specification
2021-08-05 18:34:45 +03:00
> ISO/IEC 21471:2020 Information technology - Automatic identification and data
capture techniques - Extended rectangular data matrix (DMRE) bar code
symbology specification
2019-12-05 22:47:35 +03:00
> Uniform Symbology Specification Code One (AIM Inc., 1994)
> ANSI/AIM BC12-1998 - Uniform Symbology Specification Channel Code
> ANSI/AIM BC6-2000 - Uniform Symbology Specification Code 49
2021-06-19 15:11:23 +03:00
> ANSI/AIM BC5-1995 - Uniform Symbology Specification Code 93
2020-09-30 14:19:12 +03:00
> ANSI/HIBC 2.6-2016 - The Health Industry Bar Code (HIBC) Supplier Labeling
2019-12-05 22:47:35 +03:00
Standard
2021-01-15 17:22:32 +03:00
> AIM ISS-X-24 - Uniform Symbology Specification Codablock-F
2021-08-05 18:34:45 +03:00
> AIM TSC1705001 (v 4.0 Draft 0.15) - Information technology - Automatic
identification and data capture techniques - Bar code symbology
specification - DotCode (Revised 28th May 2019)
2019-12-05 22:47:35 +03:00
> AIMD014 (v 1.63) - Information technology, Automatic identification and data
capture techniques - Bar code symbology specification - Grid Matrix
(Released 9th Dec 2008)
2021-08-05 18:34:45 +03:00
> AIMD/TSC15032-43 (v 0.99c) - International Technical Specification -
2020-04-06 21:10:17 +03:00
Ultracode Symbology (Draft) (Released 4th Nov 2015)
2021-01-29 02:41:54 +03:00
> GS1 General Specifications Release 21.0.1 (Jan 2021)
2021-08-05 18:34:45 +03:00
> AIM ITS/04-001 International Technical Standard - Extended Channel
2019-12-05 22:47:35 +03:00
Interpretations Part 1: Identification Schemes and Protocol (Released 24th
May 2004)
2021-08-05 18:34:45 +03:00
> AIM ITS/04-023 International Technical Standard - Extended Channel
2019-12-05 22:47:35 +03:00
Interpretations Part 3: Register (Released 15th July 2004)
2020-09-30 14:19:12 +03:00
2019-12-05 22:47:35 +03:00
A. Character Encoding
=====================
This section is intended as a quick reference to the character sets used by
Zint. All symbologies use standard ASCII input as shown in section A.1, but
some support extended character support as shown in the subsequent section.
A.1 ASCII Standard
------------------
The ubiquitous ASCII standard is well known to most computer users. It's
reproduced here for reference.
-------------------------------------------------------------
Hex | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7
-------------------------------------------------------------
2020-08-11 18:11:38 +03:00
0 | NUL | DLE | SPACE | 0 | @ | P | ` | p
2019-12-05 22:47:35 +03:00
1 | SOH | DC1 | ! | 1 | A | Q | a | q
2 | STX | DC2 | " | 2 | B | R | b | r
3 | ETX | DC3 | # | 3 | C | S | c | s
4 | EOT | DC4 | $ | 4 | D | T | d | t
5 | ENQ | NAK | % | 5 | E | U | e | u
6 | ACK | SYN | & | 6 | F | V | f | v
7 | BEL | ETB | ' | 7 | G | W | g | w
8 | BS | CAN | ( | 8 | H | X | h | x
9 | TAB | EM | ) | 9 | I | Y | i | y
A | LF | SUB | * | : | J | Z | j | z
B | VT | ESC | + | ; | K | [ | k | {
C | FF | FS | , | < | L | \ | l | |
D | CR | GS | - | = | M | ] | m | }
E | SO | RS | . | > | N | ^ | n | ~
F | SI | US | / | ? | O | _ | o | DEL
-------------------------------------------------------------
2021-01-11 21:11:41 +03:00
A.2 Latin Alphabet No 1 (ISO/IEC 8859-1)
----------------------------------------
2019-12-05 22:47:35 +03:00
A common extension to the ASCII standard, Latin-1 is used to expand the range
2021-07-26 17:29:05 +03:00
of Code 128, PDF417 and other symbols. Input strings to the CLI should be in
Unicode (UTF-8) format, unless the --binary switch is given.
2019-12-05 22:47:35 +03:00
------------------------------------------------------
Hex | 8 | 9 | A | B | C | D | E | F
------------------------------------------------------
0 | | | NBSP | ° | À | Ð | à | ð
1 | | | ¡ | ± | Á | Ñ | á | ñ
2 | | | ¢ | ² | Â | Ò | â | ò
3 | | | £ | ³ | Ã | Ó | ã | ó
4 | | | ¤ | ´ | Ä | Ô | ä | ô
5 | | | ¥ | μ | Å | Õ | å | õ
6 | | | ¦ | ¶ | Æ | Ö | æ | ö
7 | | | § | · | Ç | × | ç | ÷
8 | | | ¨ | ¸ | È | Ø | è | ø
9 | | | © | ¹ | É | Ù | é | ù
A | | | ª | º | Ê | Ú | ê | ú
B | | | « | » | Ë | Û | ë | û
C | | | ¬ | ¼ | Ì | Ü | ì | ü
D | | | SHY | ½ | Í | Ý | í | ý
E | | | ® | ¾ | Î | Þ | î | þ
2021-01-11 21:11:41 +03:00
F | | | ¯ | ¿ | Ï | ß | ï | ÿ
2019-12-05 22:47:35 +03:00
------------------------------------------------------