mirror of
https://github.com/woo-j/zint.git
synced 2024-12-25 09:33:56 +03:00
1120 lines
39 KiB
C
1120 lines
39 KiB
C
/* gridmtx.c - Grid Matrix
|
||
|
||
libzint - the open source barcode library
|
||
Copyright (C) 2009-2020 Robin Stuart <rstuart114@gmail.com>
|
||
|
||
Redistribution and use in source and binary forms, with or without
|
||
modification, are permitted provided that the following conditions
|
||
are met:
|
||
|
||
1. Redistributions of source code must retain the above copyright
|
||
notice, this list of conditions and the following disclaimer.
|
||
2. Redistributions in binary form must reproduce the above copyright
|
||
notice, this list of conditions and the following disclaimer in the
|
||
documentation and/or other materials provided with the distribution.
|
||
3. Neither the name of the project nor the names of its contributors
|
||
may be used to endorse or promote products derived from this software
|
||
without specific prior written permission.
|
||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
|
||
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
|
||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
SUCH DAMAGE.
|
||
*/
|
||
/* vim: set ts=4 sw=4 et : */
|
||
|
||
/* This file implements Grid Matrix as specified in
|
||
AIM Global Document Number AIMD014 Rev. 1.63 Revised 9 Dec 2008 */
|
||
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
#include <stdlib.h>
|
||
#ifdef _MSC_VER
|
||
#include <malloc.h>
|
||
#endif
|
||
#include "common.h"
|
||
#include "reedsol.h"
|
||
#include "gridmtx.h"
|
||
#include "gb2312.h"
|
||
|
||
/* define_mode() stuff */
|
||
|
||
/* Bits multiplied by this for costs, so as to be whole integer divisible by 2 and 3 */
|
||
#define GM_MULT 6
|
||
|
||
static const char numeral_nondigits[] = " +-.,"; /* Non-digit numeral set, excluding EOL (carriage return/linefeed) */
|
||
|
||
/* Whether in numeral or not. If in numeral, *p_numeral_end is set to position after numeral, and *p_numeral_cost is set to per-numeral cost */
|
||
static int in_numeral(const unsigned int gbdata[], const size_t length, const unsigned int posn, unsigned int* p_numeral_end, unsigned int* p_numeral_cost) {
|
||
unsigned int i, digit_cnt, nondigit, nondigit_posn;
|
||
|
||
if (posn < *p_numeral_end) {
|
||
return 1;
|
||
}
|
||
|
||
/* Attempt to calculate the average 'cost' of using numeric mode in number of bits (times GM_MULT) */
|
||
/* Also ensures that numeric mode is not selected when it cannot be used: for example in
|
||
a string which has "2.2.0" (cannot have more than one non-numeric character for each
|
||
block of three numeric characters) */
|
||
for (i = posn, digit_cnt = 0, nondigit = 0, nondigit_posn = 0; i < length && i < posn + 4 && digit_cnt < 3; i++) {
|
||
if (gbdata[i] >= '0' && gbdata[i] <= '9') {
|
||
digit_cnt++;
|
||
} else if (strchr(numeral_nondigits, gbdata[i])) {
|
||
if (nondigit) {
|
||
break;
|
||
}
|
||
nondigit = 1;
|
||
nondigit_posn = i;
|
||
} else if (i < length - 1 && gbdata[i] == 13 && gbdata[i + 1] == 10) {
|
||
if (nondigit) {
|
||
break;
|
||
}
|
||
i++;
|
||
nondigit = 2;
|
||
nondigit_posn = i;
|
||
} else {
|
||
break;
|
||
}
|
||
}
|
||
if (digit_cnt == 0) { /* Must have at least one digit */
|
||
*p_numeral_end = 0;
|
||
return 0;
|
||
}
|
||
if (nondigit && nondigit_posn == i - 1) { /* Non-digit can't be at end */
|
||
nondigit = 0;
|
||
}
|
||
*p_numeral_end = posn + digit_cnt + nondigit;
|
||
/* Calculate per-numeral cost where 120 == (10 + 10) * GM_MULT, 60 == 10 * GM_MULT */
|
||
if (digit_cnt == 3) {
|
||
*p_numeral_cost = nondigit == 2 ? 24 /* (120 / 5) */ : nondigit == 1 ? 30 /* (120 / 4) */ : 20 /* (60 / 3) */;
|
||
} else if (digit_cnt == 2) {
|
||
*p_numeral_cost = nondigit == 2 ? 30 /* (120 / 4) */ : nondigit == 1 ? 40 /* (120 / 3) */ : 30 /* (60 / 2) */;
|
||
} else {
|
||
*p_numeral_cost = nondigit == 2 ? 40 /* (120 / 3) */ : nondigit == 1 ? 60 /* (120 / 2) */ : 60 /* (60 / 1) */;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Encoding modes */
|
||
#define GM_CHINESE 'H'
|
||
#define GM_NUMBER 'N'
|
||
#define GM_LOWER 'L'
|
||
#define GM_UPPER 'U'
|
||
#define GM_MIXED 'M'
|
||
#define GM_BYTE 'B'
|
||
/* Note Control is a submode of Lower, Upper and Mixed modes */
|
||
|
||
/* Indexes into mode_types array */
|
||
#define GM_H 0 /* Chinese (Hanzi) */
|
||
#define GM_N 1 /* Numeral */
|
||
#define GM_L 2 /* Lower case */
|
||
#define GM_U 3 /* Upper case */
|
||
#define GM_M 4 /* Mixed */
|
||
#define GM_B 5 /* Byte */
|
||
|
||
#define GM_NUM_MODES 6
|
||
|
||
/* Initial mode costs */
|
||
static unsigned int head_costs[GM_NUM_MODES] = {
|
||
/* H N (+pad prefix) L U M B (+byte count) */
|
||
4 * GM_MULT, (4 + 2) * GM_MULT, 4 * GM_MULT, 4 * GM_MULT, 4 * GM_MULT, (4 + 9) * GM_MULT
|
||
};
|
||
|
||
static unsigned int* gm_head_costs(unsigned int state[]) {
|
||
(void)state; /* Unused */
|
||
return head_costs;
|
||
}
|
||
|
||
/* Cost of switching modes from k to j - see AIMD014 Rev. 1.63 Table 9 – Type conversion codes */
|
||
static unsigned int gm_switch_cost(unsigned int state[], const int k, const int j) {
|
||
static const unsigned int switch_costs[GM_NUM_MODES][GM_NUM_MODES] = {
|
||
/* H N L U M B */
|
||
/*H*/ { 0, (13 + 2) * GM_MULT, 13 * GM_MULT, 13 * GM_MULT, 13 * GM_MULT, (13 + 9) * GM_MULT },
|
||
/*N*/ { 10 * GM_MULT, 0, 10 * GM_MULT, 10 * GM_MULT, 10 * GM_MULT, (10 + 9) * GM_MULT },
|
||
/*L*/ { 5 * GM_MULT, (5 + 2) * GM_MULT, 0, 5 * GM_MULT, 7 * GM_MULT, (7 + 9) * GM_MULT },
|
||
/*U*/ { 5 * GM_MULT, (5 + 2) * GM_MULT, 5 * GM_MULT, 0, 7 * GM_MULT, (7 + 9) * GM_MULT },
|
||
/*M*/ { 10 * GM_MULT, (10 + 2) * GM_MULT, 10 * GM_MULT, 10 * GM_MULT, 0, (10 + 9) * GM_MULT },
|
||
/*B*/ { 4 * GM_MULT, (4 + 2) * GM_MULT, 4 * GM_MULT, 4 * GM_MULT, 4 * GM_MULT, 0 },
|
||
};
|
||
|
||
(void)state; /* Unused */
|
||
return switch_costs[k][j];
|
||
}
|
||
|
||
/* Final end-of-data cost - see AIMD014 Rev. 1.63 Table 9 – Type conversion codes */
|
||
static unsigned int gm_eod_cost(unsigned int state[], const int k) {
|
||
static const unsigned int eod_costs[GM_NUM_MODES] = {
|
||
/* H N L U M B */
|
||
13 * GM_MULT, 10 * GM_MULT, 5 * GM_MULT, 5 * GM_MULT, 10 * GM_MULT, 4 * GM_MULT
|
||
};
|
||
|
||
(void)state; /* Unused */
|
||
return eod_costs[k];
|
||
}
|
||
|
||
/* Calculate cost of encoding current character */
|
||
static void gm_cur_cost(unsigned int state[], const unsigned int gbdata[], const size_t length, const int i, char* char_modes, unsigned int prev_costs[], unsigned int cur_costs[]) {
|
||
int cm_i = i * GM_NUM_MODES;
|
||
int double_byte, space, numeric, lower, upper, control, double_digit, eol;
|
||
unsigned int* p_numeral_end = &state[0];
|
||
unsigned int* p_numeral_cost = &state[1];
|
||
unsigned int* p_byte_count = &state[2];
|
||
|
||
double_byte = gbdata[i] > 0xFF;
|
||
space = gbdata[i] == ' ';
|
||
numeric = gbdata[i] >= '0' && gbdata[i] <= '9';
|
||
lower = gbdata[i] >= 'a' && gbdata[i] <= 'z';
|
||
upper = gbdata[i] >= 'A' && gbdata[i] <= 'Z';
|
||
control = !space && !numeric && !lower && !upper && gbdata[i] < 0x7F; /* Exclude DEL */
|
||
double_digit = i < (int) length - 1 && numeric && gbdata[i + 1] >= '0' && gbdata[i + 1] <= '9';
|
||
eol = i < (int) length - 1 && gbdata[i] == 13 && gbdata[i + 1] == 10;
|
||
|
||
/* Hanzi mode can encode anything */
|
||
cur_costs[GM_H] = prev_costs[GM_H] + (double_digit || eol ? 39 : 78); /* (6.5 : 13) * GM_MULT */
|
||
char_modes[cm_i + GM_H] = GM_CHINESE;
|
||
|
||
/* Byte mode can encode anything */
|
||
if (*p_byte_count == 512 || (double_byte && *p_byte_count == 511)) {
|
||
cur_costs[GM_B] = head_costs[GM_B];
|
||
if (double_byte && *p_byte_count == 511) {
|
||
cur_costs[GM_B] += 48; /* 8 * GM_MULT */
|
||
double_byte = 0; /* Splitting double-byte so mark as single */
|
||
}
|
||
*p_byte_count = 0;
|
||
}
|
||
cur_costs[GM_B] += prev_costs[GM_B] + (double_byte ? 96 : 48); /* (16 : 8) * GM_MULT */
|
||
char_modes[cm_i + GM_B] = GM_BYTE;
|
||
*p_byte_count += double_byte ? 2 : 1;
|
||
|
||
if (in_numeral(gbdata, length, i, p_numeral_end, p_numeral_cost)) {
|
||
cur_costs[GM_N] = prev_costs[GM_N] + *p_numeral_cost;
|
||
char_modes[cm_i + GM_N] = GM_NUMBER;
|
||
}
|
||
|
||
if (control) {
|
||
cur_costs[GM_L] = prev_costs[GM_L] + 78; /* (7 + 6) * GM_MULT */
|
||
char_modes[cm_i + GM_L] = GM_LOWER;
|
||
cur_costs[GM_U] = prev_costs[GM_U] + 78; /* (7 + 6) * GM_MULT */
|
||
char_modes[cm_i + GM_U] = GM_UPPER;
|
||
cur_costs[GM_M] = prev_costs[GM_M] + 96; /* (10 + 6) * GM_MULT */
|
||
char_modes[cm_i + GM_M] = GM_MIXED;
|
||
} else {
|
||
if (lower || space) {
|
||
cur_costs[GM_L] = prev_costs[GM_L] + 30; /* 5 * GM_MULT */
|
||
char_modes[cm_i + GM_L] = GM_LOWER;
|
||
}
|
||
if (upper || space) {
|
||
cur_costs[GM_U] = prev_costs[GM_U] + 30; /* 5 * GM_MULT */
|
||
char_modes[cm_i + GM_U] = GM_UPPER;
|
||
}
|
||
if (numeric || lower || upper || space) {
|
||
cur_costs[GM_M] = prev_costs[GM_M] + 36; /* 6 * GM_MULT */
|
||
char_modes[cm_i + GM_M] = GM_MIXED;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Calculate optimized encoding modes */
|
||
static void define_mode(char* mode, const unsigned int gbdata[], const size_t length, const int debug) {
|
||
static const char mode_types[] = { GM_CHINESE, GM_NUMBER, GM_LOWER, GM_UPPER, GM_MIXED, GM_BYTE }; /* Must be in same order as GM_H etc */
|
||
unsigned int state[3] = { 0 /*numeral_end*/, 0 /*numeral_cost*/, 0 /*byte_count*/ };
|
||
|
||
pn_define_mode(mode, gbdata, length, debug, state, mode_types, GM_NUM_MODES, gm_head_costs, gm_switch_cost, gm_eod_cost, gm_cur_cost);
|
||
}
|
||
|
||
/* Add the length indicator for byte encoded blocks */
|
||
static void add_byte_count(char binary[], const size_t byte_count_posn, const int byte_count) {
|
||
bin_append_posn(byte_count - 1, 9, binary, byte_count_posn);
|
||
}
|
||
|
||
/* Add a control character to the data stream */
|
||
static void add_shift_char(char binary[], int shifty, int debug) {
|
||
int i;
|
||
int glyph = 0;
|
||
|
||
for (i = 0; i < 64; i++) {
|
||
if (shift_set[i] == shifty) {
|
||
glyph = i;
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (debug & ZINT_DEBUG_PRINT) {
|
||
printf("SHIFT [%d] ", glyph);
|
||
}
|
||
|
||
bin_append(glyph, 6, binary);
|
||
}
|
||
|
||
static int gm_encode(unsigned int gbdata[], const size_t length, char binary[], const int reader, const int eci, int debug) {
|
||
/* Create a binary stream representation of the input data.
|
||
7 sets are defined - Chinese characters, Numerals, Lower case letters, Upper case letters,
|
||
Mixed numerals and latters, Control characters and 8-bit binary data */
|
||
unsigned int sp;
|
||
int current_mode, last_mode;
|
||
unsigned int glyph = 0;
|
||
int c1, c2, done;
|
||
int p = 0, ppos;
|
||
int numbuf[3], punt = 0;
|
||
size_t number_pad_posn, byte_count_posn = 0;
|
||
int byte_count = 0;
|
||
int shift;
|
||
#ifndef _MSC_VER
|
||
char mode[length];
|
||
#else
|
||
char* mode = (char*) _alloca(length);
|
||
#endif
|
||
|
||
strcpy(binary, "");
|
||
|
||
sp = 0;
|
||
current_mode = 0;
|
||
last_mode = 0;
|
||
number_pad_posn = 0;
|
||
|
||
if (reader) {
|
||
bin_append(10, 4, binary); /* FNC3 - Reader Initialisation */
|
||
}
|
||
|
||
if (eci != 0) {
|
||
/* ECI assignment according to Table 8 */
|
||
bin_append(12, 4, binary); /* ECI */
|
||
if (eci <= 1023) {
|
||
bin_append(eci, 11, binary);
|
||
}
|
||
if ((eci >= 1024) && (eci <= 32767)) {
|
||
strcat(binary, "10");
|
||
bin_append(eci, 15, binary);
|
||
}
|
||
if (eci >= 32768) {
|
||
strcat(binary, "11");
|
||
bin_append(eci, 20, binary);
|
||
}
|
||
}
|
||
|
||
define_mode(mode, gbdata, length, debug);
|
||
|
||
do {
|
||
int next_mode = mode[sp];
|
||
|
||
if (next_mode != current_mode) {
|
||
switch (current_mode) {
|
||
case 0:
|
||
switch (next_mode) {
|
||
case GM_CHINESE: bin_append(1, 4, binary);
|
||
break;
|
||
case GM_NUMBER: bin_append(2, 4, binary);
|
||
break;
|
||
case GM_LOWER: bin_append(3, 4, binary);
|
||
break;
|
||
case GM_UPPER: bin_append(4, 4, binary);
|
||
break;
|
||
case GM_MIXED: bin_append(5, 4, binary);
|
||
break;
|
||
case GM_BYTE: bin_append(6, 4, binary);
|
||
break;
|
||
}
|
||
break;
|
||
case GM_CHINESE:
|
||
switch (next_mode) {
|
||
case GM_NUMBER: bin_append(8161, 13, binary);
|
||
break;
|
||
case GM_LOWER: bin_append(8162, 13, binary);
|
||
break;
|
||
case GM_UPPER: bin_append(8163, 13, binary);
|
||
break;
|
||
case GM_MIXED: bin_append(8164, 13, binary);
|
||
break;
|
||
case GM_BYTE: bin_append(8165, 13, binary);
|
||
break;
|
||
}
|
||
break;
|
||
case GM_NUMBER:
|
||
/* add numeric block padding value */
|
||
switch (p) {
|
||
case 1: binary[number_pad_posn] = '1';
|
||
binary[number_pad_posn + 1] = '0';
|
||
break; // 2 pad digits
|
||
case 2: binary[number_pad_posn] = '0';
|
||
binary[number_pad_posn + 1] = '1';
|
||
break; // 1 pad digits
|
||
case 3: binary[number_pad_posn] = '0';
|
||
binary[number_pad_posn + 1] = '0';
|
||
break; // 0 pad digits
|
||
}
|
||
switch (next_mode) {
|
||
case GM_CHINESE: bin_append(1019, 10, binary);
|
||
break;
|
||
case GM_LOWER: bin_append(1020, 10, binary);
|
||
break;
|
||
case GM_UPPER: bin_append(1021, 10, binary);
|
||
break;
|
||
case GM_MIXED: bin_append(1022, 10, binary);
|
||
break;
|
||
case GM_BYTE: bin_append(1023, 10, binary);
|
||
break;
|
||
}
|
||
break;
|
||
case GM_LOWER:
|
||
case GM_UPPER:
|
||
switch (next_mode) {
|
||
case GM_CHINESE: bin_append(28, 5, binary);
|
||
break;
|
||
case GM_NUMBER: bin_append(29, 5, binary);
|
||
break;
|
||
case GM_LOWER:
|
||
case GM_UPPER: bin_append(30, 5, binary);
|
||
break;
|
||
case GM_MIXED: bin_append(124, 7, binary);
|
||
break;
|
||
case GM_BYTE: bin_append(126, 7, binary);
|
||
break;
|
||
}
|
||
break;
|
||
case GM_MIXED:
|
||
switch (next_mode) {
|
||
case GM_CHINESE: bin_append(1009, 10, binary);
|
||
break;
|
||
case GM_NUMBER: bin_append(1010, 10, binary);
|
||
break;
|
||
case GM_LOWER: bin_append(1011, 10, binary);
|
||
break;
|
||
case GM_UPPER: bin_append(1012, 10, binary);
|
||
break;
|
||
case GM_BYTE: bin_append(1015, 10, binary);
|
||
break;
|
||
}
|
||
break;
|
||
case GM_BYTE:
|
||
/* add byte block length indicator */
|
||
add_byte_count(binary, byte_count_posn, byte_count);
|
||
byte_count = 0;
|
||
switch (next_mode) {
|
||
case GM_CHINESE: bin_append(1, 4, binary);
|
||
break;
|
||
case GM_NUMBER: bin_append(2, 4, binary);
|
||
break;
|
||
case GM_LOWER: bin_append(3, 4, binary);
|
||
break;
|
||
case GM_UPPER: bin_append(4, 4, binary);
|
||
break;
|
||
case GM_MIXED: bin_append(5, 4, binary);
|
||
break;
|
||
}
|
||
break;
|
||
}
|
||
if (debug & ZINT_DEBUG_PRINT) {
|
||
switch (next_mode) {
|
||
case GM_CHINESE: printf("CHIN ");
|
||
break;
|
||
case GM_NUMBER: printf("NUMB ");
|
||
break;
|
||
case GM_LOWER: printf("LOWR ");
|
||
break;
|
||
case GM_UPPER: printf("UPPR ");
|
||
break;
|
||
case GM_MIXED: printf("MIXD ");
|
||
break;
|
||
case GM_BYTE: printf("BYTE ");
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
last_mode = current_mode;
|
||
current_mode = next_mode;
|
||
|
||
switch (current_mode) {
|
||
case GM_CHINESE:
|
||
done = 0;
|
||
if (gbdata[sp] > 0xff) {
|
||
/* GB2312 character */
|
||
c1 = (gbdata[sp] & 0xff00) >> 8;
|
||
c2 = gbdata[sp] & 0xff;
|
||
|
||
if ((c1 >= 0xa1) && (c1 <= 0xa9)) {
|
||
glyph = (0x60 * (c1 - 0xa1)) + (c2 - 0xa0);
|
||
} else if ((c1 >= 0xb0) && (c1 <= 0xf7)) {
|
||
glyph = (0x60 * (c1 - 0xb0 + 9)) + (c2 - 0xa0);
|
||
}
|
||
done = 1; /* GB 2312 always within above ranges */
|
||
}
|
||
if (!(done)) {
|
||
if (sp != (length - 1)) {
|
||
if ((gbdata[sp] == 13) && (gbdata[sp + 1] == 10)) {
|
||
/* End of Line */
|
||
glyph = 7776;
|
||
sp++;
|
||
done = 1;
|
||
}
|
||
}
|
||
}
|
||
if (!(done)) {
|
||
if (sp != (length - 1)) {
|
||
if (((gbdata[sp] >= '0') && (gbdata[sp] <= '9')) &&
|
||
((gbdata[sp + 1] >= '0') && (gbdata[sp + 1] <= '9'))) {
|
||
/* Two digits */
|
||
glyph = 8033 + (10 * (gbdata[sp] - '0')) + (gbdata[sp + 1] - '0');
|
||
sp++;
|
||
done = 1;
|
||
}
|
||
}
|
||
}
|
||
if (!(done)) {
|
||
/* Byte value */
|
||
glyph = 7777 + gbdata[sp];
|
||
}
|
||
|
||
if (debug & ZINT_DEBUG_PRINT) {
|
||
printf("[%d] ", glyph);
|
||
}
|
||
|
||
bin_append(glyph, 13, binary);
|
||
sp++;
|
||
break;
|
||
|
||
case GM_NUMBER:
|
||
if (last_mode != current_mode) {
|
||
/* Reserve a space for numeric digit padding value (2 bits) */
|
||
number_pad_posn = strlen(binary);
|
||
strcat(binary, "XX");
|
||
}
|
||
p = 0;
|
||
ppos = -1;
|
||
|
||
/* Numeric compression can also include certain combinations of
|
||
non-numeric character */
|
||
|
||
numbuf[0] = '0';
|
||
numbuf[1] = '0';
|
||
numbuf[2] = '0';
|
||
do {
|
||
if ((gbdata[sp] >= '0') && (gbdata[sp] <= '9')) {
|
||
numbuf[p] = gbdata[sp];
|
||
p++;
|
||
} else if (strchr(numeral_nondigits, gbdata[sp])) {
|
||
if (ppos != -1) {
|
||
break;
|
||
}
|
||
punt = gbdata[sp];
|
||
ppos = p;
|
||
} else if (sp < (length - 1) && (gbdata[sp] == 13) && (gbdata[sp + 1] == 10)) {
|
||
/* <end of line> */
|
||
if (ppos != -1) {
|
||
break;
|
||
}
|
||
punt = gbdata[sp];
|
||
sp++;
|
||
ppos = p;
|
||
} else {
|
||
break;
|
||
}
|
||
sp++;
|
||
} while ((p < 3) && (sp < length) && mode[sp] == GM_NUMBER);
|
||
|
||
if (ppos != -1) {
|
||
switch (punt) {
|
||
case ' ': glyph = 0;
|
||
break;
|
||
case '+': glyph = 3;
|
||
break;
|
||
case '-': glyph = 6;
|
||
break;
|
||
case '.': glyph = 9;
|
||
break;
|
||
case ',': glyph = 12;
|
||
break;
|
||
case 13: glyph = 15;
|
||
break;
|
||
}
|
||
glyph += ppos;
|
||
glyph += 1000;
|
||
|
||
if (debug & ZINT_DEBUG_PRINT) {
|
||
printf("[%d] ", glyph);
|
||
}
|
||
|
||
bin_append(glyph, 10, binary);
|
||
}
|
||
|
||
glyph = (100 * (numbuf[0] - '0')) + (10 * (numbuf[1] - '0')) + (numbuf[2] - '0');
|
||
if (debug & ZINT_DEBUG_PRINT) {
|
||
printf("[%d] ", glyph);
|
||
}
|
||
|
||
bin_append(glyph, 10, binary);
|
||
break;
|
||
|
||
case GM_BYTE:
|
||
if (last_mode != current_mode) {
|
||
/* Reserve space for byte block length indicator (9 bits) */
|
||
byte_count_posn = strlen(binary);
|
||
strcat(binary, "LLLLLLLLL");
|
||
}
|
||
glyph = gbdata[sp];
|
||
if (byte_count == 512 || (glyph > 0xFF && byte_count == 511)) {
|
||
/* Maximum byte block size is 512 bytes. If longer is needed then start a new block */
|
||
if (glyph > 0xFF && byte_count == 511) { /* Split double-byte */
|
||
bin_append(glyph >> 8, 8, binary);
|
||
glyph &= 0xFF;
|
||
byte_count++;
|
||
}
|
||
add_byte_count(binary, byte_count_posn, byte_count);
|
||
bin_append(7, 4, binary);
|
||
byte_count_posn = strlen(binary);
|
||
strcat(binary, "LLLLLLLLL");
|
||
byte_count = 0;
|
||
}
|
||
|
||
if (debug & ZINT_DEBUG_PRINT) {
|
||
printf("[%d] ", glyph);
|
||
}
|
||
bin_append(glyph, glyph > 0xFF ? 16 : 8, binary);
|
||
sp++;
|
||
byte_count++;
|
||
if (glyph > 0xFF) {
|
||
byte_count++;
|
||
}
|
||
break;
|
||
|
||
case GM_MIXED:
|
||
shift = 1;
|
||
if ((gbdata[sp] >= '0') && (gbdata[sp] <= '9')) {
|
||
shift = 0;
|
||
}
|
||
if ((gbdata[sp] >= 'A') && (gbdata[sp] <= 'Z')) {
|
||
shift = 0;
|
||
}
|
||
if ((gbdata[sp] >= 'a') && (gbdata[sp] <= 'z')) {
|
||
shift = 0;
|
||
}
|
||
if (gbdata[sp] == ' ') {
|
||
shift = 0;
|
||
}
|
||
|
||
if (shift == 0) {
|
||
/* Mixed Mode character */
|
||
glyph = posn(EUROPIUM, gbdata[sp]);
|
||
if (debug & ZINT_DEBUG_PRINT) {
|
||
printf("[%d] ", glyph);
|
||
}
|
||
|
||
bin_append(glyph, 6, binary);
|
||
} else {
|
||
/* Shift Mode character */
|
||
bin_append(1014, 10, binary); /* shift indicator */
|
||
add_shift_char(binary, gbdata[sp], debug);
|
||
}
|
||
|
||
sp++;
|
||
break;
|
||
|
||
case GM_UPPER:
|
||
shift = 1;
|
||
if ((gbdata[sp] >= 'A') && (gbdata[sp] <= 'Z')) {
|
||
shift = 0;
|
||
}
|
||
if (gbdata[sp] == ' ') {
|
||
shift = 0;
|
||
}
|
||
|
||
if (shift == 0) {
|
||
/* Upper Case character */
|
||
glyph = posn("ABCDEFGHIJKLMNOPQRSTUVWXYZ ", gbdata[sp]);
|
||
if (debug & ZINT_DEBUG_PRINT) {
|
||
printf("[%d] ", glyph);
|
||
}
|
||
|
||
bin_append(glyph, 5, binary);
|
||
} else {
|
||
/* Shift Mode character */
|
||
bin_append(125, 7, binary); /* shift indicator */
|
||
add_shift_char(binary, gbdata[sp], debug);
|
||
}
|
||
|
||
sp++;
|
||
break;
|
||
|
||
case GM_LOWER:
|
||
shift = 1;
|
||
if ((gbdata[sp] >= 'a') && (gbdata[sp] <= 'z')) {
|
||
shift = 0;
|
||
}
|
||
if (gbdata[sp] == ' ') {
|
||
shift = 0;
|
||
}
|
||
|
||
if (shift == 0) {
|
||
/* Lower Case character */
|
||
glyph = posn("abcdefghijklmnopqrstuvwxyz ", gbdata[sp]);
|
||
if (debug & ZINT_DEBUG_PRINT) {
|
||
printf("[%d] ", glyph);
|
||
}
|
||
|
||
bin_append(glyph, 5, binary);
|
||
} else {
|
||
/* Shift Mode character */
|
||
bin_append(125, 7, binary); /* shift indicator */
|
||
add_shift_char(binary, gbdata[sp], debug);
|
||
}
|
||
|
||
sp++;
|
||
break;
|
||
}
|
||
if (strlen(binary) > 9191) {
|
||
return ZINT_ERROR_TOO_LONG;
|
||
}
|
||
|
||
} while (sp < length);
|
||
|
||
if (current_mode == GM_NUMBER) {
|
||
/* add numeric block padding value */
|
||
switch (p) {
|
||
case 1: binary[number_pad_posn] = '1';
|
||
binary[number_pad_posn + 1] = '0';
|
||
break; // 2 pad digits
|
||
case 2: binary[number_pad_posn] = '0';
|
||
binary[number_pad_posn + 1] = '1';
|
||
break; // 1 pad digit
|
||
case 3: binary[number_pad_posn] = '0';
|
||
binary[number_pad_posn + 1] = '0';
|
||
break; // 0 pad digits
|
||
}
|
||
}
|
||
|
||
if (current_mode == GM_BYTE) {
|
||
/* Add byte block length indicator */
|
||
add_byte_count(binary, byte_count_posn, byte_count);
|
||
}
|
||
|
||
/* Add "end of data" character */
|
||
switch (current_mode) {
|
||
case GM_CHINESE: bin_append(8160, 13, binary);
|
||
break;
|
||
case GM_NUMBER: bin_append(1018, 10, binary);
|
||
break;
|
||
case GM_LOWER:
|
||
case GM_UPPER: bin_append(27, 5, binary);
|
||
break;
|
||
case GM_MIXED: bin_append(1008, 10, binary);
|
||
break;
|
||
case GM_BYTE: bin_append(0, 4, binary);
|
||
break;
|
||
}
|
||
|
||
/* Add padding bits if required */
|
||
p = 7 - (strlen(binary) % 7);
|
||
if (p % 7) {
|
||
bin_append(0, p, binary);
|
||
}
|
||
|
||
if (strlen(binary) > 9191) {
|
||
return ZINT_ERROR_TOO_LONG;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
static void gm_add_ecc(const char binary[], const size_t data_posn, const int layers, const int ecc_level, unsigned char word[]) {
|
||
int data_cw, i, j, wp, p;
|
||
int n1, b1, n2, b2, e1, b3, e2;
|
||
int block_size, ecc_size;
|
||
unsigned char data[1320], block[130];
|
||
unsigned char data_block[115], ecc_block[70];
|
||
|
||
data_cw = gm_data_codewords[((layers - 1) * 5) + (ecc_level - 1)];
|
||
|
||
for (i = 0; i < 1320; i++) {
|
||
data[i] = 0;
|
||
}
|
||
|
||
/* Convert from binary stream to 7-bit codewords */
|
||
for (i = 0; i < (int) data_posn; i++) {
|
||
for (p = 0; p < 7; p++) {
|
||
if (binary[i * 7 + p] == '1') {
|
||
data[i] += (0x40 >> p);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Add padding codewords */
|
||
data[data_posn] = 0x00;
|
||
for (i = (int) (data_posn + 1); i < data_cw; i++) {
|
||
if (i & 1) {
|
||
data[i] = 0x7e;
|
||
} else {
|
||
data[i] = 0x00;
|
||
}
|
||
}
|
||
|
||
/* Get block sizes */
|
||
n1 = gm_n1[(layers - 1)];
|
||
b1 = gm_b1[(layers - 1)];
|
||
n2 = n1 - 1;
|
||
b2 = gm_b2[(layers - 1)];
|
||
e1 = gm_ebeb[((layers - 1) * 20) + ((ecc_level - 1) * 4)];
|
||
b3 = gm_ebeb[((layers - 1) * 20) + ((ecc_level - 1) * 4) + 1];
|
||
e2 = gm_ebeb[((layers - 1) * 20) + ((ecc_level - 1) * 4) + 2];
|
||
|
||
/* Split the data into blocks */
|
||
wp = 0;
|
||
for (i = 0; i < (b1 + b2); i++) {
|
||
int data_size;
|
||
if (i < b1) {
|
||
block_size = n1;
|
||
} else {
|
||
block_size = n2;
|
||
}
|
||
if (i < b3) {
|
||
ecc_size = e1;
|
||
} else {
|
||
ecc_size = e2;
|
||
}
|
||
data_size = block_size - ecc_size;
|
||
|
||
/* printf("block %d/%d: data %d / ecc %d\n", i + 1, (b1 + b2), data_size, ecc_size);*/
|
||
|
||
for (j = 0; j < data_size; j++) {
|
||
data_block[j] = data[wp];
|
||
wp++;
|
||
}
|
||
|
||
/* Calculate ECC data for this block */
|
||
rs_init_gf(0x89);
|
||
rs_init_code(ecc_size, 1);
|
||
rs_encode(data_size, data_block, ecc_block);
|
||
rs_free();
|
||
|
||
/* Correct error correction data but in reverse order */
|
||
for (j = 0; j < data_size; j++) {
|
||
block[j] = data_block[j];
|
||
}
|
||
for (j = 0; j < ecc_size; j++) {
|
||
block[(j + data_size)] = ecc_block[ecc_size - j - 1];
|
||
}
|
||
|
||
for (j = 0; j < n2; j++) {
|
||
word[((b1 + b2) * j) + i] = block[j];
|
||
}
|
||
if (block_size == n1) {
|
||
word[((b1 + b2) * (n1 - 1)) + i] = block[(n1 - 1)];
|
||
}
|
||
}
|
||
}
|
||
|
||
static void place_macromodule(char grid[], int x, int y, int word1, int word2, int size) {
|
||
int i, j;
|
||
|
||
i = (x * 6) + 1;
|
||
j = (y * 6) + 1;
|
||
|
||
if (word2 & 0x40) {
|
||
grid[(j * size) + i + 2] = '1';
|
||
}
|
||
if (word2 & 0x20) {
|
||
grid[(j * size) + i + 3] = '1';
|
||
}
|
||
if (word2 & 0x10) {
|
||
grid[((j + 1) * size) + i] = '1';
|
||
}
|
||
if (word2 & 0x08) {
|
||
grid[((j + 1) * size) + i + 1] = '1';
|
||
}
|
||
if (word2 & 0x04) {
|
||
grid[((j + 1) * size) + i + 2] = '1';
|
||
}
|
||
if (word2 & 0x02) {
|
||
grid[((j + 1) * size) + i + 3] = '1';
|
||
}
|
||
if (word2 & 0x01) {
|
||
grid[((j + 2) * size) + i] = '1';
|
||
}
|
||
if (word1 & 0x40) {
|
||
grid[((j + 2) * size) + i + 1] = '1';
|
||
}
|
||
if (word1 & 0x20) {
|
||
grid[((j + 2) * size) + i + 2] = '1';
|
||
}
|
||
if (word1 & 0x10) {
|
||
grid[((j + 2) * size) + i + 3] = '1';
|
||
}
|
||
if (word1 & 0x08) {
|
||
grid[((j + 3) * size) + i] = '1';
|
||
}
|
||
if (word1 & 0x04) {
|
||
grid[((j + 3) * size) + i + 1] = '1';
|
||
}
|
||
if (word1 & 0x02) {
|
||
grid[((j + 3) * size) + i + 2] = '1';
|
||
}
|
||
if (word1 & 0x01) {
|
||
grid[((j + 3) * size) + i + 3] = '1';
|
||
}
|
||
}
|
||
|
||
static void place_data_in_grid(unsigned char word[], char grid[], int modules, int size) {
|
||
int x, y, macromodule, offset;
|
||
|
||
offset = 13 - ((modules - 1) / 2);
|
||
for (y = 0; y < modules; y++) {
|
||
for (x = 0; x < modules; x++) {
|
||
macromodule = gm_macro_matrix[((y + offset) * 27) + (x + offset)];
|
||
place_macromodule(grid, x, y, word[macromodule * 2], word[(macromodule * 2) + 1], size);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Place the layer ID into each macromodule */
|
||
static void place_layer_id(char* grid, int size, int layers, int modules, int ecc_level) {
|
||
int i, j, layer, start, stop;
|
||
|
||
#ifndef _MSC_VER
|
||
int layerid[layers + 1];
|
||
int id[modules * modules];
|
||
#else
|
||
int* layerid = (int *) _alloca((layers + 1) * sizeof (int));
|
||
int* id = (int *) _alloca((modules * modules) * sizeof (int));
|
||
#endif
|
||
|
||
/* Calculate Layer IDs */
|
||
for (i = 0; i <= layers; i++) {
|
||
if (ecc_level == 1) {
|
||
layerid[i] = 3 - (i % 4);
|
||
} else {
|
||
layerid[i] = (i + 5 - ecc_level) % 4;
|
||
}
|
||
}
|
||
|
||
for (i = 0; i < modules; i++) {
|
||
for (j = 0; j < modules; j++) {
|
||
id[(i * modules) + j] = 0;
|
||
}
|
||
}
|
||
|
||
/* Calculate which value goes in each macromodule */
|
||
start = modules / 2;
|
||
stop = modules / 2;
|
||
for (layer = 0; layer <= layers; layer++) {
|
||
for (i = start; i <= stop; i++) {
|
||
id[(start * modules) + i] = layerid[layer];
|
||
id[(i * modules) + start] = layerid[layer];
|
||
id[((modules - start - 1) * modules) + i] = layerid[layer];
|
||
id[(i * modules) + (modules - start - 1)] = layerid[layer];
|
||
}
|
||
start--;
|
||
stop++;
|
||
}
|
||
|
||
/* Place the data in the grid */
|
||
for (i = 0; i < modules; i++) {
|
||
for (j = 0; j < modules; j++) {
|
||
if (id[(i * modules) + j] & 0x02) {
|
||
grid[(((i * 6) + 1) * size) + (j * 6) + 1] = '1';
|
||
}
|
||
if (id[(i * modules) + j] & 0x01) {
|
||
grid[(((i * 6) + 1) * size) + (j * 6) + 2] = '1';
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
INTERNAL int grid_matrix(struct zint_symbol *symbol, const unsigned char source[], size_t length) {
|
||
int size, modules, error_number;
|
||
int auto_layers, min_layers, layers, auto_ecc_level, min_ecc_level, ecc_level;
|
||
int x, y, i;
|
||
char binary[9300];
|
||
int data_cw, input_latch = 0;
|
||
unsigned char word[1460];
|
||
int data_max, reader = 0;
|
||
|
||
#ifndef _MSC_VER
|
||
unsigned int gbdata[length + 1];
|
||
#else
|
||
char* grid;
|
||
unsigned int* gbdata = (unsigned int *) _alloca((length + 1) * sizeof (unsigned int));
|
||
#endif
|
||
|
||
for (i = 0; i < 1460; i++) {
|
||
word[i] = 0;
|
||
}
|
||
|
||
if ((symbol->input_mode & 0x07) == DATA_MODE) {
|
||
gb2312_cpy(source, &length, gbdata);
|
||
} else {
|
||
int done = 0;
|
||
if (symbol->eci != 29) { /* Unless ECI 29 (GB) */
|
||
/* Try single byte (Latin) conversion first */
|
||
int error_number = gb2312_utf8tosb(symbol->eci && symbol->eci <= 899 ? symbol->eci : 3, source, &length, gbdata);
|
||
if (error_number == 0) {
|
||
done = 1;
|
||
} else if (symbol->eci && symbol->eci <= 899) {
|
||
strcpy(symbol->errtxt, "575: Invalid characters in input data");
|
||
return error_number;
|
||
}
|
||
}
|
||
if (!done) {
|
||
/* Try GB 2312 (EUC-CN) */
|
||
int error_number = gb2312_utf8tomb(symbol, source, &length, gbdata);
|
||
if (error_number != 0) {
|
||
return error_number;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (symbol->output_options & READER_INIT) reader = 1;
|
||
|
||
if (symbol->eci > 811799) {
|
||
strcpy(symbol->errtxt, "533: Invalid ECI");
|
||
return ZINT_ERROR_INVALID_OPTION;
|
||
}
|
||
|
||
error_number = gm_encode(gbdata, length, binary, reader, symbol->eci, symbol->debug);
|
||
if (error_number != 0) {
|
||
strcpy(symbol->errtxt, "531: Input data too long");
|
||
return error_number;
|
||
}
|
||
|
||
/* Determine the size of the symbol */
|
||
data_cw = (int)strlen(binary) / 7;
|
||
|
||
auto_layers = 13;
|
||
for (i = 12; i > 0; i--) {
|
||
if (gm_recommend_cw[(i - 1)] >= data_cw) {
|
||
auto_layers = i;
|
||
}
|
||
}
|
||
min_layers = 13;
|
||
for (i = 12; i > 0; i--) {
|
||
if (gm_max_cw[(i - 1)] >= data_cw) {
|
||
min_layers = i;
|
||
}
|
||
}
|
||
layers = auto_layers;
|
||
|
||
if ((symbol->option_2 >= 1) && (symbol->option_2 <= 13)) {
|
||
input_latch = 1;
|
||
if (symbol->option_2 >= min_layers) {
|
||
layers = symbol->option_2;
|
||
} else {
|
||
strcpy(symbol->errtxt, "534: Input data too long for selected symbol size");
|
||
return ZINT_ERROR_TOO_LONG;
|
||
}
|
||
}
|
||
|
||
auto_ecc_level = 3;
|
||
if (layers == 1) {
|
||
auto_ecc_level = 5;
|
||
}
|
||
if ((layers == 2) || (layers == 3)) {
|
||
auto_ecc_level = 4;
|
||
}
|
||
ecc_level = auto_ecc_level;
|
||
|
||
min_ecc_level = 1;
|
||
if (layers == 1) {
|
||
min_ecc_level = 4;
|
||
}
|
||
if (layers == 2) {
|
||
min_ecc_level = 2;
|
||
}
|
||
|
||
if ((symbol->option_1 >= 1) && (symbol->option_1 <= 5)) {
|
||
if (symbol->option_1 >= min_ecc_level) {
|
||
ecc_level = symbol->option_1;
|
||
} else {
|
||
ecc_level = min_ecc_level;
|
||
}
|
||
}
|
||
if (data_cw > gm_data_codewords[(5 * (layers - 1)) + (ecc_level - 1)]) {
|
||
if (input_latch && ecc_level > min_ecc_level) { /* If layers user-specified (option_2), try reducing ECC level first */
|
||
do {
|
||
ecc_level--;
|
||
} while ((data_cw > gm_data_codewords[(5 * (layers - 1)) + (ecc_level - 1)]) && (ecc_level > min_ecc_level));
|
||
}
|
||
while (data_cw > gm_data_codewords[(5 * (layers - 1)) + (ecc_level - 1)] && (layers < 13)) {
|
||
layers++;
|
||
}
|
||
while (data_cw > gm_data_codewords[(5 * (layers - 1)) + (ecc_level - 1)] && ecc_level > 1) { /* ECC min level 1 for layers > 2 */
|
||
ecc_level--;
|
||
}
|
||
}
|
||
|
||
data_max = 1313;
|
||
switch (ecc_level) {
|
||
case 2: data_max = 1167;
|
||
break;
|
||
case 3: data_max = 1021;
|
||
break;
|
||
case 4: data_max = 875;
|
||
break;
|
||
case 5: data_max = 729;
|
||
break;
|
||
}
|
||
|
||
if (data_cw > data_max) {
|
||
strcpy(symbol->errtxt, "532: Input data too long");
|
||
return ZINT_ERROR_TOO_LONG;
|
||
}
|
||
|
||
gm_add_ecc(binary, data_cw, layers, ecc_level, word);
|
||
#ifdef ZINT_TEST
|
||
if (symbol->debug & ZINT_DEBUG_TEST) debug_test_codeword_dump(symbol, word, data_cw);
|
||
#endif
|
||
size = 6 + (layers * 12);
|
||
modules = 1 + (layers * 2);
|
||
|
||
#ifndef _MSC_VER
|
||
char grid[size * size];
|
||
#else
|
||
grid = (char *) _alloca((size * size) * sizeof (char));
|
||
#endif
|
||
|
||
for (x = 0; x < size; x++) {
|
||
for (y = 0; y < size; y++) {
|
||
grid[(y * size) + x] = '0';
|
||
}
|
||
}
|
||
|
||
place_data_in_grid(word, grid, modules, size);
|
||
place_layer_id(grid, size, layers, modules, ecc_level);
|
||
|
||
/* Add macromodule frames */
|
||
for (x = 0; x < modules; x++) {
|
||
int dark = 1 - (x & 1);
|
||
for (y = 0; y < modules; y++) {
|
||
if (dark == 1) {
|
||
for (i = 0; i < 5; i++) {
|
||
grid[((y * 6) * size) + (x * 6) + i] = '1';
|
||
grid[(((y * 6) + 5) * size) + (x * 6) + i] = '1';
|
||
grid[(((y * 6) + i) * size) + (x * 6)] = '1';
|
||
grid[(((y * 6) + i) * size) + (x * 6) + 5] = '1';
|
||
}
|
||
grid[(((y * 6) + 5) * size) + (x * 6) + 5] = '1';
|
||
dark = 0;
|
||
} else {
|
||
dark = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Copy values to symbol */
|
||
symbol->width = size;
|
||
symbol->rows = size;
|
||
|
||
for (x = 0; x < size; x++) {
|
||
for (y = 0; y < size; y++) {
|
||
if (grid[(y * size) + x] == '1') {
|
||
set_module(symbol, y, x);
|
||
}
|
||
}
|
||
symbol->row_height[x] = 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|