mirror of
https://github.com/woo-j/zint.git
synced 2025-01-25 18:03:45 +03:00
268fdd7fc2
to output file; ZBarcode_Encode_File: check `fseek()` for errors (ticket #275) - man page: fix Code 11 check digit info - manual/man page: document octal escape; Code 128 subset/mode -> Code Set
634 lines
22 KiB
C
634 lines
22 KiB
C
/* gif.c - Handles output to gif file */
|
|
/*
|
|
libzint - the open source barcode library
|
|
Copyright (C) 2009-2022 Robin Stuart <rstuart114@gmail.com>
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions
|
|
are met:
|
|
|
|
1. Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
2. Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
3. Neither the name of the project nor the names of its contributors
|
|
may be used to endorse or promote products derived from this software
|
|
without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
|
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
|
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
SUCH DAMAGE.
|
|
*/
|
|
/* SPDX-License-Identifier: BSD-3-Clause */
|
|
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#ifdef _MSC_VER
|
|
#include <io.h>
|
|
#include <fcntl.h>
|
|
#endif
|
|
#include "common.h"
|
|
#include "output.h"
|
|
|
|
/* Limit initial LZW buffer size to this in expectation that compressed data will fit for typical scalings */
|
|
#define GIF_LZW_PAGE_SIZE 0x100000 /* Megabyte */
|
|
|
|
typedef struct s_statestruct {
|
|
unsigned char *pOut;
|
|
unsigned char *pIn;
|
|
unsigned int InLen;
|
|
unsigned int OutLength;
|
|
unsigned int OutPosCur;
|
|
unsigned int OutByteCountPos;
|
|
unsigned short ClearCode;
|
|
unsigned short FreeCode;
|
|
char fByteCountByteSet;
|
|
unsigned char OutBitsFree;
|
|
unsigned short NodeAxon[4096];
|
|
unsigned short NodeNext[4096];
|
|
unsigned char NodePix[4096];
|
|
unsigned char colourCode[10];
|
|
unsigned char colourPaletteIndex[10];
|
|
int colourCount;
|
|
} statestruct;
|
|
|
|
/* Transform a Pixel to a lzw colourmap index and move to next pixel.
|
|
* All colour values are listed in colourCode with corresponding palette index
|
|
*/
|
|
static unsigned char NextPaletteIndex(statestruct *pState)
|
|
{
|
|
unsigned char pixelColour;
|
|
int colourIndex;
|
|
pixelColour = *(pState->pIn);
|
|
(pState->pIn)++;
|
|
(pState->InLen)--;
|
|
for (colourIndex = 0; colourIndex < pState->colourCount; colourIndex++) {
|
|
if (pixelColour == pState->colourCode[colourIndex])
|
|
return pState->colourPaletteIndex[colourIndex];
|
|
|
|
}
|
|
return 0; /* Not reached */
|
|
}
|
|
|
|
|
|
static int BufferNextByte(statestruct *pState) {
|
|
(pState->OutPosCur)++;
|
|
/* Check if this position is a byte count position
|
|
* fg_f_bytecountbyte_set indicates, if byte count position bytes should be
|
|
* inserted in general.
|
|
* If this is true, and the distance to the last byte count position is 256
|
|
* (e.g. 255 bytes in between), a byte count byte is inserted, and the value
|
|
* of the last one is set to 255.
|
|
* */
|
|
if (pState->fByteCountByteSet && (pState->OutByteCountPos + 256 == pState->OutPosCur)) {
|
|
(pState->pOut)[pState->OutByteCountPos] = 255;
|
|
pState->OutByteCountPos = pState->OutPosCur;
|
|
(pState->OutPosCur)++;
|
|
}
|
|
if (pState->OutPosCur >= pState->OutLength) {
|
|
unsigned char *pOut;
|
|
pState->OutLength += GIF_LZW_PAGE_SIZE;
|
|
/* Note pState->pOut not free()d by realloc() on failure */
|
|
if (!(pOut = (unsigned char *) realloc(pState->pOut, pState->OutLength))) {
|
|
return 1;
|
|
}
|
|
pState->pOut = pOut;
|
|
}
|
|
|
|
(pState->pOut)[pState->OutPosCur] = 0x00;
|
|
return 0;
|
|
}
|
|
|
|
static int AddCodeToBuffer(statestruct *pState, unsigned short CodeIn, unsigned char CodeBits) {
|
|
/* Check, if we may fill up the current byte completely */
|
|
if (CodeBits >= pState->OutBitsFree) {
|
|
(pState->pOut)[pState->OutPosCur] |= (unsigned char) (CodeIn << (8 - pState->OutBitsFree));
|
|
if (BufferNextByte(pState))
|
|
return -1;
|
|
CodeIn = (unsigned short) (CodeIn >> pState->OutBitsFree);
|
|
CodeBits -= pState->OutBitsFree;
|
|
pState->OutBitsFree = 8;
|
|
/* Write a full byte if there are at least 8 code bits left */
|
|
if (CodeBits >= pState->OutBitsFree) {
|
|
(pState->pOut)[pState->OutPosCur] = (unsigned char) CodeIn;
|
|
if (BufferNextByte(pState))
|
|
return -1;
|
|
CodeIn = (unsigned short) (CodeIn >> 8);
|
|
CodeBits -= 8;
|
|
}
|
|
}
|
|
/* The remaining bits of CodeIn fit in the current byte. */
|
|
if (CodeBits > 0) {
|
|
(pState->pOut)[pState->OutPosCur] |= (unsigned char) (CodeIn << (8 - pState->OutBitsFree));
|
|
pState->OutBitsFree -= CodeBits;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void FlushStringTable(statestruct *pState) {
|
|
unsigned short Pos;
|
|
for (Pos = 0; Pos < pState->ClearCode; Pos++) {
|
|
(pState->NodeAxon)[Pos] = 0;
|
|
}
|
|
}
|
|
|
|
static unsigned short FindPixelOutlet(statestruct *pState, unsigned short HeadNode, unsigned char Byte) {
|
|
unsigned short Outlet;
|
|
|
|
Outlet = (pState->NodeAxon)[HeadNode];
|
|
while (Outlet) {
|
|
if ((pState->NodePix)[Outlet] == Byte)
|
|
return Outlet;
|
|
Outlet = (pState->NodeNext)[Outlet];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int NextCode(statestruct *pState, unsigned char *pPixelValueCur, unsigned char CodeBits) {
|
|
unsigned short UpNode;
|
|
unsigned short DownNode;
|
|
/* start with the root node for last pixel chain */
|
|
UpNode = *pPixelValueCur;
|
|
if ((pState->InLen) == 0)
|
|
return AddCodeToBuffer(pState, UpNode, CodeBits);
|
|
|
|
*pPixelValueCur = NextPaletteIndex(pState);
|
|
/* Follow the string table and the data stream to the end of the longest string that has a code */
|
|
while (0 != (DownNode = FindPixelOutlet(pState, UpNode, *pPixelValueCur))) {
|
|
UpNode = DownNode;
|
|
if ((pState->InLen) == 0)
|
|
return AddCodeToBuffer(pState, UpNode, CodeBits);
|
|
|
|
*pPixelValueCur = NextPaletteIndex(pState);
|
|
}
|
|
/* Submit 'UpNode' which is the code of the longest string */
|
|
if (AddCodeToBuffer(pState, UpNode, CodeBits))
|
|
return -1;
|
|
/* ... and extend the string by appending 'PixelValueCur' */
|
|
/* Create a successor node for 'PixelValueCur' whose code is 'freecode' */
|
|
(pState->NodePix)[pState->FreeCode] = *pPixelValueCur;
|
|
(pState->NodeAxon)[pState->FreeCode] = (pState->NodeNext)[pState->FreeCode] = 0;
|
|
/* ...and link it to the end of the chain emanating from fg_axon[UpNode]. */
|
|
DownNode = (pState->NodeAxon)[UpNode];
|
|
if (!DownNode) {
|
|
(pState->NodeAxon)[UpNode] = pState->FreeCode;
|
|
} else {
|
|
while ((pState->NodeNext)[DownNode]) {
|
|
DownNode = (pState->NodeNext)[DownNode];
|
|
}
|
|
(pState->NodeNext)[DownNode] = pState->FreeCode;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int gif_lzw(statestruct *pState, int paletteBitSize) {
|
|
unsigned char PixelValueCur;
|
|
unsigned char CodeBits;
|
|
unsigned short Pos;
|
|
|
|
/* > Get first data byte */
|
|
if (pState->InLen == 0)
|
|
return 0;
|
|
PixelValueCur = NextPaletteIndex(pState);
|
|
/* Number of bits per data item (=pixel)
|
|
* We need at least a value of 2, otherwise the cc and eoi code consumes
|
|
* the whole string table
|
|
*/
|
|
if (paletteBitSize == 1)
|
|
paletteBitSize = 2;
|
|
|
|
/* initial size of compression codes */
|
|
CodeBits = paletteBitSize + 1;
|
|
pState->ClearCode = (1 << paletteBitSize);
|
|
pState->FreeCode = pState->ClearCode + 2;
|
|
pState->OutBitsFree = 8;
|
|
pState->OutPosCur = -1;
|
|
pState->fByteCountByteSet = 0;
|
|
|
|
if (BufferNextByte(pState))
|
|
return 0;
|
|
|
|
for (Pos = 0; Pos < pState->ClearCode; Pos++)
|
|
(pState->NodePix)[Pos] = (unsigned char) Pos;
|
|
|
|
FlushStringTable(pState);
|
|
|
|
/* Write what the GIF specification calls the "code size". */
|
|
(pState->pOut)[pState->OutPosCur] = paletteBitSize;
|
|
/* Reserve first bytecount byte */
|
|
if (BufferNextByte(pState))
|
|
return 0;
|
|
pState->OutByteCountPos = pState->OutPosCur;
|
|
if (BufferNextByte(pState))
|
|
return 0;
|
|
pState->fByteCountByteSet = 1;
|
|
/* Submit one 'ClearCode' as the first code */
|
|
if (AddCodeToBuffer(pState, pState->ClearCode, CodeBits))
|
|
return 0;
|
|
|
|
for (;;) {
|
|
int Res;
|
|
/* generate and save the next code, which may consist of multiple input pixels. */
|
|
Res = NextCode(pState, &PixelValueCur, CodeBits);
|
|
if (Res < 0)
|
|
return 0;
|
|
/* Check for end of data stream */
|
|
if (!Res) {
|
|
/* submit 'eoi' as the last item of the code stream */
|
|
if (AddCodeToBuffer(pState, (unsigned short) (pState->ClearCode + 1), CodeBits))
|
|
return 0;
|
|
pState->fByteCountByteSet = 0;
|
|
if (pState->OutBitsFree < 8) {
|
|
if (BufferNextByte(pState))
|
|
return 0;
|
|
}
|
|
/* > Update last bytecount byte; */
|
|
if (pState->OutByteCountPos < pState->OutPosCur) {
|
|
(pState->pOut)[pState->OutByteCountPos]
|
|
= (unsigned char) (pState->OutPosCur - pState->OutByteCountPos - 1);
|
|
}
|
|
pState->OutPosCur++;
|
|
return pState->OutPosCur;
|
|
}
|
|
/* Check for currently last code */
|
|
if (pState->FreeCode == (1U << CodeBits))
|
|
CodeBits++;
|
|
pState->FreeCode++;
|
|
/* Check for full stringtable */
|
|
if (pState->FreeCode == 0xfff) {
|
|
FlushStringTable(pState);
|
|
if (AddCodeToBuffer(pState, pState->ClearCode, CodeBits))
|
|
return 0;
|
|
|
|
CodeBits = (unsigned char) (1 + paletteBitSize);
|
|
pState->FreeCode = (unsigned short) (pState->ClearCode + 2);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Called function to save in gif format
|
|
*/
|
|
INTERNAL int gif_pixel_plot(struct zint_symbol *symbol, unsigned char *pixelbuf) {
|
|
unsigned char outbuf[10];
|
|
FILE *gif_file;
|
|
unsigned short usTemp;
|
|
int byte_out;
|
|
int colourCount;
|
|
unsigned char paletteRGB[10][3];
|
|
int paletteCount, paletteCountCur, paletteIndex;
|
|
unsigned int pixelIndex;
|
|
int paletteBitSize;
|
|
int paletteSize;
|
|
statestruct State;
|
|
int transparent_index;
|
|
int bgindex = -1, fgindex = -1;
|
|
const int output_to_stdout = symbol->output_options & BARCODE_STDOUT;
|
|
|
|
unsigned char backgroundColourIndex;
|
|
unsigned char RGBCur[3];
|
|
unsigned char RGBUnused[3] = {0,0,0};
|
|
|
|
int colourIndex;
|
|
|
|
int fFound;
|
|
|
|
unsigned char pixelColour;
|
|
unsigned int bitmapSize = symbol->bitmap_height * symbol->bitmap_width;
|
|
|
|
/* Allow for overhead of 4 == code size + byte count + overflow byte + zero terminator */
|
|
unsigned int lzoutbufSize = bitmapSize + 4;
|
|
if (lzoutbufSize > GIF_LZW_PAGE_SIZE) {
|
|
lzoutbufSize = GIF_LZW_PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Build a table of the used palette items.
|
|
* Currently, there are the following 10 colour codes:
|
|
* '0': standard background
|
|
* '1': standard foreground
|
|
* 'W': white
|
|
* 'C': cyan
|
|
* 'B': blue
|
|
* 'M': magenta
|
|
* 'R': red
|
|
* 'Y': yellow
|
|
* 'G': green
|
|
* 'K': black
|
|
* '0' and '1' may be identical to one of the other values
|
|
*
|
|
* A data structure is set up as follows:
|
|
* state.colourCode: list of colour codes
|
|
* paletteIndex: palette index of the corresponding colour code
|
|
* There are colourCount entries in the upper lists.
|
|
* paletteRGB: RGB value at the palette position
|
|
* There are paletteCount entries.
|
|
* This value is smaller to colourCount, if multiple colour codes have the
|
|
* same RGB value and point to the same palette value.
|
|
* Example:
|
|
* 0 1 W K are present. 0 is equal to white, while 1 is blue
|
|
* The resulting tables are:
|
|
* paletteItem: ['0']=0 (white), ['1']=1 (blue), ['W']=0 (white),
|
|
* ['K']=2 (black)
|
|
* Thus, there are 4 colour codes and 3 palette entries.
|
|
|
|
*/
|
|
colourCount = 0;
|
|
paletteCount = 0;
|
|
/* loop over all pixels */
|
|
for (pixelIndex = 0; pixelIndex < bitmapSize; pixelIndex++) {
|
|
fFound = 0;
|
|
/* get pixel colour code */
|
|
pixelColour = pixelbuf[pixelIndex];
|
|
/* look, if colour code is already in colour list */
|
|
for (colourIndex = 0; colourIndex < colourCount; colourIndex++) {
|
|
if ((State.colourCode)[colourIndex] == pixelColour) {
|
|
fFound = 1;
|
|
break;
|
|
}
|
|
}
|
|
/* If colour is already present, go to next colour code */
|
|
if (fFound)
|
|
continue;
|
|
|
|
/* Colour code not present - add colour code */
|
|
/* Get RGB value */
|
|
switch (pixelColour) {
|
|
case '0': /* standard background */
|
|
RGBCur[0] = (unsigned char) (16 * ctoi(symbol->bgcolour[0])) + ctoi(symbol->bgcolour[1]);
|
|
RGBCur[1] = (unsigned char) (16 * ctoi(symbol->bgcolour[2])) + ctoi(symbol->bgcolour[3]);
|
|
RGBCur[2] = (unsigned char) (16 * ctoi(symbol->bgcolour[4])) + ctoi(symbol->bgcolour[5]);
|
|
break;
|
|
case '1': /* standard foreground */
|
|
RGBCur[0] = (unsigned char) (16 * ctoi(symbol->fgcolour[0])) + ctoi(symbol->fgcolour[1]);
|
|
RGBCur[1] = (unsigned char) (16 * ctoi(symbol->fgcolour[2])) + ctoi(symbol->fgcolour[3]);
|
|
RGBCur[2] = (unsigned char) (16 * ctoi(symbol->fgcolour[4])) + ctoi(symbol->fgcolour[5]);
|
|
break;
|
|
case 'W': /* white */
|
|
RGBCur[0] = 255; RGBCur[1] = 255; RGBCur[2] = 255;
|
|
break;
|
|
case 'C': /* cyan */
|
|
RGBCur[0] = 0; RGBCur[1] = 255; RGBCur[2] = 255;
|
|
break;
|
|
case 'B': /* blue */
|
|
RGBCur[0] = 0; RGBCur[1] = 0; RGBCur[2] = 255;
|
|
break;
|
|
case 'M': /* magenta */
|
|
RGBCur[0] = 255; RGBCur[1] = 0; RGBCur[2] = 255;
|
|
break;
|
|
case 'R': /* red */
|
|
RGBCur[0] = 255; RGBCur[1] = 0; RGBCur[2] = 0;
|
|
break;
|
|
case 'Y': /* yellow */
|
|
RGBCur[0] = 255; RGBCur[1] = 255; RGBCur[2] = 0;
|
|
break;
|
|
case 'G': /* green */
|
|
RGBCur[0] = 0; RGBCur[1] = 255; RGBCur[2] = 0;
|
|
break;
|
|
case 'K': /* black */
|
|
RGBCur[0] = 0; RGBCur[1] = 0; RGBCur[2] = 0;
|
|
break;
|
|
default: /* error case - return */
|
|
strcpy(symbol->errtxt, "612: unknown pixel colour");
|
|
return ZINT_ERROR_INVALID_DATA;
|
|
}
|
|
/* Search, if RGB value is already present */
|
|
fFound = 0;
|
|
for (paletteIndex = 0; paletteIndex < paletteCount; paletteIndex++) {
|
|
if (RGBCur[0] == paletteRGB[paletteIndex][0]
|
|
&& RGBCur[1] == paletteRGB[paletteIndex][1]
|
|
&& RGBCur[2] == paletteRGB[paletteIndex][2])
|
|
{
|
|
fFound = 1;
|
|
break;
|
|
}
|
|
}
|
|
/* RGB not present, add it */
|
|
if (!fFound) {
|
|
paletteIndex = paletteCount;
|
|
paletteRGB[paletteIndex][0] = RGBCur[0];
|
|
paletteRGB[paletteIndex][1] = RGBCur[1];
|
|
|
|
paletteRGB[paletteIndex][2] = RGBCur[2];
|
|
|
|
paletteCount++;
|
|
|
|
if (pixelColour == '0') bgindex = paletteIndex;
|
|
if (pixelColour == '1') fgindex = paletteIndex;
|
|
}
|
|
/* Add palette index to current colour code */
|
|
(State.colourCode)[colourCount] = pixelColour;
|
|
(State.colourPaletteIndex)[colourCount] = paletteIndex;
|
|
colourCount++;
|
|
}
|
|
State.colourCount = colourCount;
|
|
|
|
/* Set transparency */
|
|
/* Note: does not allow both transparent foreground and background -
|
|
* background takes priority */
|
|
transparent_index = -1;
|
|
if (strlen(symbol->fgcolour) > 6) {
|
|
if ((symbol->fgcolour[6] == '0') && (symbol->fgcolour[7] == '0')) {
|
|
/* Transparent foreground */
|
|
transparent_index = fgindex;
|
|
}
|
|
}
|
|
if (strlen(symbol->bgcolour) > 6) {
|
|
if ((symbol->bgcolour[6] == '0') && (symbol->bgcolour[7] == '0')) {
|
|
/* Transparent background */
|
|
transparent_index = bgindex;
|
|
}
|
|
}
|
|
|
|
/* find palette bit size from palette size*/
|
|
|
|
/* 1,2 -> 1, 3,4 ->2, 5,6,7,8->3 */
|
|
paletteBitSize = 0;
|
|
paletteCountCur = paletteCount - 1;
|
|
while (paletteCountCur != 0) {
|
|
paletteBitSize++;
|
|
paletteCountCur >>= 1;
|
|
}
|
|
/* Minimum is 1 */
|
|
if (paletteBitSize == 0)
|
|
paletteBitSize = 1;
|
|
|
|
/* palette size 2 ^ bit size */
|
|
paletteSize = 1 << paletteBitSize;
|
|
|
|
/* Open output file in binary mode */
|
|
if (output_to_stdout) {
|
|
#ifdef _MSC_VER
|
|
if (-1 == _setmode(_fileno(stdout), _O_BINARY)) {
|
|
sprintf(symbol->errtxt, "610: Could not set stdout to binary (%d: %.30s)", errno, strerror(errno));
|
|
return ZINT_ERROR_FILE_ACCESS;
|
|
}
|
|
#endif
|
|
gif_file = stdout;
|
|
} else {
|
|
if (!(gif_file = out_fopen(symbol->outfile, "wb"))) {
|
|
sprintf(symbol->errtxt, "611: Could not open output file (%d: %.30s)", errno, strerror(errno));
|
|
return ZINT_ERROR_FILE_ACCESS;
|
|
}
|
|
}
|
|
|
|
/* GIF signature (6) */
|
|
memcpy(outbuf, "GIF87a", 6);
|
|
if (transparent_index != -1)
|
|
outbuf[4] = '9';
|
|
|
|
fwrite(outbuf, 6, 1, gif_file);
|
|
/* Screen Descriptor (7) */
|
|
/* Screen Width */
|
|
usTemp = (unsigned short) symbol->bitmap_width;
|
|
outbuf[0] = (unsigned char) (0xff & usTemp);
|
|
outbuf[1] = (unsigned char) ((0xff00 & usTemp) / 0x100);
|
|
/* Screen Height */
|
|
usTemp = (unsigned short) symbol->bitmap_height;
|
|
outbuf[2] = (unsigned char) (0xff & usTemp);
|
|
outbuf[3] = (unsigned char) ((0xff00 & usTemp) / 0x100);
|
|
/* write ImageBits-1 to the three least significant bits of byte 5 of
|
|
* the Screen Descriptor
|
|
* Bits 76543210
|
|
* 1 : Global colour map
|
|
* 111 : 8 bit colour depth of the palette
|
|
* 0 : Not ordered in decreasing importance
|
|
* xxx : palette bit zize - 1
|
|
*/
|
|
outbuf[4] = (unsigned char) (0xf0 | (0x7 & (paletteBitSize - 1)));
|
|
|
|
/*
|
|
* Background colour index
|
|
* Default to 0. If colour code 0 or K is present, it is used as index
|
|
*/
|
|
|
|
backgroundColourIndex = 0;
|
|
for (colourIndex = 0; colourIndex < colourCount; colourIndex++) {
|
|
if ((State.colourCode)[colourIndex] == '0' || (State.colourCode)[colourIndex] == 'W') {
|
|
backgroundColourIndex = (State.colourPaletteIndex)[colourIndex];
|
|
break;
|
|
}
|
|
}
|
|
outbuf[5] = backgroundColourIndex;
|
|
/* Byte 7 must be 0x00 */
|
|
outbuf[6] = 0x00;
|
|
fwrite(outbuf, 7, 1, gif_file);
|
|
/* Global Color Table (paletteSize*3) */
|
|
fwrite(paletteRGB, 3*paletteCount, 1, gif_file);
|
|
/* add unused palette items to fill palette size */
|
|
for (paletteIndex = paletteCount; paletteIndex < paletteSize; paletteIndex++) {
|
|
fwrite(RGBUnused, 3, 1, gif_file);
|
|
}
|
|
|
|
/* Graphic control extension (8) */
|
|
/* A graphic control extension block is used for overlay gifs.
|
|
* This is necessary to define a transparent color.
|
|
*/
|
|
if (transparent_index != -1) {
|
|
/* Extension Introducer = '!' */
|
|
outbuf[0] = '\x21';
|
|
/* Graphic Control Label */
|
|
outbuf[1] = '\xf9';
|
|
/* Block Size */
|
|
outbuf[2] = 4;
|
|
/* Packet fields:
|
|
* 3 Reserved
|
|
* 3 Disposal Method: 0 No Action, 1 No Dispose, 2: Background, 3: Prev.
|
|
* 1 User Input Flag: 0: no user input, 1: user input
|
|
* 1 Transparent Color Flag: 0: No Transparency, 1: Transparency index
|
|
*/
|
|
outbuf[3] = 1;
|
|
/* Delay Time */
|
|
outbuf[4] = 0;
|
|
outbuf[5] = 0;
|
|
/* Transparent Color Index */
|
|
outbuf[6] = (unsigned char) transparent_index;
|
|
/* Block Terminator */
|
|
outbuf[7] = 0;
|
|
fwrite(outbuf, 8, 1, gif_file);
|
|
}
|
|
/* Image Descriptor */
|
|
/* Image separator character = ',' */
|
|
outbuf[0] = 0x2c;
|
|
/* "Image Left" */
|
|
outbuf[1] = 0x00;
|
|
outbuf[2] = 0x00;
|
|
/* "Image Top" */
|
|
outbuf[3] = 0x00;
|
|
outbuf[4] = 0x00;
|
|
/* Image Width (low byte first) */
|
|
outbuf[5] = (unsigned char) (0xff & symbol->bitmap_width);
|
|
outbuf[6] = (unsigned char) ((0xff00 & symbol->bitmap_width) / 0x100);
|
|
/* Image Height */
|
|
outbuf[7] = (unsigned char) (0xff & symbol->bitmap_height);
|
|
outbuf[8] = (unsigned char) ((0xff00 & symbol->bitmap_height) / 0x100);
|
|
|
|
/* Byte 10 contains the interlaced flag and
|
|
* information on the local color table.
|
|
* There is no local color table if its most significant bit is reset.
|
|
*/
|
|
outbuf[9] = 0x00;
|
|
fwrite(outbuf, 10, 1, gif_file);
|
|
|
|
/* prepare state array */
|
|
State.pIn = pixelbuf;
|
|
State.InLen = bitmapSize;
|
|
if (!(State.pOut = (unsigned char *) malloc(lzoutbufSize))) {
|
|
if (!output_to_stdout) {
|
|
(void) fclose(gif_file);
|
|
}
|
|
strcpy(symbol->errtxt, "614: Insufficient memory for LZW buffer");
|
|
return ZINT_ERROR_MEMORY;
|
|
}
|
|
State.OutLength = lzoutbufSize;
|
|
|
|
/* call lzw encoding */
|
|
byte_out = gif_lzw(&State, paletteBitSize);
|
|
if (byte_out <= 0) {
|
|
free(State.pOut);
|
|
if (!output_to_stdout) {
|
|
(void) fclose(gif_file);
|
|
}
|
|
strcpy(symbol->errtxt, "613: Insufficient memory for LZW buffer");
|
|
return ZINT_ERROR_MEMORY;
|
|
}
|
|
fwrite((const char *) State.pOut, byte_out, 1, gif_file);
|
|
free(State.pOut);
|
|
|
|
/* GIF terminator */
|
|
fputc('\x3b', gif_file);
|
|
|
|
if (ferror(gif_file)) {
|
|
sprintf(symbol->errtxt, "615: Incomplete write to output (%d: %.30s)", errno, strerror(errno));
|
|
if (!output_to_stdout) {
|
|
(void) fclose(gif_file);
|
|
}
|
|
return ZINT_ERROR_FILE_WRITE;
|
|
}
|
|
|
|
if (output_to_stdout) {
|
|
if (fflush(gif_file) != 0) {
|
|
sprintf(symbol->errtxt, "616: Incomplete flush to output (%d: %.30s)", errno, strerror(errno));
|
|
return ZINT_ERROR_FILE_WRITE;
|
|
}
|
|
} else {
|
|
if (fclose(gif_file) != 0) {
|
|
sprintf(symbol->errtxt, "617: Failure on closing output file (%d: %.30s)", errno, strerror(errno));
|
|
return ZINT_ERROR_FILE_WRITE;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* vim: set ts=4 sw=4 et : */
|