mirror of
https://github.com/woo-j/zint.git
synced 2024-12-23 13:33:55 +03:00
5ee3895bca
docs: RM4SCC 4-State -> 4-State Customer code; man page, ChangeLog
4642 lines
184 KiB
Plaintext
4642 lines
184 KiB
Plaintext
Zint Barcode Generator and Zint Barcode Studio User Manual
|
||
Version 2.11.0.9
|
||
July 2022
|
||
|
||
*******************************************************************************
|
||
* For reference the following is a text-only version of the Zint manual, *
|
||
* generated from "docs/manual.pmd" by pandoc. *
|
||
* A HTML version can be accessed at http://zint.org.uk/Manual.aspx *
|
||
* however this text file is more likely to be up-to-date. *
|
||
*******************************************************************************
|
||
|
||
- 1. Introduction
|
||
- 1.1 Glossary
|
||
- 2. Installing Zint
|
||
- 2.1 Linux
|
||
- 2.2 Microsoft Windows
|
||
- 2.3 Apple macOS
|
||
- 2.4 Zint Tcl Backend
|
||
- 3. Using Zint Barcode Studio
|
||
- 3.1 Main Window and Data Tab
|
||
- 3.2 GS1 Composite Groupbox
|
||
- 3.3 Additional ECI/Data Segments Groupbox
|
||
- 3.4 Symbology-specific Tab
|
||
- 3.5 Appearance Tab
|
||
- 3.6 Colour Dialog
|
||
- 3.7 Data Dialog
|
||
- 3.8 Sequence Dialog
|
||
- 3.9 Export Dialog
|
||
- 3.10 CLI Equivalent Dialog
|
||
- 4. Using the Command Line
|
||
- 4.1 Inputting Data
|
||
- 4.2 Directing Output
|
||
- 4.3 Selecting Barcode Type
|
||
- 4.4 Adjusting Height
|
||
- 4.5 Adjusting Whitespace
|
||
- 4.6 Adding Boundary Bars and Boxes
|
||
- 4.7 Using Colour
|
||
- 4.8 Rotating the Symbol
|
||
- 4.9 Adjusting Image Size
|
||
- 4.9.1 Scaling Example
|
||
- 4.9.2 MaxiCode Raster Scaling
|
||
- 4.10 Input Modes
|
||
- 4.10.1 Unicode, Data, and GS1 Modes
|
||
- 4.10.2 Input Modes and ECI
|
||
- 4.10.2.1 Input Modes and ECI Example 1
|
||
- 4.10.2.2 Input Modes and ECI Example 2
|
||
- 4.10.2.3 Input Modes and ECI Example 3
|
||
- 4.11 Batch Processing
|
||
- 4.12 Direct Output
|
||
- 4.13 Automatic Filenames
|
||
- 4.14 Working with Dots
|
||
- 4.15 Multiple Segments
|
||
- 4.16 Structured Append
|
||
- 4.17 Help Options
|
||
- 4.18 Other Output Options
|
||
- 5. Using the API
|
||
- 5.1 Creating and Deleting Symbols
|
||
- 5.2 Encoding and Saving to File
|
||
- 5.3 Encoding and Printing Functions in Depth
|
||
- 5.4 Buffering Symbols in Memory (raster)
|
||
- 5.5 Buffering Symbols in Memory (vector)
|
||
- 5.6 Setting Options
|
||
- 5.7 Handling Errors
|
||
- 5.8 Specifying a Symbology
|
||
- 5.9 Adjusting Other Output Options
|
||
- 5.10 Setting the Input Mode
|
||
- 5.11 Multiple Segments
|
||
- 5.12 Verifying Symbology Availability
|
||
- 5.13 Checking Symbology Capabilities
|
||
- 5.14 Zint Version
|
||
- 6. Types of Symbology
|
||
- 6.1 One-Dimensional Symbols
|
||
- 6.1.1 Code 11
|
||
- 6.1.2 Code 2 of 5
|
||
- 6.1.2.1 Standard Code 2 of 5
|
||
- 6.1.2.2 IATA Code 2 of 5
|
||
- 6.1.2.3 Industrial Code 2 of 5
|
||
- 6.1.2.4 Interleaved Code 2 of 5 (ISO 16390)
|
||
- 6.1.2.5 Code 2 of 5 Data Logic
|
||
- 6.1.2.6 ITF-14
|
||
- 6.1.2.7 Deutsche Post Leitcode
|
||
- 6.1.2.8 Deutsche Post Identcode
|
||
- 6.1.3 UPC (Universal Product Code) (ISO 15420)
|
||
- 6.1.3.1 UPC Version A
|
||
- 6.1.3.2 UPC Version E
|
||
- 6.1.4 EAN (European Article Number) (ISO 15420)
|
||
- 6.1.4.1 EAN-2, EAN-5, EAN-8 and EAN-13
|
||
- 6.1.4.2 SBN, ISBN and ISBN-13
|
||
- 6.1.5 Plessey
|
||
- 6.1.5.1 UK Plessey
|
||
- 6.1.5.2 MSI Plessey
|
||
- 6.1.6 Telepen
|
||
- 6.1.6.1 Telepen Alpha
|
||
- 6.1.6.2 Telepen Numeric
|
||
- 6.1.7 Code 39
|
||
- 6.1.7.1 Standard Code 39 (ISO 16388)
|
||
- 6.1.7.2 Extended Code 39
|
||
- 6.1.7.3 Code 93
|
||
- 6.1.7.4 PZN (Pharmazentralnummer)
|
||
- 6.1.7.5 LOGMARS
|
||
- 6.1.7.6 Code 32
|
||
- 6.1.7.7 HIBC Code 39
|
||
- 6.1.7.8 Vehicle Identification Number (VIN)
|
||
- 6.1.8 Codabar (EN 798)
|
||
- 6.1.9 Pharmacode
|
||
- 6.1.10 Code 128
|
||
- 6.1.10.1 Standard Code 128 (ISO 15417)
|
||
- 6.1.10.2 Code 128 Subset B
|
||
- 6.1.10.3 GS1-128
|
||
- 6.1.10.4 EAN-14
|
||
- 6.1.10.5 NVE-18 (SSCC-18)
|
||
- 6.1.10.6 HIBC Code 128
|
||
- 6.1.10.7 DPD Code
|
||
- 6.1.11 GS1 DataBar (ISO 24724)
|
||
- 6.1.11.1 GS1 DataBar Omnidirectional and GS1 DataBar Truncated
|
||
- 6.1.11.2 GS1 DataBar Limited
|
||
- 6.1.11.3 GS1 DataBar Expanded
|
||
- 6.1.12 Korea Post Barcode
|
||
- 6.1.13 Channel Code
|
||
- 6.2 Stacked Symbologies
|
||
- 6.2.1 Basic Symbol Stacking
|
||
- 6.2.2 Codablock-F
|
||
- 6.2.3 Code 16K (EN 12323)
|
||
- 6.2.4 PDF417 (ISO 15438)
|
||
- 6.2.5 Compact PDF417 (ISO 15438)
|
||
- 6.2.6 MicroPDF417 (ISO 24728)
|
||
- 6.2.7 GS1 DataBar Stacked (ISO 24724)
|
||
- 6.2.7.1 GS1 DataBar Stacked
|
||
- 6.2.7.2 GS1 DataBar Stacked Omnidirectional
|
||
- 6.2.7.3 GS1 DataBar Expanded Stacked
|
||
- 6.2.8 Code 49
|
||
- 6.3 GS1 Composite Symbols (ISO 24723)
|
||
- 6.3.1 CC-A
|
||
- 6.3.2 CC-B
|
||
- 6.3.3 CC-C
|
||
- 6.4 Two-Track Symbols
|
||
- 6.4.1 Two-Track Pharmacode
|
||
- 6.4.2 POSTNET
|
||
- 6.4.3 PLANET
|
||
- 6.5 4-State Postal Codes
|
||
- 6.5.1 Australia Post 4-State Symbols
|
||
- 6.5.1.1 Customer Barcodes
|
||
- 6.5.1.2 Reply Paid Barcode
|
||
- 6.5.1.3 Routing Barcode
|
||
- 6.5.1.4 Redirect Barcode
|
||
- 6.5.2 Dutch Post KIX Code
|
||
- 6.5.3 Royal Mail 4-State Customer Code (RM4SCC)
|
||
- 6.5.4 Royal Mail 4-State Mailmark
|
||
- 6.5.5 USPS Intelligent Mail
|
||
- 6.5.6 Japanese Postal Code
|
||
- 6.5.7 DAFT Code
|
||
- 6.6 Matrix Symbols
|
||
- 6.6.1 Data Matrix (ISO 16022)
|
||
- 6.6.2 QR Code (ISO 18004)
|
||
- 6.6.3 Micro QR Code (ISO 18004)
|
||
- 6.6.4 Rectangular Micro QR Code (rMQR) (ISO 23941)
|
||
- 6.6.5 UPNQR (Univerzalnega Plačilnega Naloga QR)
|
||
- 6.6.6 MaxiCode (ISO 16023)
|
||
- 6.6.7 Aztec Code (ISO 24778)
|
||
- 6.6.8 Aztec Runes (ISO 24778)
|
||
- 6.6.9 Code One
|
||
- 6.6.10 Grid Matrix
|
||
- 6.6.11 DotCode
|
||
- 6.6.12 Han Xin Code (ISO 20830)
|
||
- 6.6.13 Ultracode
|
||
- 6.7 Other Barcode-Like Markings
|
||
- 6.7.1 Facing Identification Mark (FIM)
|
||
- 6.7.2 Flattermarken
|
||
- 7. Legal and Version Information
|
||
- 7.1 License
|
||
- 7.2 Patent Issues
|
||
- 7.3 Version Information
|
||
- 7.4 Sources of Information
|
||
- 7.5 Standards Compliance
|
||
- 7.5.1 Symbology Standards
|
||
- 7.5.2 General Standards
|
||
- Annex A. Character Encoding
|
||
- A.1 ASCII Standard
|
||
- A.2 Latin Alphabet No. 1 (ISO/IEC 8859-1)
|
||
- Annex B. Man Page ZINT(1)
|
||
- NAME
|
||
- SYNOPSIS
|
||
- DESCRIPTION
|
||
- OPTIONS
|
||
- EXIT STATUS
|
||
- EXAMPLES
|
||
- BUGS
|
||
- SEE ALSO
|
||
- CONFORMING TO
|
||
- COPYRIGHT
|
||
- AUTHOR
|
||
|
||
1. Introduction
|
||
|
||
The Zint project aims to provide a complete cross-platform open source barcode
|
||
generating solution. The package currently consists of a Qt based GUI, a CLI
|
||
command line executable and a library with an API to allow developers access to
|
||
the capabilities of Zint. It is hoped that Zint provides a solution which is
|
||
flexible enough for professional users while at the same time takes care of as
|
||
much of the processing as possible to allow easy translation from input data to
|
||
barcode image.
|
||
|
||
The library which forms the main component of the Zint project is currently able
|
||
to encode data in over 50 barcode symbologies (types of barcode), for each of
|
||
which it is possible to translate that data from either UTF-8 (Unicode) or a raw
|
||
8-bit data stream. The image can be rendered as either a Portable Network
|
||
Graphic (PNG) image, Windows Bitmap (BMP), Graphics Interchange Format (GIF),
|
||
ZSoft Paintbrush image (PCX), Tagged Image File Format (TIF), Enhanced Metafile
|
||
Format (EMF), as Encapsulated PostScript (EPS), or as a Scalable Vector Graphic
|
||
(SVG). Many options are available for setting the characteristics of the output
|
||
image including the size and colour of the image, the amount of error correction
|
||
used in the symbol and the orientation of the image.
|
||
|
||
1.1 Glossary
|
||
|
||
Some of the words and phrases used in this document are specific to barcoding,
|
||
and so a brief explanation is given to help understanding:
|
||
|
||
symbol
|
||
|
||
A symbol is an image which encodes data according to one of the standards.
|
||
This encompasses barcodes (linear symbols) as well as any of the other
|
||
methods of representing data used in this program.
|
||
|
||
symbology
|
||
|
||
A method of encoding data to create a certain type of symbol.
|
||
|
||
linear
|
||
|
||
A linear or one-dimensional symbol is one which consists of bars and spaces,
|
||
and is what most people associate with the term ‘barcode’. Examples include
|
||
Code 128.
|
||
|
||
stacked
|
||
|
||
A stacked symbol consists of multiple linear symbols placed one above
|
||
another and which together hold the message, usually alongside some error
|
||
correction data. Examples include PDF417.
|
||
|
||
matrix
|
||
|
||
A matrix symbol is one based on a (usually square) grid of elements called
|
||
modules. Examples include Data Matrix, but MaxiCode and DotCode are also
|
||
considered matrix symbologies.
|
||
|
||
composite
|
||
|
||
A composite symbology is one which is made up of elements which are both
|
||
linear and stacked. Those currently supported are made up of a linear
|
||
‘primary’ message above which is printed a stacked component based on the
|
||
PDF417 symbology. These symbols also have a separator which separates the
|
||
linear and the stacked components.
|
||
|
||
X-dimension
|
||
|
||
The X-dimension of a symbol is the size (usually the width) of the smallest
|
||
element. For a linear symbology this is the width of the smallest bar. For
|
||
matrix symbologies it is the width of the smallest module (usually a
|
||
square). Barcode widths and heights are expressed in multiples of the
|
||
X-dimension. Most linear symbologies can have their height varied whereas
|
||
most matrix symbologies have a fixed width-to-height ratio where the height
|
||
is determined by the width.
|
||
|
||
GS1 data
|
||
|
||
This is a structured way of representing information which consists of
|
||
‘chunks’ of data, each of which starts with an Application Identifier (AI).
|
||
The AI identifies what type of information is being encoded.
|
||
|
||
Reader Initialisation (Programming)
|
||
|
||
Some symbologies allow a special character to be included which can be
|
||
detected by the scanning equipment as signifying that the data is used to
|
||
program or change settings in that equipment. This data is usually not
|
||
passed on to the software which handles normal input data. This feature
|
||
should only be used if you are familiar with the programming codes relevant
|
||
to your scanner.
|
||
|
||
ECI
|
||
|
||
The Extended Channel Interpretations (ECI) mechanism allows for
|
||
multi-language data to be encoded in symbols which would usually support
|
||
only Latin-1 (ISO/IEC 8859-1 plus ASCII) characters. This can be useful, for
|
||
example, if you need to encode Cyrillic characters, but should be used with
|
||
caution as not all scanners support this method.
|
||
|
||
Two other concepts that are important are raster and vector.
|
||
|
||
raster
|
||
|
||
A low level bitmap representation of an image. BMP, GIF, PCX, PNG and TIF
|
||
are raster file formats.
|
||
|
||
vector
|
||
|
||
A high level command- or data-based representation of an image. EMF, EPS and
|
||
SVG are vector file formats. They require renderers to turn them into
|
||
bitmaps.
|
||
|
||
2. Installing Zint
|
||
|
||
2.1 Linux
|
||
|
||
The easiest way to configure compilation is to take advantage of the CMake
|
||
utilities. You will need to install CMake and libpng-dev first. For instance on
|
||
apt systems:
|
||
|
||
sudo apt install git cmake build-essential libpng-dev
|
||
|
||
If you want to take advantage of Zint Barcode Studio you will also need to have
|
||
Qt and its component "Desktop gcc 64-bit" installed, as well as mesa. For
|
||
details see "README.linux" in the project root directory.
|
||
|
||
Once you have fulfilled these requirements unzip the source code tarball or
|
||
clone the latest source
|
||
|
||
git clone https://git.code.sf.net/p/zint/code zint
|
||
|
||
and follow these steps in the top directory:
|
||
|
||
mkdir build
|
||
cd build
|
||
cmake ..
|
||
make
|
||
sudo make install
|
||
|
||
The CLI command line program can be accessed by typing
|
||
|
||
zint [options]
|
||
|
||
The GUI can be accessed by typing
|
||
|
||
zint-qt
|
||
|
||
To test that the installation has been successful a shell script is included in
|
||
the "frontend" sub-directory. To run the test type
|
||
|
||
./test.sh
|
||
|
||
This should create numerous files in the sub-directory "frontend/test_sh_out"
|
||
showing the many modes of operation which are available from Zint.
|
||
|
||
2.2 Microsoft Windows
|
||
|
||
For Microsoft Windows, Zint is distributed as a binary executable. Simply
|
||
download the ZIP file, then right-click on the ZIP file and "Extract All". A new
|
||
folder will be created within which are two binary files:
|
||
|
||
- qtZint.exe - Zint Barcode Studio
|
||
- zint.exe - Command Line Interface
|
||
|
||
For fresh releases you will get a warning message from Microsoft Defender
|
||
SmartScreen that this is an ‘unrecognised app’. This happens because Zint is a
|
||
free and open-source software project with no advertising and hence no income,
|
||
meaning we are not able to afford the $664 per year to have the application
|
||
digitally signed by Microsoft.
|
||
|
||
To build Zint on Windows from source, see "win32/README".
|
||
|
||
2.3 Apple macOS
|
||
|
||
The latest Zint CLI and libzint can be installed using Homebrew.[1] To install
|
||
Homebrew input the following line into the macOS terminal
|
||
|
||
/bin/bash -c "$(curl -fsSL \
|
||
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
|
||
|
||
Once Homebrew is installed use the following command to install the Zint.
|
||
|
||
brew install zint
|
||
|
||
To build from source see "README.macos" in the project root directory.
|
||
|
||
2.4 Zint Tcl Backend
|
||
|
||
The Tcl backend in the "backend_tcl" sub-directory may be built using the
|
||
provided TEA (Tcl Extension Architecture) build on Linux, Windows, macOS and
|
||
Android. For Windows, an MSVC6 makefile is also available.
|
||
|
||
3. Using Zint Barcode Studio
|
||
|
||
Zint Barcode Studio is the graphical user interface for Zint. If you are
|
||
starting from a command line interface you can start the GUI by typing
|
||
|
||
zint-qt
|
||
|
||
or on Windows
|
||
|
||
qtZint.exe
|
||
|
||
See the note in section 2.2 Microsoft Windows about Microsoft Defender
|
||
SmartScreen.
|
||
|
||
Below is a brief guide to Zint Barcode Studio.
|
||
|
||
3.1 Main Window and Data Tab
|
||
|
||
[Zint Barcode Studio on startup - main window with Data tab]
|
||
|
||
This is the main window of Zint Barcode Studio. The top of the window shows a
|
||
preview of the barcode which the current settings would create. These settings
|
||
can be changed using the controls below. The text box in the "Data to Encode"
|
||
groupbox on this first Data tab allows you to enter the data to be encoded. When
|
||
you are happy with your settings you can use the "Save As" button to save the
|
||
resulting image to a file.
|
||
|
||
The "Symbology" drop-down box gives access to all of the symbologies supported
|
||
by Zint shown in alphabetical order. The text box to its right can filter the
|
||
drop-down to only show matching symbologies. For instance typing "mail" will
|
||
only show barcodes in the drop-down whose names contain the word "mail". Each
|
||
word entered will match. So typing "mail post" will show barcodes whose names
|
||
contain "mail" or "post" (or both).
|
||
|
||
The "BMP" and "SVG" buttons at the bottom will copy the image to the clipboard
|
||
in BMP format and SVG format respectively. Further copy-to-clipboard formats are
|
||
available by clicking the "Menu" button, along with "CLI Equivalent", "Save As",
|
||
"Factory Reset", "Help", "About" and "Quit" options. Most of the options are
|
||
also available in a context menu by right-clicking the preview.
|
||
|
||
[Zint Barcode Studio main menu (left) and context menu (right)]
|
||
|
||
3.2 GS1 Composite Groupbox
|
||
|
||
[Zint Barcode Studio encoding GS1 Composite data]
|
||
|
||
In the middle of the Data tab is an area for creating composite symbologies
|
||
which appears when the currently selected symbology is supported by the GS1
|
||
Composite symbology standard. GS1 data can then be entered with square brackets
|
||
used to separate Application Identifier (AI) information from data as shown
|
||
here. For details, see 6.3 GS1 Composite Symbols (ISO 24723).
|
||
|
||
3.3 Additional ECI/Data Segments Groupbox
|
||
|
||
[Zint Barcode Studio encoding multiple segments]
|
||
|
||
For symbologies that support ECIs (Extended Channel Interpretations) the middle
|
||
of the Data tab is an area for entering additional data segments with their own
|
||
ECIs. Up to 4 segments (including the main "Data to Encode" as segment 0) may be
|
||
specified. See 4.15 Multiple Segments for details.
|
||
|
||
3.4 Symbology-specific Tab
|
||
|
||
[Zint Barcode Studio showing Aztec Code options]
|
||
|
||
For a number of symbologies extra options are available to fine-tune the format,
|
||
appearance and content of the symbol generated. These are given in a second tab.
|
||
|
||
Here the method is shown for adjusting the size or error correction level of an
|
||
Aztec Code symbol, selecting how its data is to be treated, and setting it as
|
||
part of a Structured Append sequence of symbols.
|
||
|
||
3.5 Appearance Tab
|
||
|
||
[Zint Barcode Studio showing Appearance tab options]
|
||
|
||
The Appearance tab can be used to adjust the dimensions and other properties of
|
||
the symbol. The "Height" value affects the height of symbologies which do not
|
||
have a fixed width-to-height ratio, i.e. those other than matrix symbologies.
|
||
Boundary bars ("Border Type") can be added and adjusted ("Border Width") and the
|
||
size of the saved image ("Printing Scale") can be specified.
|
||
|
||
3.6 Colour Dialog
|
||
|
||
[The colour picker tool]
|
||
|
||
A colour dialog is used to adjust the colour of the foreground and background of
|
||
the generated image. In the Appearance tab click on the foreground eye [eye] or
|
||
background eye [eye] button respectively. The colours can be reset to
|
||
black-on-white using the "Reset" button, and exchanged one for the other using
|
||
the swap [swap] button next to it.
|
||
|
||
3.7 Data Dialog
|
||
|
||
[Entering longer text input]
|
||
|
||
Clicking on the ellipsis "..." button next to the "Data to Encode" text box in
|
||
the Data tab opens a larger window which can be used to enter longer strings of
|
||
text. You can also use this window to load data from a file.
|
||
|
||
The dialog is also available for additional ECI/Data segments by clicking the
|
||
ellipsis button to the right of their data text boxes.
|
||
|
||
Note that if your data contains line feeds (LF) then the data will be split into
|
||
separate lines in the dialog box. On saving the data back to the main text box
|
||
any separate lines in the data will be escaped as '\n' and the "Parse Escapes"
|
||
checkbox will be set. This only affects line feeds, not carriage returns (CR) or
|
||
CR+LF pairs, and behaves the same on both Windows and Unix. (For details on
|
||
escape sequences, see 4.1 Inputting Data.)
|
||
|
||
3.8 Sequence Dialog
|
||
|
||
[Creating a sequence of barcode symbols]
|
||
|
||
Clicking on the sequence button (labelled "1234..") in the Data tab opens the
|
||
Sequence Dialog. This allows you to create multiple barcode images by entering a
|
||
sequence of data inputs in the right hand panel. Sequences can also be
|
||
automatically generated by entering parameters on the left hand side or by
|
||
importing the data from a file. Zint will generate a separate barcode image for
|
||
each line of text in the right hand panel. The format field determines the
|
||
format of the automatically generated sequence where characters have the
|
||
meanings as given below:
|
||
|
||
Character Effect
|
||
--------------------- --------------------------
|
||
$ Insert leading zeroes
|
||
# Insert leading spaces
|
||
* Insert leading asterisks
|
||
Any other character Interpreted literally
|
||
|
||
: Table : Sequence Format Characters:
|
||
|
||
3.9 Export Dialog
|
||
|
||
[Setting filenames for an exported sequence of barcode symbols]
|
||
|
||
The Export Dialog invoked by pressing the "Export" button in the Sequence Dialog
|
||
sets the parameters for exporting a sequence of barcode images. Here you can set
|
||
the filename and the output image format. Note that the symbology, colour and
|
||
other formatting information are taken from the main window.
|
||
|
||
3.10 CLI Equivalent Dialog
|
||
|
||
[CLI Equivalent Dialog]
|
||
|
||
The "CLI Equivalent" dialog can be invoked from the main menu or the context
|
||
menu and displays the CLI command that will reproduce the barcode as currently
|
||
configured in the GUI. Press the "Copy" button to copy the command to the
|
||
clipboard, which can then be pasted into the command line.
|
||
|
||
4. Using the Command Line
|
||
|
||
This section describes how to encode data using the command line frontend
|
||
program. The examples given are for the Unix platform, but the same options are
|
||
available for Windows - just remember to include the executable file extension
|
||
if ".EXE" is not in your PATHEXT environment variable, i.e.:
|
||
|
||
zint.exe -d "This Text"
|
||
|
||
For compatibility with Windows the examples use double quotes to delimit data,
|
||
though on Unix single quotes are generally preferable as they stop the shell
|
||
from processing any characters such as backslash or dollar. A single quote
|
||
itself is dealt with by terminating the single-quoted text, backslashing the
|
||
single quote, and then continuing:
|
||
|
||
zint -d 'Text containing a single quote '\'' in the middle'
|
||
|
||
Some examples use backslash (\) to continue commands onto the next line. For
|
||
Windows, use caret (^) instead.
|
||
|
||
Certain options that take values have short names as well as long ones, namely
|
||
-b (--barcode), -d (--data), -i (--input), -o (--output) and -w (--whitesp). For
|
||
these a space should be used to separate the short name from its value, to avoid
|
||
ambiguity. For long names a space or an equals sign may be used. For instance:
|
||
|
||
zint -d "This Text"
|
||
zint --data="This Text"
|
||
zint --data "This Text"
|
||
|
||
The examples use a space separator for short option names, and an equals sign
|
||
for long option names.
|
||
|
||
4.1 Inputting Data
|
||
|
||
The data to encode can be entered at the command line using the -d or --data
|
||
option, for example
|
||
|
||
zint -d "This Text"
|
||
|
||
This will encode the text "This Text". Zint will use the default symbology, Code
|
||
128, and output to the default file "out.png" in the current directory.
|
||
Alternatively, if libpng was not present when Zint was built, the default output
|
||
file will be "out.gif".
|
||
|
||
The data input to the Zint CLI is assumed to be encoded in UTF-8 (Unicode)
|
||
format (Zint will correctly handle UTF-8 data on Windows). If you are encoding
|
||
characters beyond the 7-bit ASCII set using a scheme other than UTF-8 then you
|
||
will need to set the appropriate input options as shown in 4.10 Input Modes
|
||
below.
|
||
|
||
Non-printing characters can be entered on the command line using backslash (\)
|
||
as an escape character in combination with the --esc switch. Permissible
|
||
sequences are shown in the table below.
|
||
|
||
----------------------------------------------------------------------------
|
||
Escape ASCII Name Interpretation
|
||
Sequence Equivalent
|
||
----------- ------------ ------- -------------------------------------------
|
||
\0 0x00 NUL Null character
|
||
|
||
\E 0x04 EOT End of Transmission
|
||
|
||
\a 0x07 BEL Bell
|
||
|
||
\b 0x08 BS Backspace
|
||
|
||
\t 0x09 HT Horizontal Tab
|
||
|
||
\n 0x0A LF Line Feed
|
||
|
||
\v 0x0B VT Vertical Tab
|
||
|
||
\f 0x0C FF Form Feed
|
||
|
||
\r 0x0D CR Carriage Return
|
||
|
||
\e 0x1B ESC Escape
|
||
|
||
\G 0x1D GS Group Separator
|
||
|
||
\R 0x1E RS Record Separator
|
||
|
||
\\ 0x5C \ Backslash
|
||
|
||
\dNNN NNN Any 8-bit character where NNN is decimal
|
||
(0-255)
|
||
|
||
\xNN 0xNN Any 8-bit character where NN is hexadecimal
|
||
|
||
\uNNNN Any 16-bit Unicode BMP[2] character where
|
||
NNNN is hexadecimal
|
||
|
||
\UNNNNNN Any 21-bit Unicode character where NNNNNN
|
||
is hexadecimal (maximum 0x10FFFF)
|
||
----------------------------------------------------------------------------
|
||
|
||
: Table : Escape Sequences:
|
||
|
||
Input data can be read directly from file using the -i or --input switch as
|
||
shown below. The input file is assumed to be UTF-8 formatted unless an
|
||
alternative mode is selected. This command replaces the use of the -d switch.
|
||
|
||
zint -i somefile.txt
|
||
|
||
Note that except when batch processing (see 4.11 Batch Processing below), the
|
||
file should not end with a newline (LF on Unix, CR+LF on Windows) unless you
|
||
want the newline to be encoded in the symbol.
|
||
|
||
4.2 Directing Output
|
||
|
||
Output can be directed to a file other than the default using the -o or --output
|
||
switch. For example:
|
||
|
||
zint -o here.png -d "This Text"
|
||
|
||
This draws a Code 128 barcode in the file "here.png". If an Encapsulated
|
||
PostScript file is needed simply append the filename with ".eps", and so on for
|
||
the other supported file types:
|
||
|
||
zint -o there.eps -d "This Text"
|
||
|
||
4.3 Selecting Barcode Type
|
||
|
||
Selecting which type of barcode you wish to produce (i.e. which symbology to
|
||
use) can be done at the command line using the -b or --barcode switch followed
|
||
by the appropriate integer value or name in the following table. For example to
|
||
create a Data Matrix symbol you could use:
|
||
|
||
zint -b 71 -o datamatrix.png -d "Data to encode"
|
||
|
||
or
|
||
|
||
zint -b DATAMATRIX -o datamatrix.png -d "Data to encode"
|
||
|
||
Names are treated case-insensitively by the CLI, and the BARCODE_ prefix and any
|
||
underscores are optional.
|
||
|
||
--------------------------------------------------------------------------------
|
||
Numeric Name[3] Barcode Name
|
||
Value
|
||
--------- ------------------------- --------------------------------------------
|
||
1 BARCODE_CODE11 Code 11
|
||
|
||
2* BARCODE_C25STANDARD Standard Code 2 of 5
|
||
|
||
3 BARCODE_C25INTER Interleaved 2 of 5
|
||
|
||
4 BARCODE_C25IATA Code 2 of 5 IATA
|
||
|
||
6 BARCODE_C25LOGIC Code 2 of 5 Data Logic
|
||
|
||
7 BARCODE_C25IND Code 2 of 5 Industrial
|
||
|
||
8 BARCODE_CODE39 Code 3 of 9 (Code 39)
|
||
|
||
9 BARCODE_EXCODE39 Extended Code 3 of 9 (Code 39+)
|
||
|
||
13 BARCODE_EANX EAN (EAN-2, EAN-5, EAN-8 and EAN-13)
|
||
|
||
14 BARCODE_EANX_CHK EAN + Check Digit
|
||
|
||
16* BARCODE_GS1_128 GS1-128 (UCC.EAN-128)
|
||
|
||
18 BARCODE_CODABAR Codabar
|
||
|
||
20 BARCODE_CODE128 Code 128 (automatic subset switching)
|
||
|
||
21 BARCODE_DPLEIT Deutshe Post Leitcode
|
||
|
||
22 BARCODE_DPIDENT Deutshe Post Identcode
|
||
|
||
23 BARCODE_CODE16K Code 16K
|
||
|
||
24 BARCODE_CODE49 Code 49
|
||
|
||
25 BARCODE_CODE93 Code 93
|
||
|
||
28 BARCODE_FLAT Flattermarken
|
||
|
||
29* BARCODE_DBAR_OMN GS1 DataBar Omnidirectional (including GS1
|
||
DataBar Truncated)
|
||
|
||
30* BARCODE_DBAR_LTD GS1 DataBar Limited
|
||
|
||
31* BARCODE_DBAR_EXP GS1 DataBar Expanded
|
||
|
||
32 BARCODE_TELEPEN Telepen Alpha
|
||
|
||
34 BARCODE_UPCA UPC-A
|
||
|
||
35 BARCODE_UPCA_CHK UPC-A + Check Digit
|
||
|
||
37 BARCODE_UPCE UPC-E
|
||
|
||
38 BARCODE_UPCE_CHK UPC-E + Check Digit
|
||
|
||
40 BARCODE_POSTNET POSTNET
|
||
|
||
47 BARCODE_MSI_PLESSEY MSI Plessey
|
||
|
||
49 BARCODE_FIM FIM
|
||
|
||
50 BARCODE_LOGMARS LOGMARS
|
||
|
||
51 BARCODE_PHARMA Pharmacode One-Track
|
||
|
||
52 BARCODE_PZN PZN
|
||
|
||
53 BARCODE_PHARMA_TWO Pharmacode Two-Track
|
||
|
||
55 BARCODE_PDF417 PDF417
|
||
|
||
56* BARCODE_PDF417COMP Compact PDF417 (Truncated PDF417)
|
||
|
||
57 BARCODE_MAXICODE MaxiCode
|
||
|
||
58 BARCODE_QRCODE QR Code
|
||
|
||
60 BARCODE_CODE128B Code 128 (Subset B)
|
||
|
||
63 BARCODE_AUSPOST Australia Post Standard Customer
|
||
|
||
66 BARCODE_AUSREPLY Australia Post Reply Paid
|
||
|
||
67 BARCODE_AUSROUTE Australia Post Routing
|
||
|
||
68 BARCODE_AUSDIRECT Australia Post Redirection
|
||
|
||
69 BARCODE_ISBNX ISBN (EAN-13 with verification stage)
|
||
|
||
70 BARCODE_RM4SCC Royal Mail 4-State Customer Code (RM4SCC)
|
||
|
||
71 BARCODE_DATAMATRIX Data Matrix (ECC200)
|
||
|
||
72 BARCODE_EAN14 EAN-14
|
||
|
||
73 BARCODE_VIN Vehicle Identification Number
|
||
|
||
74 BARCODE_CODABLOCKF Codablock-F
|
||
|
||
75 BARCODE_NVE18 NVE-18 (SSCC-18)
|
||
|
||
76 BARCODE_JAPANPOST Japanese Postal Code
|
||
|
||
77 BARCODE_KOREAPOST Korea Post
|
||
|
||
79* BARCODE_DBAR_STK GS1 DataBar Stacked
|
||
|
||
80* BARCODE_DBAR_OMNSTK GS1 DataBar Stacked Omnidirectional
|
||
|
||
81* BARCODE_DBAR_EXPSTK GS1 DataBar Expanded Stacked
|
||
|
||
82 BARCODE_PLANET PLANET
|
||
|
||
84 BARCODE_MICROPDF417 MicroPDF417
|
||
|
||
85* BARCODE_USPS_IMAIL USPS Intelligent Mail (OneCode)
|
||
|
||
86 BARCODE_PLESSEY UK Plessey
|
||
|
||
87 BARCODE_TELEPEN_NUM Telepen Numeric
|
||
|
||
89 BARCODE_ITF14 ITF-14
|
||
|
||
90 BARCODE_KIX Dutch Post KIX Code
|
||
|
||
92 BARCODE_AZTEC Aztec Code
|
||
|
||
93 BARCODE_DAFT DAFT Code
|
||
|
||
96 BARCODE_DPD DPD Code
|
||
|
||
97 BARCODE_MICROQR Micro QR Code
|
||
|
||
98 BARCODE_HIBC_128 HIBC Code 128
|
||
|
||
99 BARCODE_HIBC_39 HIBC Code 39
|
||
|
||
102 BARCODE_HIBC_DM HIBC Data Matrix ECC200
|
||
|
||
104 BARCODE_HIBC_QR HIBC QR Code
|
||
|
||
106 BARCODE_HIBC_PDF HIBC PDF417
|
||
|
||
108 BARCODE_HIBC_MICPDF HIBC MicroPDF417
|
||
|
||
110 BARCODE_HIBC_BLOCKF HIBC Codablock-F
|
||
|
||
112 BARCODE_HIBC_AZTEC HIBC Aztec Code
|
||
|
||
115 BARCODE_DOTCODE DotCode
|
||
|
||
116 BARCODE_HANXIN Han Xin (Chinese Sensible) Code
|
||
|
||
121 BARCODE_MAILMARK Royal Mail 4-State Mailmark
|
||
|
||
128 BARCODE_AZRUNE Aztec Runes
|
||
|
||
129 BARCODE_CODE32 Code 32
|
||
|
||
130 BARCODE_EANX_CC Composite Symbol with EAN linear component
|
||
|
||
131* BARCODE_GS1_128_CC Composite Symbol with GS1-128 linear
|
||
component
|
||
|
||
132* BARCODE_DBAR_OMN_CC Composite Symbol with GS1 DataBar
|
||
Omnidirectional linear component
|
||
|
||
133* BARCODE_DBAR_LTD_CC Composite Symbol with GS1 DataBar Limited
|
||
linear component
|
||
|
||
134* BARCODE_DBAR_EXP_CC Composite Symbol with GS1 DataBar Expanded
|
||
linear component
|
||
|
||
135 BARCODE_UPCA_CC Composite Symbol with UPC-A linear component
|
||
|
||
136 BARCODE_UPCE_CC Composite Symbol with UPC-E linear component
|
||
|
||
137* BARCODE_DBAR_STK_CC Composite Symbol with GS1 DataBar Stacked
|
||
component
|
||
|
||
138* BARCODE_DBAR_OMNSTK_CC Composite Symbol with GS1 DataBar Stacked
|
||
Omnidirectional component
|
||
|
||
139* BARCODE_DBAR_EXPSTK_CC Composite Symbol with GS1 DataBar Expanded
|
||
Stacked component
|
||
|
||
140 BARCODE_CHANNEL Channel Code
|
||
|
||
141 BARCODE_CODEONE Code One
|
||
|
||
142 BARCODE_GRIDMATRIX Grid Matrix
|
||
|
||
143 BARCODE_UPNQR UPNQR (Univerzalnega Plačilnega Naloga QR)
|
||
|
||
144 BARCODE_ULTRA Ultracode
|
||
|
||
145 BARCODE_RMQR Rectangular Micro QR Code (rMQR)
|
||
--------------------------------------------------------------------------------
|
||
|
||
: Table : Barcode Types (Symbologies):
|
||
|
||
4.4 Adjusting Height
|
||
|
||
The height of a symbol (except those with a fixed width-to-height ratio) can be
|
||
adjusted using the --height switch. For example:
|
||
|
||
zint --height=100 -d "This Text"
|
||
|
||
This specifies a symbol height of 100 times the X-dimension of the symbol.
|
||
|
||
The default height of most linear barcodes is 50X, but this can be changed for
|
||
barcodes whose specifications give a standard height by using the switch
|
||
--compliantheight. For instance
|
||
|
||
zint -b LOGMARS -d "This Text" --compliantheight
|
||
|
||
will produce a barcode of height 45.455X instead of the normal default of 50X.
|
||
The flag also causes Zint to return a warning if a non-compliant height is
|
||
given:
|
||
|
||
zint -b LOGMARS -d "This Text" --compliantheight --height=6.2
|
||
Warning 247: Height not compliant with standards
|
||
|
||
Another switch is --heightperrow, which can be useful for symbologies that have
|
||
a variable number of linear rows, namely Codablock-F, Code 16K, Code 49, GS1
|
||
DataBar Expanded Stacked, MicroPDF417 and PDF417, as it changes the treatment of
|
||
the height value from overall height to per-row height, allowing you to specify
|
||
a consistent height for each linear row without having to know how many there
|
||
are. For instance
|
||
|
||
zint -b PDF417 -d "This Text" --height=4 --heightperrow
|
||
|
||
[zint -b PDF417 -d "This Text" --height=4 --heightperrow]
|
||
|
||
will produce a barcode of height 32X, with each of the 8 rows 4X high.
|
||
|
||
4.5 Adjusting Whitespace
|
||
|
||
The amount of horizontal whitespace to the left and right of the generated
|
||
barcode can be altered using the -w or --whitesp switch. For example:
|
||
|
||
zint -w 10 -d "This Text"
|
||
|
||
This specifies a whitespace width of 10 times the X-dimension of the symbol both
|
||
to the left and to the right of the barcode.
|
||
|
||
The amount of vertical whitespace above and below the barcode can be altered
|
||
using the --vwhitesp switch. For example for 3 times the X-dimension:
|
||
|
||
zint --vwhitesp=3 -d "This Text"
|
||
|
||
Note that the whitespace at the bottom appears below the text, if any.
|
||
|
||
Horizontal and vertical whitespace can of course be used together:
|
||
|
||
zint -b DATAMATRIX --whitesp=1 --vwhitesp=1 -d "This Text"
|
||
|
||
A --quietzones option is also available which adds quiet zones compliant with
|
||
the symbology’s specification. This is in addition to any whitespace specified
|
||
with the --whitesp or --vwhitesp switches.
|
||
|
||
Note that Codablock-F, Code 16K, Code 49, ITF-14, EAN-2 to EAN-13, ISBN, UPC-A
|
||
and UPC-E have compliant quiet zones added by default. This can be disabled with
|
||
the option --noquietzones.
|
||
|
||
4.6 Adding Boundary Bars and Boxes
|
||
|
||
Zint allows the symbol to be bound with ‘boundary bars’ (also known as ‘bearer
|
||
bars’) using the option --bind. These bars help to prevent misreading of the
|
||
symbol by corrupting a scan if the scanning beam strays off the top or bottom of
|
||
the symbol. Zint can also put a border right around the symbol and its
|
||
horizontal whitespace with the --box option.
|
||
|
||
The width of the boundary bars or box borders must be specified using the
|
||
--border switch. For example:
|
||
|
||
zint --box --border=10 -w 10 -d "This Text"
|
||
|
||
[zint --border=10 --box -d "This Text" -w 10]
|
||
|
||
gives a box with a width 10 times the X-dimension of the symbol. Note that when
|
||
specifying a box, horizontal whitespace is usually required in order to create a
|
||
quiet zone between the barcode and the sides of the box.
|
||
|
||
For linear symbols, horizontal boundary bars appear tight against the barcode,
|
||
inside any vertical whitespace (or text). For matrix symbols, however, where
|
||
they are decorative rather than functional, boundary bars appear outside any
|
||
whitespace.
|
||
|
||
[zint -b QRCODE --border=1 --box -d "This Text" --quietzones]
|
||
|
||
Codablock-F, Code 16K and Code 49 always have boundary bars, and default to
|
||
particular horizontal whitespace values. Special considerations apply to
|
||
ITF-14 - see 6.1.2.6 ITF-14 for that symbology.
|
||
|
||
4.7 Using Colour
|
||
|
||
The default colours of a symbol are a black symbol on a white background. Zint
|
||
allows you to change this. The -r or --reverse switch allows the default colours
|
||
to be inverted so that a white symbol is shown on a black background (known as
|
||
“reflectance reversal” or “reversed reflectance”). For example the command
|
||
|
||
zint -r -d "This Text"
|
||
|
||
gives an inverted Code 128 symbol. This is not practical for most symbologies
|
||
but white-on-black is allowed by the Aztec Code, Data Matrix, Han Xin Code, Grid
|
||
Matrix and QR Code symbology specifications.
|
||
|
||
For more specific needs the foreground (ink) and background (paper) colours can
|
||
be specified using the --fg and --bg options followed by a number in RRGGBB
|
||
hexadecimal notation (the same system used in HTML). For example the command
|
||
|
||
zint --fg=00FF00 -d "This Text"
|
||
|
||
alters the symbol to a bright green.
|
||
|
||
[zint -d "This Text" --fg=00FF00]
|
||
|
||
Zint also supports RGBA colour information for some output file formats which
|
||
support alpha channels (currently only PNG, SVG and TIF) in a RRGGBBAA format.
|
||
For example:
|
||
|
||
zint --fg=00ff0055 -d "This Text"
|
||
|
||
[zint -d "This Text" --fg=00FF0055]
|
||
|
||
will produce a semi-transparent green foreground with standard (white)
|
||
background. Note that transparency is handled differently for raster and vector
|
||
files so that…
|
||
|
||
zint --bg=ff0000 --fg=ffffff00 ...
|
||
|
||
will give different results for PNG and SVG. Experimentation is advised!
|
||
|
||
In addition the --nobackground option will simply remove the background from
|
||
EMF, EPS, GIF, PNG, SVG and TIF files.
|
||
|
||
4.8 Rotating the Symbol
|
||
|
||
The symbol can be rotated through four orientations using the --rotate option
|
||
followed by the angle of rotation as shown below.
|
||
|
||
--rotate=0 (default)
|
||
--rotate=90
|
||
--rotate=180
|
||
--rotate=270
|
||
|
||
[zint -d "This Text" --rotate=90]
|
||
|
||
4.9 Adjusting Image Size
|
||
|
||
The scale of the image can be altered using the --scale option followed by a
|
||
multiple of the default X-dimension. The scale is multiplied by 2 (with the
|
||
exception of MaxiCode) before being applied. The default scale is 1.
|
||
|
||
For MaxiCode, the scale is multiplied by 10 for raster output, by 20 for EMF
|
||
vector output, and by 2 otherwise (non-EMF vector output).
|
||
|
||
For raster output, the default X-dimension is 2 pixels (except for MaxiCode, see
|
||
4.9.2 MaxiCode Raster Scaling below). For example for PNG images a scale of 5
|
||
will increase the X-dimension to 10 pixels. Scales for raster output should be
|
||
given in increments of 0.5, i.e. 0.5, 1, 1.5, 2, 2.5, 3, 3.5, etc., to avoid the
|
||
X-dimension varying across the symbol due to interpolation. 0.5 increments are
|
||
also faster to render.
|
||
|
||
The minimum scale for non-dotty raster output is 0.5, giving a minimum
|
||
X-dimension of 1 pixel, and text will not be printed for scales less than 1. The
|
||
minimum scale for raster output in dotty mode is 1 (see 4.14 Working with Dots).
|
||
|
||
The minimum scale for vector output is 0.1, giving a minimum X-dimension of 0.2.
|
||
|
||
The maximum scale for both raster and vector is 100.
|
||
|
||
4.9.1 Scaling Example
|
||
|
||
The GS1 General Specifications Section 5.2.6.6 ‘Symbol dimensions at nominal
|
||
size’ gives an example of an EAN-13 barcode using the X-dimension of 0.33mm. To
|
||
print that example as a PNG at 12 dots per mm (dpmm), the equivalent of 300 dots
|
||
per inch (dpi = dpmm * 25.4), specify a scale of 2, since 0.33 * 12 = 3.96
|
||
pixels, or 4 pixels rounding to the nearest pixel:
|
||
|
||
zint -b EANX -d "501234567890" --compliantheight --scale=2
|
||
|
||
This will result in output of 38.27mm x 26.08mm (WxH) at 300 dpi. The following
|
||
table shows the scale to use (in 0.5 increments) depending on the dpmm desired,
|
||
for a target X-dimension of 0.33mm:
|
||
|
||
dpmm dpi scale
|
||
------ ------ -------
|
||
6 150 1
|
||
8 200 1.5
|
||
12 300 2
|
||
16 400 3
|
||
24 600 4
|
||
47 1200 8
|
||
95 2400 15.5
|
||
189 4800 31
|
||
|
||
: Table : Scaling for X-dimension 0.33mm:
|
||
|
||
4.9.2 MaxiCode Raster Scaling
|
||
|
||
For MaxiCode symbols, which use hexagons, the scale for raster output is
|
||
multiplied by 10 before being applied. The minimum scale is 0.2, so the minimum
|
||
X-dimension is 2 pixels.
|
||
|
||
MaxiCode symbols have fixed size ranges of 24.82mm to 27.93mm in width, and
|
||
23.71mm to 26.69mm in height, excluding quiet zones. The following table shows
|
||
the scale to use depending on the dpmm desired, with dpi equivalents:
|
||
|
||
dpmm dpi scale
|
||
------ ------ -------
|
||
6 150 0.5
|
||
8 200 0.7
|
||
12 300 1
|
||
16 400 1.4
|
||
24 600 2.1
|
||
47 1200 4.1
|
||
95 2400 8.2
|
||
189 4800 16.4
|
||
|
||
: Table : MaxiCode Raster Scaling:
|
||
|
||
Note that the 0.5 increment recommended for normal raster output does not apply.
|
||
Scales below 0.5 are not recommended and may produce symbols that are not within
|
||
the minimum/maximum size ranges.
|
||
|
||
4.10 Input Modes
|
||
|
||
4.10.1 Unicode, Data, and GS1 Modes
|
||
|
||
By default all CLI input data is assumed to be encoded in UTF-8 format. Many
|
||
barcode symbologies encode data using the Latin-1 (ISO/IEC 8859-1 plus ASCII)
|
||
character set, so input is converted from UTF-8 to Latin-1 before being put in
|
||
the symbol. In addition QR Code and its variants and Han Xin Code can by default
|
||
encode Japanese (Kanji) or Chinese (Hanzi) characters which are also converted
|
||
from UTF-8.
|
||
|
||
There are two exceptions to the Latin-1 default: Grid Matrix, whose default
|
||
character set is GB 2312 (Chinese); and UPNQR, whose default character set is
|
||
Latin-2 (ISO/IEC 8859-2 plus ASCII).
|
||
|
||
Symbology Default character sets Alternate if input not Latin-1
|
||
--------------- -------------------------- --------------------------------
|
||
Aztec Code Latin-1 None
|
||
Codablock-F Latin-1 None
|
||
Code 128 Latin-1 None
|
||
Code 16k Latin-1 None
|
||
Code One Latin-1 None
|
||
Data Matrix Latin-1 None
|
||
DotCode Latin-1 None
|
||
Grid Matrix GB 2312 (includes ASCII) N/A
|
||
Han Xin Latin-1 GB 18030 (includes ASCII)
|
||
MaxiCode Latin-1 None
|
||
MicroPDF417 Latin-1 None
|
||
Micro QR Code Latin-1 Shift JIS (includes ASCII[4])
|
||
PDF417 Latin-1 None
|
||
QR Code Latin-1 Shift JIS (see above)
|
||
rMQR Latin-1 Shift JIS (see above)
|
||
Ultracode Latin-1 None
|
||
UPNQR Latin-2 N/A
|
||
All others ASCII N/A
|
||
|
||
: Table : Default Character Sets:
|
||
|
||
If Zint encounters characters which can not be encoded using the default
|
||
character encoding then it will take advantage of the ECI (Extended Channel
|
||
Interpretations) mechanism to encode the data if the symbology supports it - see
|
||
4.10.2 Input Modes and ECI below.
|
||
|
||
GS1 data can be encoded in a number of symbologies. Application Identifiers
|
||
(AIs) should be enclosed in [square brackets] followed by the data to be encoded
|
||
(see 6.1.10.3 GS1-128). To encode GS1 data use the --gs1 option. GS1 mode is
|
||
assumed (and doesn’t need to be set) for GS1-128, EAN-14, GS1 DataBar and
|
||
Composite symbologies but is also available for Aztec Code, Code 16K, Code 49,
|
||
Code One, Data Matrix, DotCode, QR Code and Ultracode.
|
||
|
||
Health Industry Barcode (HIBC) data may also be encoded in the symbologies Aztec
|
||
Code, Codablock-F, Code 128, Code 39, Data Matrix, MicroPDF417, PDF417 and QR
|
||
Code. Within this mode, the leading '+' and the check character are
|
||
automatically added, conforming to HIBC Labeler Identification Code (HIBC LIC).
|
||
For HIBC Provider Applications Standard (HIBC PAS), preface the data with a
|
||
slash '/'.
|
||
|
||
The --binary option encodes the input data as given. Automatic code page
|
||
translation to an ECI page is disabled, and no validation of the data’s encoding
|
||
takes place. This may be used for raw binary or binary encrypted data. This
|
||
switch plays together with the built-in ECI logic and examples may be found
|
||
below.
|
||
|
||
The --fullmultibyte option uses the multibyte modes of QR Code, Micro QR Code,
|
||
Rectangular Micro QR Code, Han Xin Code and Grid Matrix for non-ASCII data,
|
||
maximizing density. This is achieved by using compression designed for
|
||
Kanji/Hanzi characters; however some decoders take blocks which are encoded this
|
||
way and interpret them as Kanji/Hanzi characters, thus causing data corruption.
|
||
Symbols encoded with this option should be checked against decoders before they
|
||
are used. The popular open-source ZXing decoder is known to exhibit this
|
||
behaviour.
|
||
|
||
4.10.2 Input Modes and ECI
|
||
|
||
If your data contains characters that are not in the default character set, you
|
||
may encode it using an ECI-aware symbology and an ECI value from Table
|
||
: ECI Codes below. The ECI information is added to your code symbol as prefix
|
||
data. The symbologies that support ECI are
|
||
|
||
------------- -------------- ------------- -----------
|
||
Aztec Code DotCode MaxiCode QR Code
|
||
Code One Grid Matrix MicroPDF417 rMQR
|
||
Data Matrix Han Xin Code PDF417 Ultracode
|
||
------------- -------------- ------------- -----------
|
||
|
||
: Table : ECI-Aware Symbologies:
|
||
|
||
Be aware that not all barcode readers support ECI mode, so this can sometimes
|
||
lead to unreadable barcodes. If you are using characters beyond those supported
|
||
by the default character set then you should check that the resulting barcode
|
||
can be understood by your target barcode reader.
|
||
|
||
The ECI value may be specified with the --eci switch, followed by the value in
|
||
the column "ECI Code" in the table below. The input data should be UTF-8
|
||
formatted. Zint automatically translates the data into the target encoding.
|
||
|
||
ECI Code Character Encoding Scheme (ISO/IEC 8859 schemes include ASCII)
|
||
---------- ----------------------------------------------------------------
|
||
3 ISO/IEC 8859-1 - Latin alphabet No. 1
|
||
4 ISO/IEC 8859-2 - Latin alphabet No. 2
|
||
5 ISO/IEC 8859-3 - Latin alphabet No. 3
|
||
6 ISO/IEC 8859-4 - Latin alphabet No. 4
|
||
7 ISO/IEC 8859-5 - Latin/Cyrillic alphabet
|
||
8 ISO/IEC 8859-6 - Latin/Arabic alphabet
|
||
9 ISO/IEC 8859-7 - Latin/Greek alphabet
|
||
10 ISO/IEC 8859-8 - Latin/Hebrew alphabet
|
||
11 ISO/IEC 8859-9 - Latin alphabet No. 5 (Turkish)
|
||
12 ISO/IEC 8859-10 - Latin alphabet No. 6 (Nordic)
|
||
13 ISO/IEC 8859-11 - Latin/Thai alphabet
|
||
15 ISO/IEC 8859-13 - Latin alphabet No. 7 (Baltic)
|
||
16 ISO/IEC 8859-14 - Latin alphabet No. 8 (Celtic)
|
||
17 ISO/IEC 8859-15 - Latin alphabet No. 9
|
||
18 ISO/IEC 8859-16 - Latin alphabet No. 10
|
||
20 Shift JIS (JIS X 0208 and JIS X 0201)
|
||
21 Windows 1250 - Latin 2 (Central Europe)
|
||
22 Windows 1251 - Cyrillic
|
||
23 Windows 1252 - Latin 1
|
||
24 Windows 1256 - Arabic
|
||
25 UTF-16BE (High order byte first)
|
||
26 UTF-8
|
||
27 ASCII (ISO/IEC 646 IRV)
|
||
28 Big5 (Taiwan) Chinese Character Set
|
||
29 GB 2312 (PRC) Chinese Character Set
|
||
30 Korean Character Set EUC-KR (KS X 1001:2002)
|
||
31 GBK Chinese Character Set
|
||
32 GB 18030 Chinese Character Set
|
||
33 UTF-16LE (Low order byte first)
|
||
34 UTF-32BE (High order bytes first)
|
||
35 UTF-32LE (Low order bytes first)
|
||
170 ISO/IEC 646 Invariant[5]
|
||
899 8-bit binary data
|
||
|
||
: Table : ECI Codes:
|
||
|
||
An ECI value of 0 does not encode any ECI information in the code symbol (unless
|
||
the data contains non-default character set characters). In this case, the
|
||
default character set applies (see Table : Default Character Sets above).
|
||
|
||
If no ECI is specified or a value of 0 is given, and the data does contain
|
||
characters other than in the default character set, then Zint will automatically
|
||
insert the appropriate single-byte ECI if possible (ECIs 3 to 24, excluding ECI
|
||
20), or failing that ECI 26 (UTF-8). A warning will be generated. This mechanism
|
||
is not applied if the --binary option is given.
|
||
|
||
Multiple ECIs can be specified using the --segN options - see 4.15 Multiple
|
||
Segments.
|
||
|
||
Note: the --eci=3 specification should only be used for special purposes. Using
|
||
this parameter, the ECI information is explicitly added to the symbol.
|
||
Nevertheless, for ECI Code 3, this is not usually required, as this is the
|
||
default encoding for most barcodes, which is also active without any ECI
|
||
information.
|
||
|
||
4.10.2.1 Input Modes and ECI Example 1
|
||
|
||
The Euro sign U+20AC can be encoded in ISO/IEC 8859-15. The Euro sign has the
|
||
ISO/IEC 8859-15 codepoint hex "A4". It is encoded in UTF-8 as the hex sequence:
|
||
"E2 82 AC". Those 3 bytes are contained in the file "utf8euro.txt". This command
|
||
will generate the corresponding code:
|
||
|
||
zint -b 71 --scale=10 --eci=17 -i utf8euro.txt
|
||
|
||
This is equivalent to the commands (using the --esc switch):
|
||
|
||
zint -b 71 --scale=10 --eci=17 --esc -d "\xE2\x82\xAC"
|
||
|
||
zint -b 71 --scale=10 --eci=17 --esc -d "\u20AC"
|
||
|
||
and to the command:
|
||
|
||
zint -b 71 --scale=10 --eci=17 -d "€"
|
||
|
||
[zint -b DATAMATRIX --eci=17 -d "€"]
|
||
|
||
4.10.2.2 Input Modes and ECI Example 2
|
||
|
||
The Chinese character with the Unicode codepoint U+5E38 can be encoded in Big5
|
||
encoding. The Big5 representation of this character is the two hex bytes:
|
||
"B1 60" (contained in the file "big5char.txt"). The generation command for Data
|
||
Matrix is:
|
||
|
||
zint -b 71 --scale=10 --eci=28 --binary -i big5char.txt
|
||
|
||
This is equivalent to the command (using the --esc switch):
|
||
|
||
zint -b 71 --scale=10 --eci=28 --binary --esc -d "\xB1\x60"
|
||
|
||
and to the commands (no --binary switch so conversion occurs):
|
||
|
||
zint -b 71 --scale=10 --eci=28 --esc -d "\xE5\xB8\xB8"
|
||
|
||
zint -b 71 --scale=10 --eci=28 --esc -d "\u5E38"
|
||
|
||
zint -b 71 --scale=10 --eci=28 -d "常"
|
||
|
||
[zint -b DATAMATRIX --eci=28 -d "\u5E38" --esc]
|
||
|
||
4.10.2.3 Input Modes and ECI Example 3
|
||
|
||
Some decoders (in particular mobile app ones) for QR Code assume UTF-8 encoding
|
||
by default and do not support ECI. In this case supply UTF-8 data and use the
|
||
--binary switch so that the data will be encoded as UTF-8 without conversion:
|
||
|
||
zint -b 58 --binary -d "UTF-8 data"
|
||
|
||
[zint -b QRCODE --binary -d "\xE2\x82\xAC\xE5\xB8\xB8" --esc]
|
||
|
||
4.11 Batch Processing
|
||
|
||
Data can be batch processed by reading from a text file and producing a separate
|
||
barcode image for each line of text in that file. To do this use the --batch
|
||
switch. To select the input file from which to read data use the -i option. Zint
|
||
will automatically detect the end of a line of text (in either Unix or Windows
|
||
formatted text files) and produce a symbol each time it finds this. Input files
|
||
should end with a line feed character - if this is not present then Zint will
|
||
not encode the last line of text, and will warn you that there is a problem.
|
||
|
||
By default Zint will output numbered filenames starting with 00001.png,
|
||
00002.png etc. To change this behaviour use the -o option in combination with
|
||
--batch using special characters in the output filename as shown in the table
|
||
below:
|
||
|
||
Input Character Interpretation
|
||
----------------- ----------------------------------------
|
||
~ Insert a number or 0
|
||
# Insert a number or space
|
||
@ Insert a number or * (or + on Windows)
|
||
Any other Insert literally
|
||
|
||
: Table : Batch Filename Formatting:
|
||
|
||
The following table shows some examples to clarify this method:
|
||
|
||
Input Filenames Generated
|
||
----------------- -----------------------------------------------
|
||
-o file~~~.svg file001.svg, file002.svg, file003.svg
|
||
-o @@@@bar.png ***1.png, ***2.png, ***3.png (except Windows)
|
||
-o @@@@bar.png +++1.png, +++2.png, +++3.png (on Windows)
|
||
-o my~~~bar.eps my001.bar.eps, my002.bar.eps, my003bar.eps
|
||
-o t@es~t~.png t*es0t1.png, t*es0t2.png, t*es0t3.png
|
||
|
||
: Table : Batch Filename Examples:
|
||
|
||
4.12 Direct Output
|
||
|
||
The finished image files can be output directly to stdout for use as part of a
|
||
pipe by using the --direct option. By default --direct will output data as a PNG
|
||
image (or GIF image if libpng is not present), but this can be altered by
|
||
supplementing the --direct option with a --filetype option followed by the
|
||
suffix of the file type required. For example:
|
||
|
||
zint -b 84 --direct --filetype=pcx -d "Data to encode"
|
||
|
||
This command will output the symbol as a PCX file to stdout. The currently
|
||
supported output file formats are shown in the following table:
|
||
|
||
Abbreviation File format
|
||
-------------- -------------------------------------------
|
||
BMP Windows Bitmap
|
||
EMF Enhanced Metafile Format
|
||
EPS Encapsulated PostScript
|
||
GIF Graphics Interchange Format
|
||
PCX ZSoft Paintbrush image
|
||
PNG Portable Network Graphic
|
||
SVG Scalable Vector Graphic
|
||
TIF Tagged Image File Format
|
||
TXT Text file (see 4.18 Other Output Options)
|
||
|
||
: Table : Output File Formats:
|
||
|
||
--------------------------------------------------------------------------------
|
||
|
||
CAUTION: Outputting binary files to the command shell without catching that data
|
||
in a pipe can have unpredictable results. Use with care!
|
||
|
||
--------------------------------------------------------------------------------
|
||
|
||
4.13 Automatic Filenames
|
||
|
||
The --mirror option instructs Zint to use the data to be encoded as an indicator
|
||
of the filename to be used. This is particularly useful if you are processing
|
||
batch data. For example the input data "1234567" will result in a file named
|
||
"1234567.png".
|
||
|
||
There are restrictions, however, on what characters can be stored in a filename,
|
||
so the filename may vary from the data if the data includes non-printable
|
||
characters, for example, and may be shortened if the data input is long.
|
||
|
||
To set the output file format use the --filetype option as detailed above in
|
||
4.12 Direct Output.
|
||
|
||
4.14 Working with Dots
|
||
|
||
Matrix codes can be rendered as a series of dots or circles rather than the
|
||
normal squares by using the --dotty option. This option is only available for
|
||
matrix symbologies, and is automatically selected for DotCode. The size of the
|
||
dots can be adjusted using the --dotsize option followed by the diameter of the
|
||
dot, where that diameter is given as a multiple of the X-dimension. The minimum
|
||
dot size is 0.01, the maximum is 20. The default size is 0.8.
|
||
|
||
The default and minimum scale for raster output in dotty mode is 1.
|
||
|
||
[zint -b CODEONE -d "123456789012345678" --dotty --vers=9]
|
||
|
||
4.15 Multiple Segments
|
||
|
||
If you need to specify different ECIs for different sections of the input data,
|
||
the --seg1 to --seg9 options can be used. Each option is of the form
|
||
--segN=ECI,data where ECI is the ECI code (see Table : ECI Codes) and data is
|
||
the data to which this applies. This is in addition to the ECI and data
|
||
specified using the --eci and -d options which must still be present and which
|
||
in effect constitute segment 0. For instance
|
||
|
||
zint -b AZTEC_CODE --eci=9 -d "Κείμενο" --seg1=7,"Текст" --seg2=20,"文章"
|
||
|
||
specifies 3 segments: segment 0 with ECI 9 (Greek), segment 1 with ECI 7
|
||
(Cyrillic), and segment 2 with ECI 20 (Shift JIS). Segments must be consecutive.
|
||
|
||
The symbology must be ECI-aware (see Table : ECI-Aware Symbologies).
|
||
|
||
[zint -b AZTEC --eci=9 -d "Κείμενο" --seg1=7,"Текст" --seg2=20,"文章"]
|
||
|
||
ECIs of zero may be given, in which case Zint will automatically determine an
|
||
ECI if necessary, as described in section 4.10.2 Input Modes and ECI.
|
||
|
||
Multiple segments are not currently supported for use with GS1 data.
|
||
|
||
4.16 Structured Append
|
||
|
||
Structured Append is a method of splitting data among several symbols so that
|
||
they form a sequence that can be scanned and re-assembled in the correct order
|
||
on reading, and is available for Aztec Code, Code One, Data Matrix, DotCode,
|
||
Grid Matrix, MaxiCode, MicroPDF417, PDF417, QR Code and Ultracode.
|
||
|
||
The --structapp option marks a symbol as part of a Structured Append sequence,
|
||
and has the format
|
||
|
||
--structapp=I,C[,ID]
|
||
|
||
[zint -b DATAMATRIX -d "2nd of 3" --structapp="2,3,5006"]
|
||
|
||
where I is the index (position) of the symbol in the Structured Append sequence,
|
||
C is the count or total number of symbols in the sequence, and ID is an optional
|
||
identifier (not available for Code One, DotCode or MaxiCode) that is the same
|
||
for all symbols belonging to the same sequence. The index is 1-based and goes
|
||
from 1 to count. Count must be 2 or more. See the individual symbologies for
|
||
further details.
|
||
|
||
4.17 Help Options
|
||
|
||
There are three help options which give information about how to use the command
|
||
line. The -h or --help option will display a list of all of the valid options
|
||
available, and also gives the exact version of the software (the version by
|
||
itself can be displayed with -v or --version).
|
||
|
||
The -t or --types option gives the table of symbologies along with the symbol ID
|
||
numbers and names.
|
||
|
||
The -e or --ecinos option gives a list of the ECI codes.
|
||
|
||
4.18 Other Output Options
|
||
|
||
For linear barcodes the text present in the output image can be removed by using
|
||
the --notext option.
|
||
|
||
The text can be set to bold using the --bold option, or a smaller font can be
|
||
substituted using the --small option. The --bold and --small options can be used
|
||
together if required, but only for vector output.
|
||
|
||
[zint --bold -d "This Text" --small]
|
||
|
||
Zint can output a representation of the symbol data as a set of hexadecimal
|
||
values if asked to output to a text file ("*.txt") or if given the option
|
||
--filetype=txt. This can be used for test and diagnostic purposes.
|
||
|
||
The --cmyk option is specific to output in Encapsulated PostScript and TIF, and
|
||
converts the RGB colours used to the CMYK colour space. Setting custom colours
|
||
at the command line will still need to be done in RRGGBB format.
|
||
|
||
Additional options are available which are specific to certain symbologies.
|
||
These may, for example, control the amount of error correction data or the size
|
||
of the symbol. These options are discussed in section 6. Types of Symbology of
|
||
this guide.
|
||
|
||
5. Using the API
|
||
|
||
Zint has been written using the C language and has an API for use with C/C++
|
||
language programs. A Qt interface is available in the "backend_qt"
|
||
sub-directory, and a Tcl interface is available in the "backend_tcl"
|
||
sub-directory.
|
||
|
||
The libzint API has been designed to be very similar to that used by the GNU
|
||
Barcode package. This allows easy migration from GNU Barcode to Zint. Zint,
|
||
however, uses none of the same function names or option names as GNU Barcode.
|
||
This allows you to use both packages in your application without conflict if you
|
||
wish.
|
||
|
||
5.1 Creating and Deleting Symbols
|
||
|
||
The symbols manipulated by Zint are held in a zint_symbol structure defined in
|
||
"zint.h". These symbols are created with the ZBarcode_Create() function and
|
||
deleted using the ZBarcode_Delete() function. For example the following code
|
||
creates and then deletes a symbol:
|
||
|
||
#include <zint.h>
|
||
#include <stdio.h>
|
||
int main()
|
||
{
|
||
struct zint_symbol *my_symbol;
|
||
my_symbol = ZBarcode_Create();
|
||
if (my_symbol != NULL) {
|
||
printf("Symbol successfully created!\n");
|
||
}
|
||
ZBarcode_Delete(my_symbol);
|
||
return 0;
|
||
}
|
||
|
||
When compiling this code it will need to be linked with the libzint library
|
||
using the -lzint option:
|
||
|
||
gcc -o simple simple.c -lzint
|
||
|
||
5.2 Encoding and Saving to File
|
||
|
||
To encode data in a barcode use the ZBarcode_Encode() function. To write the
|
||
symbol to a file use the ZBarcode_Print() function. For example the following
|
||
code takes a string from the command line and outputs a Code 128 symbol in a PNG
|
||
file named "out.png" (or a GIF file called "out.gif" if libpng is not present)
|
||
in the current working directory:
|
||
|
||
#include <zint.h>
|
||
int main(int argc, char **argv)
|
||
{
|
||
struct zint_symbol *my_symbol;
|
||
my_symbol = ZBarcode_Create();
|
||
ZBarcode_Encode(my_symbol, argv[1], 0);
|
||
ZBarcode_Print(my_symbol, 0);
|
||
ZBarcode_Delete(my_symbol);
|
||
return 0;
|
||
}
|
||
|
||
This can also be done in one stage using the ZBarcode_Encode_and_Print()
|
||
function as shown in the next example:
|
||
|
||
#include <zint.h>
|
||
int main(int argc, char **argv)
|
||
{
|
||
struct zint_symbol *my_symbol;
|
||
my_symbol = ZBarcode_Create();
|
||
ZBarcode_Encode_and_Print(my_symbol, argv[1], 0, 0);
|
||
ZBarcode_Delete(my_symbol);
|
||
return 0;
|
||
}
|
||
|
||
Note that when using the API, the input data is assumed to be 8-bit binary
|
||
unless the input_mode variable in the zint_symbol structure is set - see 5.10
|
||
Setting the Input Mode for details.
|
||
|
||
5.3 Encoding and Printing Functions in Depth
|
||
|
||
The functions for encoding and printing barcodes are defined as:
|
||
|
||
int ZBarcode_Encode(struct zint_symbol *symbol,
|
||
const unsigned char *source, int length);
|
||
|
||
int ZBarcode_Encode_File(struct zint_symbol *symbol,
|
||
const char *filename);
|
||
|
||
int ZBarcode_Print(struct zint_symbol *symbol, int rotate_angle);
|
||
|
||
int ZBarcode_Encode_and_Print(struct zint_symbol *symbol,
|
||
const unsigned char *source, int length, int rotate_angle);
|
||
|
||
int ZBarcode_Encode_File_and_Print(struct zint_symbol *symbol,
|
||
const char *filename, int rotate_angle);
|
||
|
||
In these definitions length can be used to set the length of the input string.
|
||
This allows the encoding of NUL (ASCII 0) characters in those symbologies which
|
||
allow this. A value of 0 will disable this usage and Zint will encode data up to
|
||
the first NUL character in the input string, which must be present.
|
||
|
||
The rotate_angle value can be used to rotate the image when outputting. Valid
|
||
values are 0, 90, 180 and 270.
|
||
|
||
The ZBarcode_Encode_File() and ZBarcode_Encode_File_and_Print() functions can be
|
||
used to encode data read directly from a text file where the filename is given
|
||
in the NUL-terminated filename string.
|
||
|
||
If printing more than one barcode, the zint_symbol structure may be re-used by
|
||
calling the ZBarcode_Clear() function after each barcode to free any output
|
||
buffers allocated. The zint_symbol input variables must be reset.
|
||
|
||
5.4 Buffering Symbols in Memory (raster)
|
||
|
||
In addition to saving barcode images to file Zint allows you to access a
|
||
representation of the resulting bitmap image in memory. The following functions
|
||
allow you to do this:
|
||
|
||
int ZBarcode_Buffer(struct zint_symbol *symbol, int rotate_angle);
|
||
|
||
int ZBarcode_Encode_and_Buffer(struct zint_symbol *symbol,
|
||
const unsigned char *source, int length, int rotate_angle);
|
||
|
||
int ZBarcode_Encode_File_and_Buffer(struct zint_symbol *symbol,
|
||
const char *filename, int rotate_angle);
|
||
|
||
The arguments here are the same as above. The difference is that instead of
|
||
saving the image to a file it is placed in an unsigned character array. The
|
||
bitmap pointer is set to the first memory location in the array and the values
|
||
barcode_width and barcode_height indicate the size of the resulting image in
|
||
pixels. Rotation and colour options can be used with the buffer functions in the
|
||
same way as when saving to a file. The pixel data can be extracted from the
|
||
array by the method shown in the example below where render_pixel() is assumed
|
||
to be a function for drawing a pixel on the screen implemented by the external
|
||
application:
|
||
|
||
int row, col, i = 0;
|
||
int red, blue, green;
|
||
|
||
for (row = 0; row < my_symbol->bitmap_height; row++) {
|
||
for (col = 0; col < my_symbol->bitmap_width; col++) {
|
||
red = (int) my_symbol->bitmap[i];
|
||
green = (int) my_symbol->bitmap[i + 1];
|
||
blue = (int) my_symbol->bitmap[i + 2];
|
||
render_pixel(row, col, red, green, blue);
|
||
i += 3;
|
||
}
|
||
}
|
||
|
||
Where speed is important, the buffer can be returned instead in a more compact
|
||
intermediate form using the output option OUT_BUFFER_INTERMEDIATE. Here each
|
||
byte is an ASCII value: '1' for foreground colour and '0' for background colour,
|
||
except for Ultracode, which also uses colour codes: 'W' for white, 'C' for cyan,
|
||
'B' for blue, 'M' for magenta, 'R' for red, 'Y' for yellow, 'G' for green, and
|
||
'K' for black. The loop for accessing the data is then:
|
||
|
||
int row, col, i = 0;
|
||
|
||
for (row = 0; row < my_symbol->bitmap_height; row++) {
|
||
for (col = 0; col < my_symbol->bitmap_width; col++) {
|
||
render_pixel(row, col, my_symbol->bitmap[i]);
|
||
i++;
|
||
}
|
||
}
|
||
|
||
5.5 Buffering Symbols in Memory (vector)
|
||
|
||
Symbols can also be saved to memory in a vector representation as well as a
|
||
bitmap one. The following functions, exactly analogous to the ones above, allow
|
||
you to do this:
|
||
|
||
int ZBarcode_Buffer_Vector(struct zint_symbol *symbol, int rotate_angle);
|
||
|
||
int ZBarcode_Encode_and_Buffer_Vector(struct zint_symbol *symbol,
|
||
const unsigned char *source, int length, int rotate_angle);
|
||
|
||
int ZBarcode_Encode_File_and_Buffer_Vector(struct zint_symbol *symbol,
|
||
const char *filename, int rotate_angle);
|
||
|
||
Here the vector pointer is set to a header which contains pointers to lists of
|
||
structures representing the various elements of the barcode: rectangles,
|
||
hexagons, strings and circles. To draw the barcode, each of the element types is
|
||
iterated in turn, and using the information stored is drawn by a rendering
|
||
system. For instance, to draw a barcode using a rendering system with
|
||
prepare_canvas(), draw_rect(), draw_hexagon(), draw_string(), and draw_circle()
|
||
routines available:
|
||
|
||
struct zint_vector_rect *rect;
|
||
struct zint_vector_hexagon *hexagon;
|
||
struct zint_vector_string *string;
|
||
struct zint_vector_circle *circle;
|
||
|
||
prepare_canvas(my_symbol->vector->width, my_symbol->vector->height,
|
||
my_symbol->scale, my_symbol->fgcolour, my_symbol->bgcolor,
|
||
rotate_angle);
|
||
|
||
for (rect = my_symbol->vector->rectangles; rect; rect = rect->next) {
|
||
draw_rect(rect->x, rect->y, rect->width, rect->height,
|
||
rect->colour);
|
||
}
|
||
for (hexagon = my_symbol->vector->hexagons; hexagon; hexagon = hexagon->next) {
|
||
draw_hexagon(hexagon->x, hexagon->y, hexagon->diameter,
|
||
hexagon->rotation);
|
||
}
|
||
for (string = my_symbol->vector->strings; string; string = string->next) {
|
||
draw_string(string->x, string->y, string->fsize,
|
||
string->rotation, string->halign,
|
||
string->text, string->length);
|
||
}
|
||
for (circle = my_symbol->vector->circles; circle; circle = circle->next) {
|
||
draw_circle(circle->x, circle->y, circle->diameter,
|
||
circle->width, circle->colour);
|
||
}
|
||
|
||
5.6 Setting Options
|
||
|
||
So far our application is not very useful unless we plan to only make Code 128
|
||
symbols and we don’t mind that they only save to "out.png". As with the CLI
|
||
program, of course, these options can be altered. The way this is done is by
|
||
altering the contents of the zint_symbol structure between the creation and
|
||
encoding stages. The zint_symbol structure consists of the following variables:
|
||
|
||
---------------------------------------------------------------------------------
|
||
Variable Name Type Meaning Default Value
|
||
--------------------- ------------ ---------------------------- -----------------
|
||
symbology integer Symbol to use (see 5.8 BARCODE_CODE128
|
||
Specifying a Symbology).
|
||
|
||
height float Symbol height, excluding Symbol dependent
|
||
fixed width-to-height
|
||
symbols.[6]
|
||
|
||
scale float Scale factor for adjusting 1.0
|
||
size of image.
|
||
|
||
whitespace_width integer Horizontal whitespace width. 0
|
||
|
||
whitespace_height integer Vertical whitespace height. 0
|
||
|
||
border_width integer Border width. 0
|
||
|
||
output_options integer Set various output file 0 (none)
|
||
parameters (see 5.9
|
||
Adjusting Other Output
|
||
Options).
|
||
|
||
fgcolour character Foreground (ink) colour as "000000"
|
||
string RGB/RGBA hexadecimal string.
|
||
Must be 6 or 8 characters
|
||
followed by a terminating
|
||
NUL.
|
||
|
||
bgcolour character Background (paper) colour as "ffffff"
|
||
string RGB/RGBA hexadecimal string.
|
||
Must be 6 or 8 characters
|
||
followed by a terminating
|
||
NUL.
|
||
|
||
fgcolor pointer Points to fgcolour allowing
|
||
alternate spelling.
|
||
|
||
bgcolor pointer Points to bgcolour allowing
|
||
alternate spelling.
|
||
|
||
outfile character Contains the name of the "out.png"
|
||
string file to output a resulting
|
||
barcode symbol to. Must end
|
||
in .png, .gif, .bmp, .emf,
|
||
.eps, .pcx, .svg, .tif or
|
||
.txt followed by a
|
||
terminating NUL.
|
||
|
||
primary character Primary message data for "" (empty)
|
||
string more complex symbols, with a
|
||
terminating NUL.
|
||
|
||
option_1 integer Symbol specific options. -1
|
||
|
||
option_2 integer Symbol specific options. 0
|
||
|
||
option_3 integer Symbol specific options. 0
|
||
|
||
show_hrt integer Set to 0 to hide text. 1
|
||
|
||
input_mode integer Set encoding of input data DATA_MODE
|
||
(see 5.10 Setting the Input
|
||
Mode).
|
||
|
||
eci integer Extended Channel 0 (none)
|
||
Interpretation code.
|
||
|
||
dot_size float Diameter of dots used in 4.0 / 5.0
|
||
dotty mode.
|
||
|
||
guard_descent float Height of guard bar descent 5.0
|
||
(EAN/UPC only).
|
||
|
||
structapp Structured Mark a symbol as part of a count 0
|
||
Append sequence of symbols. (disabled)
|
||
structure
|
||
|
||
warn_level integer Affects error/warning value WARN_DEFAULT
|
||
returned by Zint API (see
|
||
5.7 Handling Errors).
|
||
|
||
text unsigned Human Readable Text, which "" (empty)
|
||
character usually consists of input (output only)
|
||
string data plus one more check
|
||
digit. Uses UTF-8
|
||
formatting, with a
|
||
terminating NUL.
|
||
|
||
rows integer Number of rows used by the (output only)
|
||
symbol.
|
||
|
||
width integer Width of the generated (output only)
|
||
symbol.
|
||
|
||
encoding_data array of Representation of the (output only)
|
||
unsigned encoded data.
|
||
character
|
||
arrays
|
||
|
||
row_height array of Representation of the height (output only)
|
||
floats of a row.
|
||
|
||
errtxt character Error message in the event (output only)
|
||
string that an error occurred, with
|
||
a terminating NUL.
|
||
|
||
bitmap pointer to Pointer to stored bitmap (output only)
|
||
unsigned image.
|
||
character
|
||
array
|
||
|
||
bitmap_width integer Width of stored bitmap image (output only)
|
||
(in pixels).
|
||
|
||
bitmap_height integer Height of stored bitmap (output only)
|
||
image (in pixels).
|
||
|
||
alphamap pointer to Pointer to array (output only)
|
||
unsigned representing alpha channel
|
||
character (or NULL if no alpha channel
|
||
array needed).
|
||
|
||
bitmap_byte_length integer Size of BMP bitmap data. (output only)
|
||
|
||
vector pointer to Pointer to vector header (output only)
|
||
vector containing pointers to
|
||
structure vector elements.
|
||
---------------------------------------------------------------------------------
|
||
|
||
: Table : API Structure zint_symbol
|
||
|
||
To alter these values use the syntax shown in the example below. This code has
|
||
the same result as the previous example except the output is now taller and
|
||
plotted in green.
|
||
|
||
#include <zint.h>
|
||
#include <string.h>
|
||
int main(int argc, char **argv)
|
||
{
|
||
struct zint_symbol *my_symbol;
|
||
my_symbol = ZBarcode_Create();
|
||
strcpy(my_symbol->fgcolour, "00ff00");
|
||
my_symbol->height = 400.0f;
|
||
ZBarcode_Encode_and_Print(my_symbol, argv[1], 0, 0);
|
||
ZBarcode_Delete(my_symbol);
|
||
return 0;
|
||
}
|
||
|
||
Background removal for EMF, EPS, GIF, PNG, SVG and TIF files can be achieved by
|
||
setting the background alpha to "00" where the values for R, G and B will be
|
||
ignored:
|
||
|
||
strcpy(my_symbol->bgcolour, "55555500");
|
||
|
||
5.7 Handling Errors
|
||
|
||
If errors occur during encoding a non-zero integer value is passed back to the
|
||
calling application. In addition the errtxt variable is used to give a message
|
||
detailing the nature of the error. The errors generated by Zint are given in the
|
||
table below:
|
||
|
||
-------------------------------------------------------------------------------
|
||
Return Value Meaning
|
||
------------------------------ ------------------------------------------------
|
||
ZINT_WARN_INVALID_OPTION One of the values in zint_struct was set
|
||
incorrectly but Zint has made a guess at what it
|
||
should have been and generated a barcode
|
||
accordingly.
|
||
|
||
ZINT_WARN_USES_ECI Zint has automatically inserted an ECI
|
||
character. The symbol may not be readable with
|
||
some readers.
|
||
|
||
ZINT_WARN_NONCOMPLIANT The symbol was created but is not compliant with
|
||
certain standards set in its specification (e.g.
|
||
height, GS1 AI data lengths).
|
||
|
||
ZINT_ERROR Marks the divide between warnings and errors.
|
||
For return values greater than or equal to this
|
||
no symbol (or only an incomplete symbol) is
|
||
generated.
|
||
|
||
ZINT_ERROR_TOO_LONG The input data is too long or too short for the
|
||
selected symbology. No symbol has been
|
||
generated.
|
||
|
||
ZINT_ERROR_INVALID_DATA The data to be encoded includes characters which
|
||
are not permitted by the selected symbology
|
||
(e.g. alphabetic characters in an EAN symbol).
|
||
No symbol has been generated.
|
||
|
||
ZINT_ERROR_INVALID_CHECK Data with an incorrect check digit has been
|
||
entered. No symbol has been generated.
|
||
|
||
ZINT_ERROR_INVALID_OPTION One of the values in zint_struct was set
|
||
incorrectly and Zint was unable to guess what it
|
||
should have been. No symbol has been generated.
|
||
|
||
ZINT_ERROR_ENCODING_PROBLEM A problem has occurred during encoding of the
|
||
data. This should never happen. Please contact
|
||
the developer if you encounter this error.
|
||
|
||
ZINT_ERROR_FILE_ACCESS Zint was unable to open the requested output
|
||
file. This is usually a file permissions
|
||
problem.
|
||
|
||
ZINT_ERROR_MEMORY Zint ran out of memory. This should only be a
|
||
problem with legacy systems.
|
||
|
||
ZINT_ERROR_FILE_WRITE Zint failed to write all contents to the
|
||
requested output file. This should only occur if
|
||
the output device becomes full.
|
||
|
||
ZINT_ERROR_USES_ECI Returned if warn_level set to WARN_FAIL_ALL and
|
||
ZINT_WARN_USES_ECI occurs.
|
||
|
||
ZINT_ERROR_NONCOMPLIANT Returned if warn_level set to WARN_FAIL_ALL and
|
||
ZINT_WARN_NONCOMPLIANT occurs.
|
||
-------------------------------------------------------------------------------
|
||
|
||
: Table : API Warning and Error Return Values:
|
||
|
||
To catch errors use an integer variable as shown in the code below:
|
||
|
||
#include <zint.h>
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
int main(int argc, char **argv)
|
||
{
|
||
struct zint_symbol *my_symbol;
|
||
int error;
|
||
my_symbol = ZBarcode_Create();
|
||
strcpy(my_symbol->fgcolour, "nonsense");
|
||
error = ZBarcode_Encode_and_Print(my_symbol, argv[1], 0, 0);
|
||
if (error != 0) {
|
||
/* some warning or error occurred */
|
||
printf("%s\n", my_symbol->errtxt);
|
||
}
|
||
if (error >= ZINT_ERROR) {
|
||
/* stop now */
|
||
ZBarcode_Delete(my_symbol);
|
||
return 1;
|
||
}
|
||
/* otherwise carry on with the rest of the application */
|
||
ZBarcode_Delete(my_symbol);
|
||
return 0;
|
||
}
|
||
|
||
This code will exit with the appropriate message:
|
||
|
||
Error 653: Malformed foreground colour 'NONSENSE' (hexadecimal only)
|
||
|
||
To treat all warnings as errors, set symbol->warn_level to WARN_FAIL_ALL.
|
||
|
||
5.8 Specifying a Symbology
|
||
|
||
Symbologies can be specified by number or by name as shown in the Table
|
||
: Barcode Types (Symbologies). For example
|
||
|
||
symbol->symbology = BARCODE_LOGMARS;
|
||
|
||
means the same as
|
||
|
||
symbol->symbology = 50;
|
||
|
||
5.9 Adjusting Other Output Options
|
||
|
||
The output_options variable can be used to adjust various aspects of the output
|
||
file. To select more than one option from the table below simply OR them
|
||
together when adjusting this value:
|
||
|
||
my_symbol->output_options |= BARCODE_BIND | READER_INIT;
|
||
|
||
-------------------------------------------------------------------------------
|
||
Value Effect
|
||
-------------------------- ----------------------------------------------------
|
||
0 No options selected.
|
||
|
||
BARCODE_BIND Boundary bars above and below the symbol and between
|
||
rows if stacking multiple symbols.[7]
|
||
|
||
BARCODE_BOX Add a box surrounding the symbol and whitespace.
|
||
|
||
BARCODE_STDOUT Output the file to stdout.
|
||
|
||
READER_INIT Create as a Reader Initialisation (Programming)
|
||
symbol.
|
||
|
||
SMALL_TEXT Use a smaller font for the Human Readable Text.
|
||
|
||
BOLD_TEXT Embolden the Human Readable Text.
|
||
|
||
CMYK_COLOUR Select the CMYK colour space option for Encapsulated
|
||
PostScript and TIF files.
|
||
|
||
BARCODE_DOTTY_MODE Plot a matrix symbol using dots rather than squares.
|
||
|
||
GS1_GS_SEPARATOR Use GS instead of FNC1 as GS1 separator (Data Matrix
|
||
only).
|
||
|
||
OUT_BUFFER_INTERMEDIATE Return the bitmap buffer as ASCII values instead of
|
||
separate colour channels (OUT_BUFFER only).
|
||
|
||
BARCODE_QUIET_ZONES Add compliant quiet zones (additional to any
|
||
specified whitespace).[8]
|
||
|
||
BARCODE_NO_QUIET_ZONES Disable quiet zones, notably those with defaults.
|
||
|
||
COMPLIANT_HEIGHT Warn if height not compliant and use standard height
|
||
(if any) as default.
|
||
-------------------------------------------------------------------------------
|
||
|
||
: Table : API output_options Values
|
||
|
||
5.10 Setting the Input Mode
|
||
|
||
The way in which the input data is encoded can be set using the input_mode
|
||
property. Valid values are shown in the table below.
|
||
|
||
-------------------------------------------------------------------------------
|
||
Value Effect
|
||
------------------- -----------------------------------------------------------
|
||
DATA_MODE Uses full 8-bit range interpreted as binary data.
|
||
|
||
UNICODE_MODE Uses UTF-8 input.
|
||
|
||
GS1_MODE Encodes GS1 data using FNC1 characters.
|
||
|
||
The above are exclusive, the following optional and OR-ed.
|
||
|
||
ESCAPE_MODE Process input data for escape sequences.
|
||
|
||
GS1PARENS_MODE Parentheses (round brackets) used in GS1 data instead of
|
||
square brackets to delimit Application Identifiers
|
||
(parentheses must not otherwise occur in the data).
|
||
|
||
GS1NOCHECK_MODE Do not check GS1 data for validity, i.e. suppress checks
|
||
for valid AIs and data lengths. Invalid characters
|
||
(e.g. control characters, extended ASCII characters) are
|
||
still checked for.
|
||
|
||
HEIGHTPERROW_MODE Interpret the height variable as per-row rather than as
|
||
overall height.
|
||
|
||
FAST_MODE Use faster if less optimal encodation for symbologies that
|
||
support it (currently DATAMATRIX only).
|
||
-------------------------------------------------------------------------------
|
||
|
||
: Table : API input_mode Values
|
||
|
||
The default mode is DATA_MODE. (Note that this differs from the default for the
|
||
CLI and GUI, which is UNICODE_MODE.)
|
||
|
||
DATA_MODE, UNICODE_MODE and GS1_MODE are mutually exclusive, whereas
|
||
ESCAPE_MODE, GS1PARENS_MODE, GS1NOCHECK_MODE, HEIGHTPERROW_MODE and FAST_MODE
|
||
are optional. So, for example, you can set
|
||
|
||
my_symbol->input_mode = UNICODE_MODE | ESCAPE_MODE;
|
||
|
||
or
|
||
|
||
my_symbol->input_mode = GS1_MODE | GS1PARENS_MODE | GS1NOCHECK_MODE;
|
||
|
||
whereas
|
||
|
||
my_symbol->input_mode = DATA_MODE | GS1_MODE;
|
||
|
||
is not valid.
|
||
|
||
Permissible escape sequences are listed in Table : Escape Sequences. An example
|
||
of GS1PARENS_MODE usage is given in section 6.1.10.3 GS1-128.
|
||
|
||
GS1NOCHECK_MODE is for use with legacy systems that have data that does not
|
||
conform to the current GS1 standard. Printable ASCII input is still checked for,
|
||
as is the validity of GS1 data specified without AIs (e.g. linear data for GS1
|
||
DataBar Omnidirectional/Limited/etc.).
|
||
|
||
For HEIGHTPERROW_MODE, see --heightperrow in section 4.4 Adjusting Height. The
|
||
height variable should be set to the desired per-row value on input (it will be
|
||
set to the overall height on output).
|
||
|
||
5.11 Multiple Segments
|
||
|
||
For input data requiring multiple ECIs, the following functions may be used:
|
||
|
||
int ZBarcode_Encode_Segs(struct zint_symbol *symbol,
|
||
const struct zint_seg segs[], const int seg_count);
|
||
|
||
int ZBarcode_Encode_Segs_and_Print(struct zint_symbol *symbol,
|
||
const struct zint_seg segs[], const int seg_count, int rotate_angle);
|
||
|
||
int ZBarcode_Encode_Segs_and_Buffer(struct zint_symbol *symbol,
|
||
const struct zint_seg segs[], const int seg_count, int rotate_angle);
|
||
|
||
int ZBarcode_Encode_Segs_and_Buffer_Vector(struct zint_symbol *symbol,
|
||
const struct zint_seg segs[], const int seg_count, int rotate_angle);
|
||
|
||
These are direct analogues of the previously mentioned ZBarcode_Encode(),
|
||
ZBarcode_Encode_and_Print(), ZBarcode_Encode_and_Buffer() and
|
||
ZBarcode_Encode_and_Buffer_Vector() respectively, where instead of a pair
|
||
consisting of "source, length", a pair consisting of "segs, seg_count" is given,
|
||
with segs being an array of struct zint_seg segments and seg_count being the
|
||
number of elements it contains. The zint_seg structure is of the form:
|
||
|
||
struct zint_seg {
|
||
unsigned char *source; /* Data to encode */
|
||
int length; /* Length of `source`. If 0, `source` must be
|
||
NUL-terminated */
|
||
int eci; /* Extended Channel Interpretation */
|
||
};
|
||
|
||
The symbology must support ECIs (see Table : ECI-Aware Symbologies). For
|
||
example:
|
||
|
||
#include <zint.h>
|
||
int main(int argc, char **argv)
|
||
{
|
||
struct zint_seg segs[] = {
|
||
{ "Κείμενο", 0, 9 },
|
||
{ "Текст", 0, 7 },
|
||
{ "文章", 0, 20 }
|
||
};
|
||
struct zint_symbol *my_symbol;
|
||
my_symbol = ZBarcode_Create();
|
||
my_symbol->symbology = BARCODE_AZTEC;
|
||
my_symbol->input_mode = UNICODE_MODE;
|
||
ZBarcode_Encode_Segs(my_symbol, segs, 3);
|
||
ZBarcode_Print(my_symbol, 0);
|
||
ZBarcode_Delete(my_symbol);
|
||
return 0;
|
||
}
|
||
|
||
A maximum of 256 segments may be specified. Use of multiple segments with GS1
|
||
data is not currently supported.
|
||
|
||
5.12 Verifying Symbology Availability
|
||
|
||
An additional function available in the API is:
|
||
|
||
int ZBarcode_ValidID(int symbol_id);
|
||
|
||
which allows you to check whether a given symbology is available, returning a
|
||
non-zero value if so. For example:
|
||
|
||
if (ZBarcode_ValidID(BARCODE_PDF417) != 0) {
|
||
printf("PDF417 available\n");
|
||
} else {
|
||
printf("PDF417 not available\n");
|
||
}
|
||
|
||
Another function that may be useful is:
|
||
|
||
int ZBarcode_BarcodeName(int symbol_id, char name[32]);
|
||
|
||
which copies the name of a symbology into the supplied name buffer, which should
|
||
be 32 characters in length. The name is NUL-terminated, and zero is returned on
|
||
success. For instance:
|
||
|
||
char name[32];
|
||
if (ZBarcode_BarcodeName(BARCODE_PDF417, name) == 0) {
|
||
printf("%s\n", name);
|
||
}
|
||
|
||
will print BARCODE_PDF417.
|
||
|
||
5.13 Checking Symbology Capabilities
|
||
|
||
It can be useful for frontend programs to know the capabilities of a symbology.
|
||
This can be determined using another additional function:
|
||
|
||
unsigned int ZBarcode_Cap(int symbol_id, unsigned int cap_flag);
|
||
|
||
by OR-ing the flags below in the cap_flag argument and checking the return to
|
||
see which are set.
|
||
|
||
-------------------------------------------------------------------------------
|
||
Value Meaning
|
||
--------------------------- ---------------------------------------------------
|
||
ZINT_CAP_HRT Can the symbology print Human Readable Text?
|
||
|
||
ZINT_CAP_STACKABLE Is the symbology stackable?
|
||
|
||
ZINT_CAP_EXTENDABLE Is the symbology extendable with add-on data? (i.e.
|
||
is it EAN/UPC?)
|
||
|
||
ZINT_CAP_COMPOSITE Does the symbology support composite data? (see 6.3
|
||
GS1 Composite Symbols (ISO 24723) below)
|
||
|
||
ZINT_CAP_ECI Does the symbology support Extended Channel
|
||
Interpretations?
|
||
|
||
ZINT_CAP_GS1 Does the symbology support GS1 data?
|
||
|
||
ZINT_CAP_DOTTY Can the symbology be outputted as dots?
|
||
|
||
ZINT_CAP_QUIET_ZONES Does the symbology have default quiet zones?
|
||
|
||
ZINT_CAP_FIXED_RATIO Does the symbology have a fixed width-to-height
|
||
(aspect) ratio?
|
||
|
||
ZINT_CAP_READER_INIT Does the symbology support Reader Initialisation?
|
||
|
||
ZINT_CAP_FULL_MULTIBYTE Is the ZINT_FULL_MULTIBYTE option applicable?
|
||
|
||
ZINT_CAP_MASK Is mask selection applicable?
|
||
|
||
ZINT_CAP_STRUCTAPP Does the symbology support Structured Append?
|
||
|
||
ZINT_CAP_COMPLIANT_HEIGHT Does the symbology have a compliant height defined?
|
||
-------------------------------------------------------------------------------
|
||
|
||
: Table : API Capability Flags:
|
||
|
||
For example:
|
||
|
||
unsigned int cap = ZBarcode_Cap(BARCODE_PDF417, ZINT_CAP_HRT | ZINT_CAP_ECI);
|
||
if (cap & ZINT_CAP_HRT) {
|
||
printf("PDF417 supports HRT\n");
|
||
} else {
|
||
printf("PDF417 does not support HRT\n");
|
||
}
|
||
if (cap & ZINT_CAP_ECI) {
|
||
printf("PDF417 supports ECI\n");
|
||
} else {
|
||
printf("PDF417 does not support ECI\n");
|
||
}
|
||
|
||
5.14 Zint Version
|
||
|
||
Lastly, the version of the Zint library linked to is returned by:
|
||
|
||
int ZBarcode_Version();
|
||
|
||
The version parts are separated by hundreds. For instance, version "2.9.1" is
|
||
returned as "20901".
|
||
|
||
6. Types of Symbology
|
||
|
||
6.1 One-Dimensional Symbols
|
||
|
||
One-dimensional or linear symbols are what most people associate with the term
|
||
barcode. They consist of a number of bars and a number of spaces of differing
|
||
widths.
|
||
|
||
6.1.1 Code 11
|
||
|
||
[zint -b CODE11 -d "9212320967"]
|
||
|
||
Developed by Intermec in 1977, Code 11 is similar to Code 2 of 5 Matrix and is
|
||
primarily used in telecommunications. The symbol can encode data consisting of
|
||
the digits 0-9 and the dash character (-) up to a maximum of 121 characters. Two
|
||
modulo-11 check digits are added by default. To add just one check digit, set
|
||
--vers=1 (API option_2 = 1). To add no check digits, set --vers=2 (API
|
||
option_2 = 2).
|
||
|
||
6.1.2 Code 2 of 5
|
||
|
||
Code 2 of 5 is a family of one-dimensional symbols, 8 of which are supported by
|
||
Zint. Note that the names given to these standards alters from one source to
|
||
another so you should take care to ensure that you have the right barcode type
|
||
before using these standards.
|
||
|
||
6.1.2.1 Standard Code 2 of 5
|
||
|
||
[zint -b C25STANDARD -d "9212320967"]
|
||
|
||
Also known as Code 2 of 5 Matrix, this is a self-checking code used in
|
||
industrial applications and photo development. Standard Code 2 of 5 will encode
|
||
numeric input (digits 0-9) up to a maximum of 80 digits. No check digit is added
|
||
by default. To add a check digit, set --vers=1 (API option_2 = 1). To add a
|
||
check digit but not show it in the Human Readable Text, set --vers=2 (API
|
||
option_2 = 2).
|
||
|
||
6.1.2.2 IATA Code 2 of 5
|
||
|
||
[zint -b C25IATA -d "9212320967"]
|
||
|
||
Used for baggage handling in the air-transport industry by the International Air
|
||
Transport Agency, this self-checking code will encode numeric input (digits 0-9)
|
||
up to a maximum of 45 digits. No check digit is added by default. Check digit
|
||
options are the same as for 6.1.2.1 Standard Code 2 of 5.
|
||
|
||
6.1.2.3 Industrial Code 2 of 5
|
||
|
||
[zint -b C25IND -d "9212320967"]
|
||
|
||
Industrial Code 2 of 5 can encode numeric input (digits 0-9) up to a maximum of
|
||
45 digits. No check digit is added by default. Check digit options are the same
|
||
as for 6.1.2.1 Standard Code 2 of 5.
|
||
|
||
6.1.2.4 Interleaved Code 2 of 5 (ISO 16390)
|
||
|
||
[zint -b C25INTER --compliantheight -d "9212320967"]
|
||
|
||
This self-checking symbology encodes pairs of numbers, and so can only encode an
|
||
even number of digits (0-9). If an odd number of digits is entered a leading
|
||
zero is added by Zint. A maximum of 45 pairs (90 digits) can be encoded. No
|
||
check digit is added by default. Check digit options are the same as for 6.1.2.1
|
||
Standard Code 2 of 5.
|
||
|
||
6.1.2.5 Code 2 of 5 Data Logic
|
||
|
||
[zint -b C25LOGIC -d "9212320967"]
|
||
|
||
Data Logic does not include a check digit by default and can encode numeric
|
||
input (digits 0-9) up to a maximum of 80 digits. Check digit options are the
|
||
same as for 6.1.2.1 Standard Code 2 of 5.
|
||
|
||
6.1.2.6 ITF-14
|
||
|
||
[zint -b ITF14 --compliantheight -d "9212320967145"]
|
||
|
||
ITF-14, also known as UPC Shipping Container Symbol or Case Code, is based on
|
||
Interleaved Code 2 of 5 and requires a 13-digit numeric input (digits 0-9). One
|
||
modulo-10 check digit is added by Zint.
|
||
|
||
If no border option is specified Zint defaults to adding a bounding box with a
|
||
border width of 5. This behaviour can be overridden by using the --bind option
|
||
(API output_options |= BARCODE_BIND). Similarly the border width can be
|
||
overridden using --border (API border_width). If a symbol with no border is
|
||
required this can be achieved by explicitly setting the border type to box (or
|
||
bind) and leaving the border width 0.
|
||
|
||
[zint -b ITF14 --box --compliantheight -d "9212320967145"]
|
||
|
||
6.1.2.7 Deutsche Post Leitcode
|
||
|
||
[zint -b DPLEIT -d "9212320967145"]
|
||
|
||
Leitcode is based on Interleaved Code 2 of 5 and is used by Deutsche Post for
|
||
mailing purposes. Leitcode requires a 13-digit numerical input and includes a
|
||
check digit.
|
||
|
||
6.1.2.8 Deutsche Post Identcode
|
||
|
||
[zint -b DPIDENT -d "91232096712"]
|
||
|
||
Identcode is based on Interleaved Code 2 of 5 and is used by Deutsche Post for
|
||
mailing purposes. Identcode requires an 11-digit numerical input and includes a
|
||
check digit.
|
||
|
||
6.1.3 UPC (Universal Product Code) (ISO 15420)
|
||
|
||
6.1.3.1 UPC Version A
|
||
|
||
[zint -b UPCA --compliantheight -d "72527270270"]
|
||
|
||
UPC-A is used in the United States for retail applications. The symbol requires
|
||
an 11-digit article number. The check digit is calculated by Zint. In addition
|
||
EAN-2 and EAN-5 add-on symbols can be added using the + character. For example,
|
||
to draw a UPC-A symbol with the data 72527270270 with an EAN-5 add-on showing
|
||
the data 12345 use the command:
|
||
|
||
zint -b UPCA -d 72527270270+12345
|
||
|
||
or using the API encode a data string with the + character included:
|
||
|
||
my_symbol->symbology = BARCODE_UPCA;
|
||
error = ZBarcode_Encode_and_Print(my_symbol, "72527270270+12345", 0, 0);
|
||
|
||
[zint -b UPCA --compliantheight -d "72527270270+12345"]
|
||
|
||
If your input data already includes the check digit symbology BARCODE_UPCA_CHK
|
||
(35) can be used which takes a 12-digit input and validates the check digit
|
||
before encoding.
|
||
|
||
You can adjust the gap between the main symbol and an add-on in multiples of the
|
||
X-dimension by setting --addongap (API option_2) to a value between 9 (default)
|
||
and 12. The height in X-dimensions that the guard bars descend below the main
|
||
bars can be adjusted by setting --guarddescent (API guard_descent) to a value
|
||
between 0 and 20 (default 5).
|
||
|
||
6.1.3.2 UPC Version E
|
||
|
||
[zint -b UPCE --compliantheight -d "1123456"]
|
||
|
||
UPC-E is a zero-compressed version of UPC-A developed for smaller packages. The
|
||
code requires a 6-digit article number (digits 0-9). The check digit is
|
||
calculated by Zint. EAN-2 and EAN-5 add-on symbols can be added using the +
|
||
character as with UPC-A. In addition Zint also supports Number System 1 encoding
|
||
by entering a 7-digit article number stating with the digit 1. For example:
|
||
|
||
zint -b UPCE -d 1123456
|
||
|
||
or
|
||
|
||
my_symbol->symbology = BARCODE_UPCE;
|
||
error = ZBarcode_Encode_and_Print(my_symbol, "1123456", 0, 0);
|
||
|
||
If your input data already includes the check digit symbology BARCODE_UPCE_CHK
|
||
(38) can be used which takes a 7 or 8-digit input and validates the check digit
|
||
before encoding.
|
||
|
||
You can adjust the gap between the main symbol and an add-on in multiples of the
|
||
X-dimension by setting --addongap (API option_2) to a value between 7 (default)
|
||
and 12. The height in X-dimensions that the guard bars descend below the main
|
||
bars can be adjusted by setting --guarddescent (API guard_descent) to a value
|
||
between 0 and 20 (default 5).
|
||
|
||
6.1.4 EAN (European Article Number) (ISO 15420)
|
||
|
||
6.1.4.1 EAN-2, EAN-5, EAN-8 and EAN-13
|
||
|
||
[zint -b EANX --compliantheight -d "4512345678906"]
|
||
|
||
The EAN system is used in retail across Europe and includes standards for EAN-2,
|
||
EAN-5, EAN-8 and EAN-13 which encode 2, 5, 7 or 12-digit numbers respectively.
|
||
Zint will decide which symbology to use depending on the length of the input
|
||
data. In addition EAN-2 and EAN-5 add-on symbols can be added to EAN-8 and
|
||
EAN-13 symbols using the + character as with UPC symbols. For example:
|
||
|
||
zint -b EANX -d 54321
|
||
|
||
[zint -b EANX --compliantheight -d "54321"]
|
||
|
||
will encode a stand-alone EAN-5, whereas
|
||
|
||
zint -b EANX -d 7432365+54321
|
||
|
||
will encode an EAN-8 symbol with an EAN-5 add-on. As before these results can be
|
||
achieved using the API:
|
||
|
||
my_symbol->symbology = BARCODE_EANX;
|
||
|
||
error = ZBarcode_Encode_and_Print(my_symbol, "54321", 0, 0);
|
||
|
||
error = ZBarcode_Encode_and_Print(my_symbol, "7432365+54321", 0, 0);
|
||
|
||
[zint -b EANX --compliantheight -d "7432365+54321"]
|
||
|
||
All of the EAN symbols include check digits which are added by Zint.
|
||
|
||
If you are encoding an EAN-8 or EAN-13 symbol and your data already includes the
|
||
check digit then you can use symbology BARCODE_EANX_CHK (14) which takes an 8 or
|
||
13-digit input and validates the check digit before encoding.
|
||
|
||
Options to adjust the add-on gap and the descent height of guard bars are the
|
||
same as for 6.1.3.2 UPC Version E.
|
||
|
||
6.1.4.2 SBN, ISBN and ISBN-13
|
||
|
||
[zint -b ISBNX --compliantheight -d "9789295055124"]
|
||
|
||
EAN-13 symbols (also known as Bookland EAN-13) can also be produced from 9-digit
|
||
SBN, 10-digit ISBN or 13-digit ISBN-13 data. The relevant check digit needs to
|
||
be present in the input data and will be verified before the symbol is
|
||
generated. In addition EAN-2 and EAN-5 add-on symbols can be added using the +
|
||
character as with UPC symbols, and there are options to adjust the add-on gap
|
||
and the descent height of guard bars - see 6.1.3.2 UPC Version E.
|
||
|
||
6.1.5 Plessey
|
||
|
||
6.1.5.1 UK Plessey
|
||
|
||
[zint -b PLESSEY -d "C64"]
|
||
|
||
Also known as Plessey Code, this symbology was developed by the Plessey Company
|
||
Ltd. in the UK. The symbol can encode data consisting of digits (0-9) or letters
|
||
A-F up to a maximum of 65 characters and includes a CRC check digit.
|
||
|
||
6.1.5.2 MSI Plessey
|
||
|
||
[zint -b MSI_PLESSEY -d "6502" --vers=2]
|
||
|
||
Based on Plessey and developed by MSE Data Corporation, MSI Plessey has a range
|
||
of check digit options that are selectable by setting --vers (API option_2).
|
||
Numeric (digits 0-9) input can be encoded, up to a maximum of 65 digits. The
|
||
table below shows the options available:
|
||
|
||
Value Check Digits
|
||
------- -----------------------------
|
||
0 None
|
||
1 Modulo-10 (Luhn)
|
||
2 Modulo-10 & Modulo-10
|
||
3 Modulo-11 (IBM)
|
||
4 Modulo-11 (IBM) & Modulo-10
|
||
5 Modulo-11 (NCR)
|
||
6 Modulo-11 (NCR) & Modulo-10
|
||
|
||
: Table : MSI Plessey Check Digit Options:
|
||
|
||
To not show the check digit or digits in the Human Readable Text, add 10 to the
|
||
--vers value. For example --vers=12 (API option_2 = 12) will add two hidden
|
||
modulo-10 check digits.
|
||
|
||
6.1.6 Telepen
|
||
|
||
6.1.6.1 Telepen Alpha
|
||
|
||
[zint -b TELEPEN --compliantheight -d "Z80"]
|
||
|
||
Telepen Alpha was developed by SB Electronic Systems Limited and can encode
|
||
ASCII text input, up to a maximum of 30 characters. Telepen includes a
|
||
modulo-127 check digit.
|
||
|
||
6.1.6.2 Telepen Numeric
|
||
|
||
[zint -b TELEPEN_NUM --compliantheight -d "466X33"]
|
||
|
||
Telepen Numeric allows compression of numeric data into a Telepen symbol. Data
|
||
can consist of pairs of numbers or pairs consisting of a numerical digit
|
||
followed an X character. For example: 466333 and 466X33 are valid codes whereas
|
||
46X333 is not (the digit pair "X3" is not valid). Up to 60 digits can be
|
||
encoded. Telepen Numeric includes a modulo-127 check digit which is added by
|
||
Zint.
|
||
|
||
6.1.7 Code 39
|
||
|
||
6.1.7.1 Standard Code 39 (ISO 16388)
|
||
|
||
[zint -b CODE39 --compliantheight -d "1A" --vers=1]
|
||
|
||
Standard Code 39 was developed in 1974 by Intermec. Input data can be up to 85
|
||
characters in length and can include the characters 0-9, A-Z, dash (-), full
|
||
stop (.), space, asterisk (*), dollar ($), slash (/), plus (+) and percent (%).
|
||
The standard does not require a check digit but a modulo-43 check digit can be
|
||
added if required by setting --vers=1 (API option_2 = 1).
|
||
|
||
6.1.7.2 Extended Code 39
|
||
|
||
[zint -b EXCODE39 --compliantheight -d "123.45$@fd"]
|
||
|
||
Also known as Code 39e and Code39+, this symbology expands on Standard Code 39
|
||
to provide support for the full 7-bit ASCII character set. The standard does not
|
||
require a check digit but a modulo-43 check digit can be added if required by
|
||
setting --vers=1 (API option_2 = 1).
|
||
|
||
6.1.7.3 Code 93
|
||
|
||
[zint -b CODE93 --compliantheight -d "C93"]
|
||
|
||
A variation of Extended Code 39, Code 93 also supports full ASCII text. Two
|
||
check characters are added by Zint. By default these check characters are not
|
||
shown in the Human Readable Text, but may be shown by setting --vers=1 (API
|
||
option_2 = 1).
|
||
|
||
6.1.7.4 PZN (Pharmazentralnummer)
|
||
|
||
[zint -b PZN --compliantheight -d "2758089"]
|
||
|
||
PZN is a Code 39 based symbology used by the pharmaceutical industry in Germany.
|
||
PZN encodes a 7-digit number to which Zint will add a modulo-11 check digit.
|
||
|
||
6.1.7.5 LOGMARS
|
||
|
||
[zint -b LOGMARS --compliantheight -d "12345/ABCDE" --vers=1]
|
||
|
||
LOGMARS (Logistics Applications of Automated Marking and Reading Symbols) is a
|
||
variation of the Code 39 symbology used by the US Department of Defense. LOGMARS
|
||
encodes the same character set as Standard Code 39. It does not require a check
|
||
digit but a modulo-43 check digit can be added by setting --vers=1 (API
|
||
option_2 = 1).
|
||
|
||
6.1.7.6 Code 32
|
||
|
||
[zint -b CODE32 --compliantheight -d "14352312"]
|
||
|
||
A variation of Code 39 used by the Italian Ministry of Health (“Ministero della
|
||
Sanità”) for encoding identifiers on pharmaceutical products. This symbology
|
||
requires a numeric input up to 8 digits in length. A check digit is added by
|
||
Zint.
|
||
|
||
6.1.7.7 HIBC Code 39
|
||
|
||
[zint -b HIBC_39 --compliantheight -d "14352312"]
|
||
|
||
This variant adds a leading '+' character and a trailing modulo-49 check digit
|
||
to a standard Code 39 symbol as required by the Health Industry Barcode
|
||
standards.
|
||
|
||
6.1.7.8 Vehicle Identification Number (VIN)
|
||
|
||
[zint -b VIN -d "2FTPX28L0XCA15511" --vers=1]
|
||
|
||
A variation of Code 39 that for vehicle identification numbers used in North
|
||
America (first character '1' to '5') has a check character verification stage. A
|
||
17 character input (0-9, and A-Z excluding 'I', 'O' and 'Q') is required. An
|
||
invisible Import character prefix 'I' can be added by setting --vers=1 (API
|
||
option_2 = 1).
|
||
|
||
6.1.8 Codabar (EN 798)
|
||
|
||
[zint -b CODABAR --compliantheight -d "A37859B"]
|
||
|
||
Also known as NW-7, Monarch, ABC Codabar, USD-4, Ames Code and Code 27, this
|
||
symbology was developed in 1972 by Monarch Marketing Systems for retail
|
||
purposes. The American Blood Commission adopted Codabar in 1977 as the standard
|
||
symbology for blood identification. Codabar can encode up to 60 characters
|
||
starting and ending with the letters A-D and containing between these letters
|
||
the numbers 0-9, dash (-), dollar ($), colon (:), slash (/), full stop (.) or
|
||
plus (+). No check character is generated by default, but a modulo-16 one can be
|
||
added by setting --vers=1 (API option_2 = 1). To have the check character appear
|
||
in the Human Readable Text, set --vers=2 (API option_2 = 2).
|
||
|
||
6.1.9 Pharmacode
|
||
|
||
[zint -b PHARMA --compliantheight -d "130170"]
|
||
|
||
Developed by Laetus, Pharmacode is used for the identification of
|
||
pharmaceuticals. The symbology is able to encode whole numbers between 3 and
|
||
131070.
|
||
|
||
6.1.10 Code 128
|
||
|
||
6.1.10.1 Standard Code 128 (ISO 15417)
|
||
|
||
[zint -b CODE128 --bind -d "130170X178"]
|
||
|
||
One of the most ubiquitous one-dimensional barcode symbologies, Code 128 was
|
||
developed in 1981 by Computer Identics. This symbology supports full ASCII text
|
||
and uses a three-mode system to compress the data into a smaller symbol. Zint
|
||
automatically switches between modes and adds a modulo-103 check digit. Code 128
|
||
is the default barcode symbology used by Zint. In addition Zint supports the
|
||
encoding of ISO/IEC 8859-1 (non-English) characters in Code 128 symbols. The
|
||
ISO/IEC 8859-1 character set is shown in Appendix A.2 Latin Alphabet No. 1
|
||
(ISO/IEC 8859-1).
|
||
|
||
6.1.10.2 Code 128 Subset B
|
||
|
||
[zint -b CODE128B -d "130170X178"]
|
||
|
||
It is sometimes advantageous to stop Code 128 from using subset mode C which
|
||
compresses numerical data. The BARCODE_CODE128B variant (symbology 60)
|
||
suppresses mode C in favour of mode B.
|
||
|
||
6.1.10.3 GS1-128
|
||
|
||
[zint -b GS1_128 --compliantheight -d "[01]98898765432106[3202]012345[15]991231"]
|
||
|
||
A variation of Code 128 previously known as UCC/EAN-128, this symbology is
|
||
defined by the GS1 General Specifications. Application Identifiers (AIs) should
|
||
be entered using [square bracket] notation. These will be converted to
|
||
parentheses (round brackets) for the Human Readable Text. This will allow round
|
||
brackets to be used in the data strings to be encoded.
|
||
|
||
For compatibility with data entry in other systems, if the data does not include
|
||
round brackets, the option --gs1parens (API input_mode |= GS1PARENS_MODE) may be
|
||
used to signal that AIs are encased in round brackets instead of square ones.
|
||
|
||
Fixed length data should be entered at the appropriate length for correct
|
||
encoding. GS1-128 does not support extended ASCII characters. Check digits for
|
||
GTIN data AI (01) are not generated and need to be included in the input data.
|
||
The following is an example of a valid GS1-128 input:
|
||
|
||
zint -b 16 -d "[01]98898765432106[3202]012345[15]991231"
|
||
|
||
or using the --gs1parens option:
|
||
|
||
zint -b 16 --gs1parens -d "(01)98898765432106(3202)012345(15)991231"
|
||
|
||
6.1.10.4 EAN-14
|
||
|
||
[zint -b EAN14 --compliantheight -d "9889876543210"]
|
||
|
||
A shorter version of GS1-128 which encodes GTIN data only. A 13-digit number is
|
||
required. The GTIN check digit and AI (01) are added by Zint.
|
||
|
||
6.1.10.5 NVE-18 (SSCC-18)
|
||
|
||
[zint -b NVE18 --compliantheight -d "37612345000001003"]
|
||
|
||
A variation of Code 128 the ‘Nummer der Versandeinheit’ standard, also known as
|
||
SSCC-18 (Serial Shipping Container Code), includes both modulo-10 and modulo-103
|
||
check digits. NVE-18 requires a 17-digit numerical input. Check digits and AI
|
||
(00) are added by Zint.
|
||
|
||
6.1.10.6 HIBC Code 128
|
||
|
||
[zint -b HIBC_128 -d "A123BJC5D6E71"]
|
||
|
||
This option adds a leading '+' character and a trailing modulo-49 check digit to
|
||
a standard Code 128 symbol as required by the Health Industry Barcode standards.
|
||
|
||
6.1.10.7 DPD Code
|
||
|
||
[zint -b DPD --compliantheight -d "%000393206219912345678101040"]
|
||
|
||
Another variation of Code 128 as used by DPD (Deutsher Paket Dienst). Requires a
|
||
28 character alphanumeric input. Zint formats the Human Readable Text as
|
||
specified by DPD and adds a modulo-36 check character.
|
||
|
||
6.1.11 GS1 DataBar (ISO 24724)
|
||
|
||
Previously known as RSS (Reduced Spaced Symbology), these symbols are due to
|
||
replace GS1-128 symbols in accordance with the GS1 General Specifications. If a
|
||
GS1 DataBar symbol is to be printed with a 2D component as specified in ISO/IEC
|
||
24723 set --mode=2 (API option_1 = 2). See 6.3 GS1 Composite Symbols (ISO 24723)
|
||
to find out how to generate DataBar symbols with 2D components.
|
||
|
||
6.1.11.1 GS1 DataBar Omnidirectional and GS1 DataBar Truncated
|
||
|
||
[zint -b DBAR_OMN --compliantheight -d "0950110153001"]
|
||
|
||
Previously known as RSS-14 this standard encodes a 13-digit item code. A check
|
||
digit and Application Identifier of (01) are added by Zint. (A 14-digit code
|
||
that appends the check digit may be given, in which case the check digit will be
|
||
verified.)
|
||
|
||
GS1 DataBar Omnidirectional symbols should have a height of 33 or greater. To
|
||
produce a GS1 DataBar Truncated symbol set the symbol height to a value between
|
||
13 and 32. Truncated symbols may not be scannable by omnidirectional scanners.
|
||
|
||
[zint -b DBAR_OMN -d "0950110153001" --height=13]
|
||
|
||
6.1.11.2 GS1 DataBar Limited
|
||
|
||
[zint -b DBAR_LTD --compliantheight -d "0950110153001"]
|
||
|
||
Previously known as RSS Limited this standard encodes a 13-digit item code and
|
||
can be used in the same way as GS1 DataBar Omnidirectional above. GS1 DataBar
|
||
Limited, however, is limited to data starting with digits 0 and 1 (i.e. numbers
|
||
in the range 0 to 1999999999999). As with GS1 DataBar Omnidirectional a check
|
||
digit and Application Identifier of (01) are added by Zint, and a 14-digit code
|
||
may be given in which case the check digit will be verified.
|
||
|
||
6.1.11.3 GS1 DataBar Expanded
|
||
|
||
[zint -b DBAR_EXP --compliantheight -d "[01]98898765432106[3202]012345[15]991231"]
|
||
|
||
Previously known as RSS Expanded this is a variable length symbology capable of
|
||
encoding data from a number of AIs in a single symbol. AIs should be encased in
|
||
[square brackets] in the input data, which will be converted to parentheses
|
||
(round brackets) before being included in the Human Readable Text attached to
|
||
the symbol. This method allows the inclusion of parentheses in the data to be
|
||
encoded. If the data does not include parentheses, the AIs may alternatively be
|
||
encased in parentheses using the --gs1parens switch. See 6.1.10.3 GS1-128.
|
||
|
||
GTIN data AI (01) should also include the check digit data as this is not
|
||
calculated by Zint when this symbology is encoded. Fixed length data should be
|
||
entered at the appropriate length for correct encoding. The following is an
|
||
example of a valid GS1 DataBar Expanded input:
|
||
|
||
zint -b 31 -d "[01]98898765432106[3202]012345[15]991231"
|
||
|
||
6.1.12 Korea Post Barcode
|
||
|
||
[zint -b KOREAPOST -d "923457"]
|
||
|
||
The Korean Postal Barcode is used to encode a 6-digit number and includes one
|
||
check digit.
|
||
|
||
6.1.13 Channel Code
|
||
|
||
[zint -b CHANNEL -d "453678" --compliantheight]
|
||
|
||
A highly compressed symbol for numeric data. The number of channels in the
|
||
symbol can be between 3 and 8 and this can be specified by setting the value of
|
||
the --vers option (API option_2). It can also be determined by the length of the
|
||
input data e.g. a three character input string generates a 4 channel code by
|
||
default.
|
||
|
||
The maximum values permitted depend on the number of channels used as shown in
|
||
the table below:
|
||
|
||
Channels Minimum Value Maximum Value
|
||
---------- --------------- ---------------
|
||
3 00 26
|
||
4 000 292
|
||
5 0000 3493
|
||
6 00000 44072
|
||
7 000000 576688
|
||
8 0000000 7742862
|
||
|
||
: Table : Channel Maximum Values:
|
||
|
||
6.2 Stacked Symbologies
|
||
|
||
6.2.1 Basic Symbol Stacking
|
||
|
||
An early innovation to get more information into a symbol, used primarily in the
|
||
vehicle industry, is to simply stack one-dimensional codes on top of each other.
|
||
This can be achieved at the command prompt by giving more than one set of input
|
||
data. For example
|
||
|
||
zint -d "This" -d "That"
|
||
|
||
will draw two Code 128 symbols, one on top of the other. The same result can be
|
||
achieved using the API by executing the ZBarcode_Encode() function more than
|
||
once on a symbol. For example:
|
||
|
||
my_symbol->symbology = BARCODE_CODE128;
|
||
|
||
error = ZBarcode_Encode(my_symbol, "This", 0);
|
||
|
||
error = ZBarcode_Encode(my_symbol, "That", 0);
|
||
|
||
error = ZBarcode_Print(my_symbol);
|
||
|
||
[zint -d "This" -d "That"]
|
||
|
||
Note that the Human Readable Text will be that of the last data, so it’s best to
|
||
use the option --notext (API show_hrt = 0).
|
||
|
||
The stacked barcode rows can be separated by row separator bars by specifying
|
||
--bind (API output_options |= BARCODE_BIND). The height of the row separator
|
||
bars in multiples of the X-dimension (minimum and default 1, maximum 4) can be
|
||
set by --separator (API option_3):
|
||
|
||
zint --bind --notext --separator=2 -d "This" -d "That"
|
||
|
||
[zint --notext --bind --separator=2 -d "This" -d "That"]
|
||
|
||
A more sophisticated method is to use some type of line indexing which indicates
|
||
to the barcode reader which order the stacked symbols should be read in. This is
|
||
demonstrated by the symbologies below.
|
||
|
||
6.2.2 Codablock-F
|
||
|
||
[zint -b CODABLOCKF -d "CODABLOCK F Symbology" --rows=3]
|
||
|
||
This is a stacked symbology based on Code 128 which can encode extended ASCII
|
||
code set data up to a maximum length of 2725 characters. The width of the
|
||
Codablock-F symbol can be set using the --cols option (API option_2). The height
|
||
(number of rows) can be set using the --rows option (API option_1). Zint does
|
||
not currently support encoding of GS1 data in Codablock-F symbols.
|
||
|
||
A separate symbology ID (BARCODE_HIBC_BLOCKF) can be used to encode Health
|
||
Industry Barcode (HIBC) data which adds a leading '+' character and a modulo-49
|
||
check digit to the encoded data.
|
||
|
||
6.2.3 Code 16K (EN 12323)
|
||
|
||
[zint -b CODE16K --compliantheight -d "ab0123456789"]
|
||
|
||
Code 16K uses a Code 128 based system which can stack up to 16 rows in a block.
|
||
This gives a maximum data capacity of 77 characters or 154 numerical digits and
|
||
includes two modulo-107 check digits. Code 16K also supports extended ASCII
|
||
character encoding in the same manner as Code 128. GS1 data encoding is also
|
||
supported. The minimum number of rows to use can be set using the --rows option
|
||
(API option_1), with values from 2 to 16.
|
||
|
||
6.2.4 PDF417 (ISO 15438)
|
||
|
||
[zint -b PDF417 -d "PDF417"]
|
||
|
||
Heavily used in the parcel industry, the PDF417 symbology can encode a vast
|
||
amount of data into a small space. Zint supports encoding up to the ISO standard
|
||
maximum symbol size of 925 codewords which (at error correction level 0) allows
|
||
a maximum data size of 1850 text characters, or 2710 digits.
|
||
|
||
The width of the generated PDF417 symbol can be specified at the command line
|
||
using the --cols switch (API option_2) followed by a number between 1 and 30,
|
||
the number of rows using the --rows switch (API option_3) followed by a number
|
||
between 3 and 90, and the amount of error correction information can be
|
||
specified by using the --secure switch (API option_1) followed by a number
|
||
between 0 and 8 where the number of codewords used for error correction is
|
||
determined by 2^(value + 1). The default level of error correction is determined
|
||
by the amount of data being encoded.
|
||
|
||
This symbology uses Latin-1 character encoding by default but also supports the
|
||
ECI encoding mechanism. A separate symbology ID (BARCODE_HIBC_PDF) can be used
|
||
to encode Health Industry Barcode (HIBC) data.
|
||
|
||
PDF417 supports Structured Append of up to 99,999 symbols and an optional
|
||
numeric ID of up to 30 digits, which can be set by using the --structapp option
|
||
(see 4.16 Structured Append) (API structapp). The ID consists of up to 10
|
||
triplets, each ranging from "000" to "899". For instance "123456789" would be a
|
||
valid ID of 3 triplets. However "123456900" would not, as the last triplet "900"
|
||
exceeds "899". The triplets are 0-filled, for instance "1234" becomes "123004".
|
||
If an ID is not given, no ID is encoded.
|
||
|
||
6.2.5 Compact PDF417 (ISO 15438)
|
||
|
||
[zint -b PDF417COMP -d "PDF417"]
|
||
|
||
Previously known as Truncated PDF417, Compact PDF417 omits some per-row overhead
|
||
to produce a narrower but less robust symbol. Options are the same as for PDF417
|
||
above.
|
||
|
||
6.2.6 MicroPDF417 (ISO 24728)
|
||
|
||
[zint -b MICROPDF417 -d "12345678"]
|
||
|
||
A variation of the PDF417 standard, MicroPDF417 is intended for applications
|
||
where symbol size needs to be kept to a minimum. 34 predefined symbol sizes are
|
||
available with 1 - 4 columns and 4 - 44 rows. The maximum amount a MicroPDF417
|
||
symbol can hold is 250 alphanumeric characters or 366 digits. The amount of
|
||
error correction used is dependent on symbol size. The number of columns used
|
||
can be determined using the --cols switch (API option_2) as with PDF417.
|
||
|
||
This symbology uses Latin-1 character encoding by default but also supports the
|
||
ECI encoding mechanism. A separate symbology ID (BARCODE_HIBC_MICPDF) can be
|
||
used to encode Health Industry Barcode (HIBC) data. MicroPDF417 supports
|
||
Structured Append the same as PDF417, for which see details.
|
||
|
||
6.2.7 GS1 DataBar Stacked (ISO 24724)
|
||
|
||
6.2.7.1 GS1 DataBar Stacked
|
||
|
||
[zint -b DBAR_STK --compliantheight -d "9889876543210"]
|
||
|
||
A stacked variation of the GS1 DataBar Truncated symbol requiring the same input
|
||
(see 6.1.11.1 GS1 DataBar Omnidirectional and GS1 DataBar Truncated), this
|
||
symbol is the same as the following GS1 DataBar Stacked Omnidirectional symbol
|
||
except that its height is reduced, making it suitable for small items when
|
||
omnidirectional scanning is not required. It can be generated with a
|
||
two-dimensional component to make a composite symbol.
|
||
|
||
6.2.7.2 GS1 DataBar Stacked Omnidirectional
|
||
|
||
[zint -b DBAR_OMNSTK --compliantheight -d "9889876543210"]
|
||
|
||
A stacked variation of the GS1 DataBar Omnidirectional symbol requiring the same
|
||
input (see 6.1.11.1 GS1 DataBar Omnidirectional and GS1 DataBar Truncated). The
|
||
data is encoded in two rows of bars with a central finder pattern. This symbol
|
||
can be generated with a two-dimensional component to make a composite symbol.
|
||
|
||
6.2.7.3 GS1 DataBar Expanded Stacked
|
||
|
||
[zint -b DBAR_EXPSTK --compliantheight -d "[01]98898765432106[3202]012345[15]991231"]
|
||
|
||
A stacked variation of the GS1 DataBar Expanded symbol for smaller packages.
|
||
Input is the same as for GS1 DataBar Expanded (see 6.1.11.3 GS1 DataBar
|
||
Expanded). In addition the width of the symbol can be altered using the --cols
|
||
switch (API option_2). In this case the number of columns (values 1 to 11)
|
||
relates to the number of character pairs on each row of the symbol.
|
||
Alternatively the --rows switch (API option_3) can be used to specify the
|
||
maximum number of rows (values 2 to 11), and the number of columns will be
|
||
adjusted accordingly. This symbol can be generated with a two-dimensional
|
||
component to make a composite symbol. For symbols with a 2D component the number
|
||
of columns must be at least 2.
|
||
|
||
6.2.8 Code 49
|
||
|
||
[zint -b CODE49 --compliantheight -d "MULTIPLE ROWS IN CODE 49"]
|
||
|
||
Developed in 1987 at Intermec, Code 49 is a cross between UPC and Code 39. It is
|
||
one of the earliest stacked symbologies and influenced the design of Code 16K a
|
||
few years later. It supports full 7-bit ASCII input up to a maximum of 49
|
||
characters or 81 numeric digits. GS1 data encoding is also supported. The
|
||
minimum number of rows to use can be set using the --rows option (API option_1),
|
||
with values from 2 to 8.
|
||
|
||
6.3 GS1 Composite Symbols (ISO 24723)
|
||
|
||
Composite symbols employ a mixture of components to give more comprehensive
|
||
information about a product. The permissible contents of a composite symbol is
|
||
determined by the terms of the GS1 General Specifications. Composite symbols
|
||
consist of a linear component which can be an EAN, UPC, GS1-128 or GS1 DataBar
|
||
symbol, a two-dimensional (2D) component which is based on PDF417 or
|
||
MicroPDF417, and a separator pattern. The type of linear component to be used is
|
||
determined using the -b or --barcode switch (API symbology) as with other
|
||
encoding methods. Valid values are shown below.
|
||
|
||
--------------------------------------------------------------------------------
|
||
Numeric Name Barcode Name
|
||
Value
|
||
--------- ------------------------- --------------------------------------------
|
||
130 BARCODE_EANX_CC Composite Symbol with EAN linear component
|
||
|
||
131 BARCODE_GS1_128_CC Composite Symbol with GS1-128 linear
|
||
component
|
||
|
||
132 BARCODE_DBAR_OMN_CC Composite Symbol with GS1 DataBar
|
||
Omnidirectional linear component
|
||
|
||
133 BARCODE_DBAR_LTD_CC Composite Symbol with GS1 DataBar Limited
|
||
linear component
|
||
|
||
134 BARCODE_DBAR_EXP_CC Composite Symbol with GS1 DataBar Expanded
|
||
linear component
|
||
|
||
135 BARCODE_UPCA_CC Composite Symbol with UPC-A linear component
|
||
|
||
136 BARCODE_UPCE_CC Composite Symbol with UPC-E linear component
|
||
|
||
137 BARCODE_DBAR_STK_CC Composite Symbol with GS1 DataBar Stacked
|
||
component
|
||
|
||
138 BARCODE_DBAR_OMNSTK_CC Composite Symbol with GS1 DataBar Stacked
|
||
Omnidirectional component
|
||
|
||
139 BARCODE_DBAR_EXPSTK_CC Composite Symbol with GS1 DataBar Expanded
|
||
Stacked component
|
||
--------------------------------------------------------------------------------
|
||
|
||
: Table : Composite Symbology Values:
|
||
|
||
The data to be encoded in the linear component of a composite symbol should be
|
||
entered into a primary string with the data for the 2D component being entered
|
||
in the normal way. To do this at the command prompt use the --primary switch
|
||
(API primary). For example:
|
||
|
||
zint -b EANX_CC --mode=1 --primary=331234567890 -d "[99]1234-abcd"
|
||
|
||
This creates an EAN-13 linear component with the data "331234567890" and a 2D
|
||
CC-A (see below) component with the data "(99)1234-abcd". The same results can
|
||
be achieved using the API as shown below:
|
||
|
||
my_symbol->symbology = BARCODE_EANX_CC;
|
||
|
||
my_symbol->option_1 = 1;
|
||
|
||
strcpy(my_symbol->primary, "331234567890");
|
||
|
||
ZBarcode_Encode_and_Print(my_symbol, "[99]1234-abcd", 0, 0);
|
||
|
||
EAN-2 and EAN-5 add-on data can be used with EAN and UPC symbols using the +
|
||
symbol as described in sections 6.1.3 UPC (Universal Product Code) (ISO 15420)
|
||
and 6.1.4 EAN (European Article Number) (ISO 15420).
|
||
|
||
The 2D component of a composite symbol can use one of three systems: CC-A, CC-B
|
||
and CC-C, as described below. The 2D component type can be selected
|
||
automatically by Zint dependent on the length of the input string. Alternatively
|
||
the three methods can be accessed using the --mode prompt (API option_1)
|
||
followed by 1, 2 or 3 for CC-A, CC-B or CC-C respectively.
|
||
|
||
6.3.1 CC-A
|
||
|
||
[zint -b EANX_CC --compliantheight -d "[99]1234-abcd" --mode=1 --primary=331234567890]
|
||
|
||
This system uses a variation of MicroPDF417 which is optimised to fit into a
|
||
small space. The size of the 2D component and the amount of error correction is
|
||
determined by the amount of data to be encoded and the type of linear component
|
||
which is being used. CC-A can encode up to 56 numeric digits or an alphanumeric
|
||
string of shorter length. To select CC-A use --mode=1 (API option_1 = 1).
|
||
|
||
6.3.2 CC-B
|
||
|
||
[zint -b EANX_CC --compliantheight -d "[99]1234-abcd" --mode=2 --primary=331234567890]
|
||
|
||
This system uses MicroPDF417 to encode the 2D component. The size of the 2D
|
||
component and the amount of error correction is determined by the amount of data
|
||
to be encoded and the type of linear component which is being used. CC-B can
|
||
encode up to 338 numeric digits or an alphanumeric string of shorter length. To
|
||
select CC-B use --mode=2 (API option_1 = 2).
|
||
|
||
6.3.3 CC-C
|
||
|
||
[zint -b GS1_128_CC --compliantheight -d "[99]1234-abcd" --mode=3 --primary="[01]03312345678903"]
|
||
|
||
This system uses PDF417 and can only be used in conjunction with a GS1-128
|
||
linear component. CC-C can encode up to 2361 numeric digits or an alphanumeric
|
||
string of shorter length. To select CC-C use --mode=3 (API option_1 = 3).
|
||
|
||
6.4 Two-Track Symbols
|
||
|
||
6.4.1 Two-Track Pharmacode
|
||
|
||
[zint -b PHARMA_TWO --compliantheight -d "29876543"]
|
||
|
||
Developed by Laetus, Pharmacode Two-Track is an alternative system to Pharmacode
|
||
One-Track (see 6.1.9 Pharmacode) used for the identification of pharmaceuticals.
|
||
The symbology is able to encode whole numbers between 4 and 64570080.
|
||
|
||
6.4.2 POSTNET
|
||
|
||
[zint -b POSTNET --compliantheight -d "12345678901"]
|
||
|
||
Used by the United States Postal Service until 2009, the POSTNET barcode was
|
||
used for encoding zip-codes on mail items. POSTNET uses numerical input data and
|
||
includes a modulo-10 check digit. While Zint will encode POSTNET symbols of up
|
||
to 38 digits in length, standard lengths as used by USPS were PostNet6 (5-digit
|
||
ZIP input), PostNet10 (5-digit ZIP + 4-digit user data) and PostNet12 (5-digit
|
||
ZIP + 6-digit user data), and a warning will be issued if the input length is
|
||
not one of these.
|
||
|
||
6.4.3 PLANET
|
||
|
||
[zint -b PLANET --compliantheight -d "4012345235636"]
|
||
|
||
Used by the United States Postal Service until 2009, the PLANET (Postal Alpha
|
||
Numeric Encoding Technique) barcode was used for encoding routing data on mail
|
||
items. PLANET uses numerical input data and includes a modulo-10 check digit.
|
||
While Zint will encode PLANET symbols of up to 38 digits in length, standard
|
||
lengths used by USPS were Planet12 (11-digit input) and Planet14 (13-digit
|
||
input), and as with POSTNET a warning will be issued if the length is not one of
|
||
these.
|
||
|
||
6.5 4-State Postal Codes
|
||
|
||
6.5.1 Australia Post 4-State Symbols
|
||
|
||
6.5.1.1 Customer Barcodes
|
||
|
||
[zint -b AUSPOST --compliantheight -d "96184209"]
|
||
|
||
Australia Post Standard Customer Barcode, Customer Barcode 2 and Customer
|
||
Barcode 3 are 37-bar, 52-bar and 67-bar specifications respectively, developed
|
||
by Australia Post for printing Delivery Point ID (DPID) and customer information
|
||
on mail items. Valid data characters are 0-9, A-Z, a-z, space and hash (#). A
|
||
Format Control Code (FCC) is added by Zint and should not be included in the
|
||
input data. Reed-Solomon error correction data is generated by Zint. Encoding
|
||
behaviour is determined by the length of the input data according to the formula
|
||
shown in the following table:
|
||
|
||
---------------------------------------------------------------
|
||
Input Required Input Format Symbol FCC Encoding
|
||
Length Length Table
|
||
--------- --------------------------- -------- ----- ----------
|
||
8 99999999 37-bar 11 None
|
||
|
||
13 99999999AAAAA 52-bar 59 C
|
||
|
||
16 9999999999999999 52-bar 59 N
|
||
|
||
18 99999999AAAAAAAAAA 67-bar 62 C
|
||
|
||
23 99999999999999999999999 67-bar 62 N
|
||
---------------------------------------------------------------
|
||
|
||
: Table : Australia Post Input Formats:
|
||
|
||
6.5.1.2 Reply Paid Barcode
|
||
|
||
[zint -b AUSREPLY --compliantheight -d "12345678"]
|
||
|
||
A Reply Paid version of the Australia Post 4-State Barcode (FCC 45) which
|
||
requires an 8-digit DPID input.
|
||
|
||
6.5.1.3 Routing Barcode
|
||
|
||
[zint -b AUSROUTE --compliantheight -d "34567890"]
|
||
|
||
A Routing version of the Australia Post 4-State Barcode (FCC 87) which requires
|
||
an 8-digit DPID input.
|
||
|
||
6.5.1.4 Redirect Barcode
|
||
|
||
[zint -b AUSREDIRECT --compliantheight -d "98765432"]
|
||
|
||
A Redirection version of the Australia Post 4-State Barcode (FCC 92) which
|
||
requires an 8-digit DPID input.
|
||
|
||
6.5.2 Dutch Post KIX Code
|
||
|
||
[zint -b KIX --compliantheight -d "2500GG30250"]
|
||
|
||
This symbology is used by Royal Dutch TPG Post (Netherlands) for Postal code and
|
||
automatic mail sorting. Data input can consist of numbers 0-9 and letters A-Z
|
||
and needs to be 11 characters in length. No check digit is included.
|
||
|
||
6.5.3 Royal Mail 4-State Customer Code (RM4SCC)
|
||
|
||
[zint -b RM4SCC --compliantheight -d "W1J0TR01"]
|
||
|
||
The RM4SCC standard is used by the Royal Mail in the UK to encode postcode and
|
||
customer data on mail items. Data input can consist of numbers 0-9 and letters
|
||
A-Z and usually includes delivery postcode followed by house number. For example
|
||
"W1J0TR01" for 1 Piccadilly Circus in London. Check digit data is generated by
|
||
Zint.
|
||
|
||
6.5.4 Royal Mail 4-State Mailmark
|
||
|
||
[zint -b MAILMARK --compliantheight -d "1100000000000XY11"]
|
||
|
||
Developed in 2014 as a replacement for RM4SCC this 4-state symbol includes Reed
|
||
Solomon error correction. Input is a pre-formatted alphanumeric string of 22
|
||
(for Barcode C) or 26 (for Barcode L) characters, producing a symbol with 66 or
|
||
78 bars respectively. The rules for the input data are complex, as summarized in
|
||
the following table.
|
||
|
||
Format Version ID Class Supply Chain ID Item ID Destination+DPS
|
||
--------- ------------ ------------- ----------------- ---------- -------------------
|
||
1 digit 1 digit 1 alphanum. 2 digits (C) or 8 digits 9 alphanumerics
|
||
(0-4) (0-3) (0-9A-E) 6 digits (L) (1 of 6 patterns)
|
||
|
||
: Table : Royal Mail Mailmark Input Fields:
|
||
|
||
The 6 Destination+DPS (Destination Post Code plus Delivery Point Suffix)
|
||
patterns are 'FNFNLLNLS', 'FFNNLLNLS', 'FFNNNLLNL', 'FFNFNLLNL', 'FNNLLNLSS' and
|
||
'FNNNLLNLS', where 'F' stands for full alphabetic (A-Z), 'L' for limited
|
||
alphabetic (A-Z less 'CIKMOV'), 'N' for numeric (0-9), and 'S' for space.
|
||
|
||
Four of the permitted patterns include a number of trailing space characters -
|
||
these will be appended by Zint if not included in the input data.
|
||
|
||
6.5.5 USPS Intelligent Mail
|
||
|
||
[zint -b USPS_IMAIL --compliantheight -d "01234567094987654321-01234"]
|
||
|
||
Also known as the OneCode barcode and used in the US by the United States Postal
|
||
Service (USPS), the Intelligent Mail system replaced the POSTNET and PLANET
|
||
symbologies in 2009. Intelligent Mail is a fixed length (65-bar) symbol which
|
||
combines routing and customer information in a single symbol. Input data
|
||
consists of a 20-digit tracking code, followed by a dash (-), followed by a
|
||
delivery point zip-code which can be 0, 5, 9 or 11 digits in length. For example
|
||
all of the following inputs are valid data entries:
|
||
|
||
- "01234567094987654321"
|
||
- "01234567094987654321-01234"
|
||
- "01234567094987654321-012345678"
|
||
- "01234567094987654321-01234567891"
|
||
|
||
6.5.6 Japanese Postal Code
|
||
|
||
[zint -b JAPANPOST --compliantheight -d "15400233-16-4-205"]
|
||
|
||
Used for address data on mail items for Japan Post. Accepted values are 0-9, A-Z
|
||
and dash (-). A modulo 19 check digit is added by Zint.
|
||
|
||
6.5.7 DAFT Code
|
||
|
||
[zint -b DAFT -d "AAFDTTDAFADTFTTFFFDATFTADTTFFTDAFAFDTF" --height=8.494 --vers=256]
|
||
|
||
This is a method for creating 4-state codes where the data encoding is provided
|
||
by an external program. Input data should consist of the letters 'D', 'A', 'F'
|
||
and 'T' where these refer to descender, ascender, full (ascender and descender)
|
||
and tracker (neither ascender nor descender) respectively. All other characters
|
||
are invalid. The ratio of the tracker size to full height can be given in
|
||
thousandths (permille) using the --vers option (API option_2). The default value
|
||
is 250 (25%).
|
||
|
||
For example the following
|
||
|
||
zint -b DAFT -d AAFDTTDAFADTFTTFFFDATFTADTTFFTDAFAFDTF --height=8.494 --vers=256
|
||
|
||
produces the same barcode (see 6.5.3 Royal Mail 4-State Customer Code (RM4SCC))
|
||
as
|
||
|
||
zint -b RM4SCC --compliantheight -d "W1J0TR01"
|
||
|
||
6.6 Matrix Symbols
|
||
|
||
6.6.1 Data Matrix (ISO 16022)
|
||
|
||
[zint -b HIBC_DM -d "/ACMRN123456/V200912190833" --fast --square]
|
||
|
||
Also known as Semacode this symbology was developed in 1989 by Acuity CiMatrix
|
||
in partnership with the US DoD and NASA. The symbol can encode a large amount of
|
||
data in a small area. Data Matrix encodes characters in the Latin-1 set by
|
||
default but also supports encoding in other character sets using the ECI
|
||
mechanism. It can also encode GS1 data. The size of the generated symbol can be
|
||
adjusted using the --vers option (API option_2) as shown in the table below. A
|
||
separate symbology ID (BARCODE_HIBC_DM) can be used to encode Health Industry
|
||
Barcode (HIBC) data. Note that only ECC200 encoding is supported, the older
|
||
standards have now been removed from Zint.
|
||
|
||
Input Symbol Size Input Symbol Size Input Symbol Size
|
||
------- ------------- -- ------- ------------- -- ------- -------------
|
||
1 10 x 10 11 36 x 36 21 104 x 104
|
||
2 12 x 12 12 40 x 40 22 120 x 120
|
||
3 14 x 14 13 44 x 44 23 132 x 132
|
||
4 16 x 16 14 48 x 48 24 144 x 144
|
||
5 18 x 18 15 52 x 52 25 8 x 18
|
||
6 20 x 20 16 64 x 64 26 8 x 32
|
||
7 22 x 22 17 72 x 72 28 12 x 26
|
||
8 24 x 24 18 80 x 80 28 12 x 36
|
||
9 26 x 26 19 88 x 88 29 16 x 36
|
||
10 32 x 32 20 96 x 96 30 16 x 48
|
||
|
||
: Table : Data Matrix Sizes:
|
||
|
||
When using automatic symbol sizes you can force Zint to use square symbols
|
||
(versions 1-24) at the command line by using the option --square (API
|
||
option_3 = DM_SQUARE).
|
||
|
||
Data Matrix Rectangular Extension (ISO/IEC 21471) codes may be generated with
|
||
the following values as before:
|
||
|
||
Input Symbol Size Input Symbol Size
|
||
------- ------------- -- ------- -------------
|
||
31 8 x 48 40 20 x 36
|
||
32 8 x 64 41 20 x 44
|
||
33 8 x 80 42 20 x 64
|
||
34 8 x 96 43 22 x 48
|
||
35 8 x 120 44 24 x 48
|
||
36 8 x 144 45 24 x 64
|
||
37 12 x 64 46 26 x 40
|
||
38 12 x 88 47 26 x 48
|
||
39 16 x 64 48 26 x 64
|
||
|
||
: Table : DMRE Sizes:
|
||
|
||
DMRE symbol sizes may be activated in automatic size mode using the option
|
||
--dmre (API option_3 = DM_DMRE).
|
||
|
||
GS1 data may be encoded using FNC1 (default) or GS as separator. Use the option
|
||
--gssep to change to GS (API output_options |= GS1_GS_SEPARATOR).
|
||
|
||
For a faster but less optimal encoding, the --fast option (API
|
||
input_mode |= FAST_MODE) may be used.
|
||
|
||
Data Matrix supports Structured Append of up to 16 symbols and a numeric ID
|
||
(file identifications), which can be set by using the --structapp option (see
|
||
4.16 Structured Append) (API structapp). The ID consists of 2 numbers ID1 and
|
||
ID2, each of which can range from 1 to 254, and is specified as the single
|
||
number ID1 * 1000 + ID2, so for instance ID1 "123" and ID2 "234" would be given
|
||
as "123234". Note that both ID1 and ID2 must be non-zero, so e.g. "123000" or
|
||
"000123" would be invalid IDs. If an ID is not given it defaults to "001001".
|
||
|
||
6.6.2 QR Code (ISO 18004)
|
||
|
||
[zint -b QRCODE -d "QR Code Symbol" --mask=5]
|
||
|
||
Also known as Quick Response Code this symbology was developed by Denso. Four
|
||
levels of error correction are available using the --secure option (API
|
||
option_1) as shown in the following table.
|
||
|
||
Input ECC Level Error Correction Capacity Recovery Capacity
|
||
------- ----------- --------------------------- -------------------
|
||
1 L Approx 20% of symbol Approx 7%
|
||
2 M Approx 37% of symbol Approx 15%
|
||
3 Q Approx 55% of symbol Approx 25%
|
||
4 H Approx 65% of symbol Approx 30%
|
||
|
||
: Table : QR Code ECC Levels:
|
||
|
||
The size of the symbol can be specified by setting the --vers option (API
|
||
option_2) to the QR Code version required (1-40). The size of symbol generated
|
||
is shown in the table below.
|
||
|
||
Input Symbol Size Input Symbol Size Input Symbol Size
|
||
------- ------------- -- ------- ------------- -- ------- -------------
|
||
1 21 x 21 15 77 x 77 29 133 x 133
|
||
2 25 x 25 16 81 x 81 30 137 x 137
|
||
3 29 x 29 17 85 x 85 31 141 x 141
|
||
4 33 x 33 18 89 x 89 32 145 x 145
|
||
5 37 x 37 19 93 x 93 33 149 x 149
|
||
6 41 x 41 20 97 x 97 34 153 x 153
|
||
7 45 x 45 21 101 x 101 35 157 x 157
|
||
8 49 x 49 22 105 x 105 36 161 x 161
|
||
9 53 x 53 23 109 x 109 37 165 x 165
|
||
10 57 x 57 24 113 x 113 38 169 x 169
|
||
11 61 x 61 25 117 x 117 39 173 x 173
|
||
12 65 x 65 26 121 x 121 40 177 x 177
|
||
13 69 x 69 27 125 x 125
|
||
14 73 x 73 28 129 x 129
|
||
|
||
: Table : QR Code Sizes:
|
||
|
||
The maximum capacity of a QR Code symbol (version 40) is 7089 numeric digits,
|
||
4296 alphanumeric characters or 2953 bytes of data. QR Code symbols can also be
|
||
used to encode GS1 data. QR Code symbols can by default encode either characters
|
||
in the Latin-1 set or Kanji, Katakana and ASCII characters which are members of
|
||
the Shift JIS encoding scheme. In addition QR Code supports other character sets
|
||
using the ECI mechanism. Input should usually be entered as UTF-8 with
|
||
conversion to Latin-1 or Shift JIS being carried out by Zint. A separate
|
||
symbology ID (BARCODE_HIBC_QR) can be used to encode Health Industry Barcode
|
||
(HIBC) data.
|
||
|
||
Non-ASCII data density may be maximized by using the --fullmultibyte switch (API
|
||
option_3 = ZINT_FULL_MULTIBYTE), but check that your barcode reader supports
|
||
this before using.
|
||
|
||
QR Code has eight different masks designed to minimize unwanted patterns. The
|
||
best mask to use is selected automatically by Zint but may be manually specified
|
||
by using the --mask switch with values 0-7, or in the API by setting
|
||
option_3 = (N + 1) << 8 where N is 0-7. To use with ZINT_FULL_MULTIBYTE set
|
||
|
||
option_3 = ZINT_FULL_MULTIBYTE | (N + 1) << 8
|
||
|
||
QR Code supports Structured Append of up to 16 symbols and a numeric ID
|
||
(parity), which can be set by using the --structapp option (see 4.16 Structured
|
||
Append) (API structapp). The parity ID ranges from 0 (default) to 255, and for
|
||
full compliance should be set to the value obtained by XOR-ing together each
|
||
byte of the complete data forming the sequence. Currently this calculation must
|
||
be done outside of Zint.
|
||
|
||
6.6.3 Micro QR Code (ISO 18004)
|
||
|
||
[zint -b MICROQR -d "01234567"]
|
||
|
||
A miniature version of the QR Code symbol for short messages, Micro QR Code
|
||
symbols can encode either Latin-1 characters or Shift JIS characters. Input
|
||
should be entered as a UTF-8 stream with conversion to Latin-1 or Shift JIS
|
||
being carried out automatically by Zint. A preferred symbol size can be selected
|
||
by using the --vers option (API option_2), as shown in the table below. Note
|
||
that versions M1 and M2 have restrictions on what characters can be encoded.
|
||
|
||
------------------------------------------------------------------
|
||
Input Version Symbol Size Allowed Characters
|
||
------- --------- ------------- ----------------------------------
|
||
1 M1 11 x 11 Numeric only
|
||
|
||
2 M2 13 x 13 Numeric, uppercase letters, space,
|
||
and the characters "$%*+-./:"
|
||
|
||
3 M3 15 x 15 Latin-1 and Shift JIS
|
||
|
||
4 M4 17 x 17 Latin-1 and Shift JIS
|
||
------------------------------------------------------------------
|
||
|
||
: Table : Micro QR Code Sizes:
|
||
|
||
Except for version M1, which is always ECC level L, the amount of ECC codewords
|
||
can be adjusted using the --secure option (API option_1); however ECC level H is
|
||
not available for any version, and ECC level Q is only available for version M4:
|
||
|
||
----------------------------------------------------------------------
|
||
Input ECC Error Correction Recovery Available for
|
||
Level Capacity Capacity Versions
|
||
-------- -------- ----------------------- ------------- --------------
|
||
1 L Approx 20% of symbol Approx 7% M1, M2, M3, M4
|
||
|
||
2 M Approx 37% of symbol Approx 15% M2, M3, M4
|
||
|
||
3 Q Approx 55% of symbol Approx 25% M4
|
||
----------------------------------------------------------------------
|
||
|
||
The defaults for symbol size and ECC level depend on the input and whether
|
||
either of them is specified.
|
||
|
||
For barcode readers that support it, non-ASCII data density may be maximized by
|
||
using the --fullmultibyte switch (API option_3 = ZINT_FULL_MULTIBYTE).
|
||
|
||
Micro QR Code has four different masks designed to minimize unwanted patterns.
|
||
The best mask to use is selected automatically by Zint but may be manually
|
||
specified by using the --mask switch with values 0-3, or in the API by setting
|
||
option_3 = (N + 1) << 8 where N is 0-3. To use with ZINT_FULL_MULTIBYTE set
|
||
|
||
option_3 = ZINT_FULL_MULTIBYTE | (N + 1) << 8
|
||
|
||
6.6.4 Rectangular Micro QR Code (rMQR) (ISO 23941)
|
||
|
||
[zint -b RMQR -d "0123456"]
|
||
|
||
A rectangular version of QR Code, rMQR supports encoding of GS1 data, and either
|
||
Latin-1 characters or Shift JIS characters, and other encodings using the ECI
|
||
mechanism. As with other symbologies data should be entered as UTF-8 with
|
||
conversion being handled by Zint. The amount of ECC codewords can be adjusted
|
||
using the --secure option (API option_1), however only ECC levels M and H are
|
||
valid for this type of symbol.
|
||
|
||
Input ECC Level Error Correction Capacity Recovery Capacity
|
||
------- ----------- --------------------------- -------------------
|
||
2 M Approx 37% of symbol Approx 15%
|
||
4 H Approx 65% of symbol Approx 30%
|
||
|
||
: Table : rMQR ECC Levels:
|
||
|
||
The preferred symbol sizes can be selected using the --vers option (API
|
||
option_2) as shown in the table below. Input values between 33 and 38 fix the
|
||
height of the symbol while allowing Zint to determine the minimum symbol width.
|
||
|
||
Input Version Symbol Size (HxW) Input Version Symbol Size (HxW)
|
||
------- --------- ------------------- -- ------- --------- ----------------------
|
||
1 R7x43 7 x 73 20 R13x77 13 x 77
|
||
2 R7x59 7 x 59 21 R13x99 13 x 99
|
||
3 R7x77 7 x 77 22 R13x139 13 x 139
|
||
4 R7x99 7 x 99 23 R15x43 15 x 43
|
||
5 R7x139 7 x 139 24 R15x59 15 x 59
|
||
6 R9x43 9 x 43 25 R15x77 15 x 77
|
||
7 R9x59 9 x 59 26 R15x99 15 x 99
|
||
8 R9x77 9 x 77 27 R15x139 15 x 139
|
||
9 R9x99 9 x 99 28 R17x43 17 x 43
|
||
10 R9x139 9 x 139 29 R17x59 17 x 59
|
||
11 R11x27 11 x 27 30 R17x77 17 x 77
|
||
12 R11x43 11 x 43 31 R17x99 17 x 99
|
||
13 R11x59 11 x 59 32 R17x139 17 x 139
|
||
14 R11x77 11 x 77 33 R7xW 7 x automatic width
|
||
15 R11x99 11 x 99 34 R9xW 9 x automatic width
|
||
16 R11x139 11 x 139 35 R11xW 11 x automatic width
|
||
17 R13x27 13 x 27 36 R13xW 13 x automatic width
|
||
18 R13x43 13 x 43 37 R15xW 15 x automatic width
|
||
19 R13x59 13 x 59 38 R17xW 17 x automatic width
|
||
|
||
: Table : rMQR Sizes:
|
||
|
||
For barcode readers that support it, non-ASCII data density may be maximized by
|
||
using the --fullmultibyte switch or in the API by setting
|
||
option_3 = ZINT_FULL_MULTIBYTE.
|
||
|
||
6.6.5 UPNQR (Univerzalnega Plačilnega Naloga QR)
|
||
|
||
[zint -b UPNQR -i upn_utf8.txt --quietzones]
|
||
|
||
A variation of QR Code used by Združenje Bank Slovenije (Bank Association of
|
||
Slovenia). The size, error correction level and ECI are set by Zint and do not
|
||
need to be specified. UPNQR is unusual in that it uses Latin-2 (ISO/IEC 8859-2
|
||
plus ASCII) formatted data. Zint will accept UTF-8 data and convert it to
|
||
Latin-2, or if your data is already Latin-2 formatted use the --binary switch
|
||
(API input_mode = DATA MODE).
|
||
|
||
The following example creates a symbol from data saved as a Latin-2 file:
|
||
|
||
zint -o upnqr.png -b 143 --scale=3 --binary -i upn.txt
|
||
|
||
6.6.6 MaxiCode (ISO 16023)
|
||
|
||
[zint -b MAXICODE -d "1Z00004951\GUPSN\G06X610\G159\G1234567\G1/1\G\GY\G1 MAIN ST\GNY\GNY\R\E" --esc --primary="152382802000000" --scmvv=96]
|
||
|
||
Developed by UPS the MaxiCode symbology employs a grid of hexagons surrounding a
|
||
bulls-eye finder pattern. This symbology is designed for the identification of
|
||
parcels. MaxiCode symbols can be encoded in one of five modes. In modes 2 and 3
|
||
MaxiCode symbols are composed of two parts named the primary and secondary
|
||
messages. The primary message consists of a Structured Carrier Message which
|
||
includes various data about the package being sent and the secondary message
|
||
usually consists of address data in a data structure. The format of the primary
|
||
message required by Zint is given in the following table:
|
||
|
||
Characters Meaning
|
||
------------ ----------------------------------------------------------------
|
||
1 - 9 Postcode data which can consist of up to 9 digits (for mode 2)
|
||
or up to 6 alphanumeric characters (for mode 3). Remaining
|
||
unused characters can be filled with the SPACE character
|
||
(ASCII 32) or omitted (if omitted adjust the following
|
||
character positions).
|
||
10 - 12 Three-digit country code according to ISO 3166-1.
|
||
13 - 15 Three-digit service code. This depends on your parcel courier.
|
||
|
||
: Table : MaxiCode Structured Carrier Message Format:
|
||
|
||
The primary message can be set at the command prompt using the --primary switch
|
||
(API primary). The secondary message uses the normal data entry method. For
|
||
example:
|
||
|
||
zint -o test.eps -b 57 --primary="999999999840012" \
|
||
-d "Secondary Message Here"
|
||
|
||
When using the API the primary message must be placed in the primary string. The
|
||
secondary is entered in the same way as described in 5.2 Encoding and Saving to
|
||
File. When either of these modes is selected Zint will analyse the primary
|
||
message and select either mode 2 or mode 3 as appropriate.
|
||
|
||
As a convenience the secondary message for modes 2 and 3 can be set to be
|
||
prefixed by the ISO/IEC 15434 Format "01" (transportation) sequence
|
||
"[)>\R01\Gvv", where vv is a 2-digit version, by using the --scmvv switch (API
|
||
option_2 = vv + 1). For example to use the common version "96" (ASC MH10/SC 8):
|
||
|
||
zint -b 57 --primary="152382802840001" --scmvv=96 --esc -d \
|
||
"1Z00004951\GUPSN\G06X610\G159\G1234567\G1/1\G\GY\G1 MAIN ST\GNY\GNY\R\E"
|
||
|
||
will prefix "[)>\R01\G96" to the secondary message. (\R, \G and \E are the
|
||
escape sequences for Record Separator, Group Separator and End of Transmission
|
||
respectively - see Table : Escape Sequences.)
|
||
|
||
Modes 4 to 6 can be accessed using the --mode switch (API option_1). Modes 4 to
|
||
6 do not have a primary message. For example:
|
||
|
||
zint -o test.eps -b 57 --mode=4 -d "A MaxiCode Message in Mode 4"
|
||
|
||
Mode 6 is reserved for the maintenance of scanner hardware and should not be
|
||
used to encode user data.
|
||
|
||
This symbology uses Latin-1 character encoding by default but also supports the
|
||
ECI encoding mechanism. The maximum length of text which can be placed in a
|
||
MaxiCode symbol depends on the type of characters used in the text.
|
||
|
||
Example maximum data lengths are given in the table below:
|
||
|
||
------------------------------------------------------------------------
|
||
Mode Maximum Data Length Maximum Data Length Number of Error
|
||
for Capital Letters for Numeric Digits Correction Codewords
|
||
------ --------------------- --------------------- ---------------------
|
||
2* 84 126 50
|
||
|
||
3* 84 126 50
|
||
|
||
4 93 138 50
|
||
|
||
5 77 113 66
|
||
|
||
6 93 138 50
|
||
------------------------------------------------------------------------
|
||
|
||
: Table : MaxiCode Data Length Maxima:
|
||
|
||
* - secondary only
|
||
|
||
MaxiCode supports Structured Append of up to 8 symbols, which can be set by
|
||
using the --structapp option (see 4.16 Structured Append) (API structapp). It
|
||
does not support specifying an ID.
|
||
|
||
MaxiCode uses a different scaling than other symbols for raster output, see
|
||
4.9.2 MaxiCode Raster Scaling, and also for EMF vector output, when the scale is
|
||
multiplied by 20 instead of 2.
|
||
|
||
6.6.7 Aztec Code (ISO 24778)
|
||
|
||
[zint -b AZTEC -d "123456789012"]
|
||
|
||
Invented by Andrew Longacre at Welch Allyn Inc in 1995 the Aztec Code symbol is
|
||
a matrix symbol with a distinctive bulls-eye finder pattern. Zint can generate
|
||
Compact Aztec Code (sometimes called Small Aztec Code) as well as ‘full-range’
|
||
Aztec Code symbols and by default will automatically select symbol type and size
|
||
dependent on the length of the data to be encoded. Error correction codewords
|
||
will normally be generated to fill at least 23% of the symbol. Two options are
|
||
available to change this behaviour:
|
||
|
||
The size of the symbol can be specified using the --vers option (API option_2)
|
||
to a value between 1 and 36 according to the following table. The symbols marked
|
||
with an asterisk (*) in the table below are ‘compact’ symbols, meaning they have
|
||
a smaller bulls-eye pattern at the centre of the symbol.
|
||
|
||
Input Symbol Size Input Symbol Size Input Symbol Size
|
||
------- ------------- -- ------- ------------- -- ------- -------------
|
||
1 15 x 15* 13 53 x 53 25 105 x 105
|
||
2 19 x 19* 14 57 x 57 26 109 x 109
|
||
3 23 x 23* 15 61 x 61 27 113 x 113
|
||
4 27 x 27* 16 67 x 67 28 117 x 117
|
||
5 19 x 19 17 71 x 71 29 121 x 121
|
||
6 23 x 23 18 75 x 75 30 125 x 125
|
||
7 27 x 27 19 79 x 79 31 131 x 131
|
||
8 31 x 31 20 83 x 83 32 135 x 135
|
||
9 37 x 37 21 87 x 87 33 139 x 139
|
||
10 41 x 41 22 91 x 91 34 143 x 143
|
||
11 45 x 45 23 95 x 95 35 147 x 147
|
||
12 49 x 49 24 101 x 101 36 151 x 151
|
||
|
||
: Table : Aztec Code Sizes:
|
||
|
||
Note that in symbols which have a specified size the amount of error correction
|
||
is dependent on the length of the data input and Zint will allow error
|
||
correction capacities as low as 3 codewords.
|
||
|
||
Alternatively the amount of error correction data can be specified by setting
|
||
the --secure option (API option_1) to a value from the following table:
|
||
|
||
Mode Error Correction Capacity
|
||
------ ---------------------------
|
||
1 >10% + 3 codewords
|
||
2 >23% + 3 codewords
|
||
3 >36% + 3 codewords
|
||
4 >50% + 3 codewords
|
||
|
||
: Table : Aztec Code Error Correction Modes:
|
||
|
||
It is not possible to select both symbol size and error correction capacity for
|
||
the same symbol. If both options are selected then the error correction capacity
|
||
selection will be ignored.
|
||
|
||
Aztec Code supports ECI encoding and can encode up to a maximum length of
|
||
approximately 3823 numeric or 3067 alphabetic characters or 1914 bytes of data.
|
||
A separate symbology ID (BARCODE_HIBC_AZTEC) can be used to encode Health
|
||
Industry Barcode (HIBC) data.
|
||
|
||
Aztec Code supports Structured Append of up to 26 symbols and an optional
|
||
alphanumeric ID of up to 32 characters, which can be set by using the
|
||
--structapp option (see 4.16 Structured Append) (API structapp). The ID cannot
|
||
contain spaces. If an ID is not given, no ID is encoded.
|
||
|
||
6.6.8 Aztec Runes (ISO 24778)
|
||
|
||
[zint -b AZRUNE -d "125"]
|
||
|
||
A truncated version of compact Aztec Code for encoding whole integers between 0
|
||
and 255, as defined in ISO/IEC 24778 Annex A. Includes Reed-Solomon error
|
||
correction. It does not support Structured Append.
|
||
|
||
6.6.9 Code One
|
||
|
||
[zint -b CODEONE -d "1234567890123456789012"]
|
||
|
||
A matrix symbology developed by Ted Williams in 1992 which encodes data in a way
|
||
similar to Data Matrix, Code One is able to encode the Latin-1 character set or
|
||
GS1 data, and also supports the ECI mechanism. There are two types of Code One
|
||
symbol - fixed-ratio symbols which are roughly square (versions A through to H)
|
||
and variable-width versions (versions S and T). These can be selected by using
|
||
--vers (API option_2) as shown in the table below:
|
||
|
||
--------------------------------------------------------------
|
||
Input Version Size (W x H) Numeric Data Alphanumeric
|
||
Capacity Data Capacity
|
||
------- --------- ------------ --------------- ---------------
|
||
1 A 16 x 18 22 13
|
||
|
||
2 B 22 x 22 44 27
|
||
|
||
3 C 28 x 28 104 64
|
||
|
||
4 D 40 x 42 217 135
|
||
|
||
5 E 52 x 54 435 271
|
||
|
||
6 F 70 x 76 886 553
|
||
|
||
7 G 104 x 98 1755 1096
|
||
|
||
8 H 148 x 134 3550 2218
|
||
|
||
9 S width x 8 18 N/A
|
||
|
||
10 T width x 16 90 55
|
||
--------------------------------------------------------------
|
||
|
||
: Table : Code One Sizes:
|
||
|
||
Version S symbols can only encode numeric data. The width of version S and
|
||
version T symbols is determined by the length of the input data.
|
||
|
||
Code One supports Structured Append of up to 128 symbols, which can be set by
|
||
using the --structapp option (see 4.16 Structured Append) (API structapp). It
|
||
does not support specifying an ID. Structured Append is not supported with GS1
|
||
data nor for Version S symbols.
|
||
|
||
6.6.10 Grid Matrix
|
||
|
||
[zint -b GRIDMATRIX --eci=29 -d "AAT2556 电池充电器+降压转换器 200mA至2A tel:86 019 82512738"]
|
||
|
||
Grid Matrix groups modules in a chequerboard pattern, and by default supports
|
||
the GB 2312 standard set, which includes Hanzi, ASCII and a small number of
|
||
ISO/IEC 8859-1 characters. Input should be entered as UTF-8 with conversion to
|
||
GB 2312 being carried out automatically by Zint. The symbology also supports the
|
||
ECI mechanism. Support for GS1 data has not yet been implemented.
|
||
|
||
The size of the symbol and the error correction capacity can be specified. If
|
||
you specify both of these values then Zint will make a ‘best-fit’ attempt to
|
||
satisfy both conditions. The symbol size can be specified using the --vers
|
||
option (API option_2), and the error correction capacity can be specified by
|
||
using the --secure option (API option_1), according to the following tables:
|
||
|
||
Input Symbol Size Input Symbol Size
|
||
------- ------------- -- ------- -------------
|
||
1 18 x 18 8 102 x 102
|
||
2 30 x 30 9 114 x 114
|
||
3 42 x 42 10 126 x 126
|
||
4 54 x 54 11 138 x 138
|
||
5 66 x 66 12 150 x 150
|
||
6 78 x 78 13 162 x 162
|
||
7 90 x 90
|
||
|
||
: Table : Grid Matrix Sizes:
|
||
|
||
Mode Error Correction Capacity
|
||
------ ---------------------------
|
||
1 Approximately 10%
|
||
2 Approximately 20%
|
||
3 Approximately 30%
|
||
4 Approximately 40%
|
||
5 Approximately 50%
|
||
|
||
: Table : Grid Matrix Error Correction Modes:
|
||
|
||
Non-ASCII data density may be maximized by using the --fullmultibyte switch (API
|
||
option_3 = ZINT_FULL_MULTIBYTE), but check that your barcode reader supports
|
||
this before using.
|
||
|
||
Grid Matrix supports Structured Append of up to 16 symbols and a numeric ID
|
||
(file signature), which can be set by using the --structapp option (see 4.16
|
||
Structured Append) (API structapp). The ID ranges from 0 (default) to 255.
|
||
|
||
6.6.11 DotCode
|
||
|
||
[zint -b DOTCODE -d "[01]00012345678905[17]201231[10]ABC123456" --gs1]
|
||
|
||
DotCode uses a grid of dots in a rectangular formation to encode characters up
|
||
to a maximum of approximately 450 characters (or 900 numeric digits). The
|
||
symbology supports ECI encoding and GS1 data encoding. By default Zint will
|
||
produce a symbol which is approximately square, however the width of the symbol
|
||
can be adjusted by using the --cols option (API option_2) (maximum 200).
|
||
Outputting DotCode to raster images (BMP, GIF, PCX, PNG, TIF) will require
|
||
setting the scale of the image to a larger value than the default (e.g.
|
||
approximately 10) for the dots to be plotted correctly. Approximately 33% of the
|
||
resulting symbol is comprised of error correction codewords.
|
||
|
||
DotCode has two sets of 4 masks, designated 0-3 and 0’-3’, the second "prime"
|
||
set being the same as the first with corners lit. The best mask to use is
|
||
selected automatically by Zint but may be manually specified by using the --mask
|
||
switch with values 0-7, where 4-7 denote 0’-3’, or in the API by setting
|
||
option_3 = (N + 1) << 8 where N is 0-7.
|
||
|
||
DotCode supports Structured Append of up to 35 symbols, which can be set by
|
||
using the --structapp option (see 4.16 Structured Append) (API structapp). It
|
||
does not support specifying an ID.
|
||
|
||
6.6.12 Han Xin Code (ISO 20830)
|
||
|
||
[zint -b HANXIN -d "Hanxin Code symbol"]
|
||
|
||
Also known as Chinese Sensible Code, Han Xin is capable of encoding characters
|
||
in either the Latin-1 character set or the GB 18030 character set (which is a
|
||
UTF, i.e. includes all Unicode characters, optimized for Chinese characters) and
|
||
is also able to support the ECI mechanism. Support for the encoding of GS1 data
|
||
has not yet been implemented.
|
||
|
||
The size of the symbol can be specified using the --vers option (API option_2)
|
||
to a value between 1 and 84 according to the following table.
|
||
|
||
Input Symbol Size Input Symbol Size Input Symbol Size
|
||
------- ------------- -- ------- ------------- -- ------- -------------
|
||
1 23 x 23 29 79 x 79 57 135 x 135
|
||
2 25 x 25 30 81 x 81 58 137 x 137
|
||
3 27 x 27 31 83 x 83 59 139 x 139
|
||
4 29 x 29 32 85 x 85 60 141 x 141
|
||
5 31 x 31 33 87 x 87 61 143 x 143
|
||
6 33 x 33 34 89 x 89 62 145 x 145
|
||
7 35 x 35 35 91 x 91 63 147 x 147
|
||
8 37 x 37 36 93 x 93 64 149 x 149
|
||
9 39 x 39 37 95 x 95 65 151 x 151
|
||
10 41 x 41 38 97 x 97 66 153 x 153
|
||
11 43 x 43 39 99 x 99 67 155 x 155
|
||
12 45 x 45 40 101 x 101 68 157 x 157
|
||
13 47 x 47 41 103 x 103 69 159 x 159
|
||
14 49 x 49 42 105 x 105 70 161 x 161
|
||
15 51 x 51 43 107 x 107 71 163 x 163
|
||
16 53 x 53 44 109 x 109 72 165 x 165
|
||
17 55 x 55 45 111 x 111 73 167 x 167
|
||
18 57 x 57 46 113 x 113 74 169 x 169
|
||
19 59 x 59 47 115 x 115 75 171 x 171
|
||
20 61 x 61 48 117 x 117 76 173 x 173
|
||
21 63 x 63 49 119 x 119 77 175 x 175
|
||
22 65 x 65 50 121 x 121 78 177 x 177
|
||
23 67 x 67 51 123 x 123 79 179 x 179
|
||
24 69 x 69 52 125 x 125 80 181 x 181
|
||
25 71 x 71 53 127 x 127 81 183 x 183
|
||
26 73 x 73 54 129 x 129 82 185 x 185
|
||
27 75 x 75 55 131 x 131 83 187 x 187
|
||
28 77 x 77 56 133 x 133 84 189 x 189
|
||
|
||
: Table : Han Xin Sizes:
|
||
|
||
There are four levels of error correction capacity available for Han Xin Code
|
||
which can be set by using the --secure option (API option_1) to a value from the
|
||
following table:
|
||
|
||
Mode Recovery Capacity
|
||
------ -------------------
|
||
1 Approx 8%
|
||
2 Approx 15%
|
||
3 Approx 23%
|
||
4 Approx 30%
|
||
|
||
: Table : Han Xin Error Correction Modes:
|
||
|
||
Non-ASCII data density may be maximized by using the --fullmultibyte switch (API
|
||
option_3 = ZINT_FULL_MULTIBYTE), but check that your barcode reader supports
|
||
this before using.
|
||
|
||
Han Xin has four different masks designed to minimize unwanted patterns. The
|
||
best mask to use is selected automatically by Zint but may be manually specified
|
||
by using the --mask switch with values 0-3, or in the API by setting
|
||
option_3 = (N + 1) << 8 where N is 0-3. To use with ZINT_FULL_MULTIBYTE set
|
||
|
||
option_3 = ZINT_FULL_MULTIBYTE | (N + 1) << 8
|
||
|
||
6.6.13 Ultracode
|
||
|
||
[zint -b ULTRA -d "HEIMASÍÐA KENNARAHÁSKÓLA ÍSLANDS"]
|
||
|
||
This symbology uses a grid of coloured elements to encode data. ECI and GS1
|
||
modes are supported. The amount of error correction can be set using the
|
||
--secure option (API option_1) to a value as shown in the following table:
|
||
|
||
Value EC Level Amount of symbol holding error correction data
|
||
------- ---------- ------------------------------------------------
|
||
1 EC0 0% - Error detection only
|
||
2 EC1 Approx 5%
|
||
3 EC2 Approx 9% - Default value
|
||
4 EC3 Approx 17%
|
||
5 EC4 Approx 25%
|
||
6 EC5 Approx 33%
|
||
|
||
: Table : Ultracode Error Correction Values:
|
||
|
||
Zint does not currently implement data compression by default, but this can be
|
||
initiated through the API by setting
|
||
|
||
symbol->option_3 = ULTRA_COMPRESSION;
|
||
|
||
WARNING: Ultracode data compression is experimental and should not be used in a
|
||
production environment.
|
||
|
||
Revision 2 of Ultracode (2021) which swops and inverts the DCCU and DCCL tiles
|
||
may be specified using --vers=2 (API option_2 = 2).
|
||
|
||
Ultracode supports Structured Append of up to 8 symbols and an optional numeric
|
||
ID (File Number), which can be set by using the --structapp option (see 4.16
|
||
Structured Append) (API structapp). The ID ranges from 1 to 80088. If an ID is
|
||
not given, no ID is encoded.
|
||
|
||
6.7 Other Barcode-Like Markings
|
||
|
||
6.7.1 Facing Identification Mark (FIM)
|
||
|
||
[zint -b FIM --compliantheight -d "C"]
|
||
|
||
Used by the United States Postal Service (USPS), the FIM symbology is used to
|
||
assist automated mail processing. There are only 5 valid symbols which can be
|
||
generated using the characters A-E as shown in the table below.
|
||
|
||
Code Letter Usage
|
||
------------- ----------------------------------------------------------------
|
||
A Used for courtesy reply mail and metered reply mail with a
|
||
pre-printed POSTNET symbol.
|
||
B Used for business reply mail without a pre-printed zip code.
|
||
C Used for business reply mail with a pre-printed zip code.
|
||
D Used for Information Based Indicia (IBI) postage.
|
||
E Used for customized mail with a USPS Intelligent Mail barcode.
|
||
|
||
: Table : Valid FIM Characters:
|
||
|
||
6.7.2 Flattermarken
|
||
|
||
[zint -b FLAT -d "1304056"]
|
||
|
||
Used for the recognition of page sequences in print-shops, the Flattermarken is
|
||
not a true barcode symbol and requires precise knowledge of the position of the
|
||
mark on the page. The Flattermarken system can encode numeric data up to a
|
||
maximum of 90 digits and does not include a check digit.
|
||
|
||
7. Legal and Version Information
|
||
|
||
7.1 License
|
||
|
||
Zint, libzint and Zint Barcode Studio are Copyright © 2022 Robin Stuart. All
|
||
historical versions are distributed under the GNU General Public License version
|
||
3 or later. Versions 2.5 and later are released under a dual license: the
|
||
encoding library is released under the BSD (3 clause) license whereas the GUI,
|
||
Zint Barcode Studio, and the CLI are released under the GNU General Public
|
||
License version 3 or later.
|
||
|
||
Telepen is a trademark of SB Electronic Systems Ltd.
|
||
|
||
QR Code is a registered trademark of Denso Wave Incorporated.
|
||
|
||
Mailmark is a registered trademark of Royal Mail Group Ltd.
|
||
|
||
Microsoft, Windows and the Windows logo are either registered trademarks or
|
||
trademarks of Microsoft Corporation in the United States and/or other countries.
|
||
|
||
Linux is the registered trademark of Linus Torvalds in the U.S. and other
|
||
countries.
|
||
|
||
Mac and macOS are trademarks of Apple Inc., registered in the U.S. and other
|
||
countries.
|
||
|
||
Zint.org.uk website design and hosting provided by Robert Elliott.
|
||
|
||
7.2 Patent Issues
|
||
|
||
All of the code in Zint is developed using information in the public domain,
|
||
usually freely available on the Internet. Some of the techniques used may be
|
||
subject to patents and other intellectual property legislation. It is my belief
|
||
that any patents involved in the technology underlying symbologies utilised by
|
||
Zint are ‘unadopted’, that is the holder does not object to their methods being
|
||
used.
|
||
|
||
Any methods patented or owned by third parties or trademarks or registered
|
||
trademarks used within Zint or in this document are and remain the property of
|
||
their respective owners and do not indicate endorsement or affiliation with
|
||
those owners, companies or organisations.
|
||
|
||
7.3 Version Information
|
||
|
||
The current stable version of Zint is 2.11.0, released on 24th May 2022.
|
||
|
||
See "ChangeLog" in the project root directory for information on all releases.
|
||
|
||
7.4 Sources of Information
|
||
|
||
Below is a list of some of the sources used in rough chronological order:
|
||
|
||
- Nick Johnson’s Barcode Specifications
|
||
- Bar Code 1 Specification Source Page
|
||
- SB Electronic Systems Telepen website
|
||
- Pharmacode specifications from Laetus
|
||
- Morovia RM4SCC specification
|
||
- Australia Post’s ‘A Guide to Printing the 4-State Barcode’ and bcsample
|
||
source code
|
||
- Plessey algorithm from GNU-Barcode v0.98 by Leonid A. Broukhis
|
||
- GS1 General Specifications v 8.0 Issue 2
|
||
- PNG: The Definitive Guide and wpng source code by Greg Reolofs
|
||
- PDF417 specification and pdf417 source code by Grand Zebu
|
||
- Barcode Reference, TBarCode/X User Documentation and TBarCode/X
|
||
demonstration program from Tec-It
|
||
- IEC16022 source code by Stefan Schmidt et al
|
||
- United States Postal Service Specification USPS-B-3200
|
||
- Adobe Systems Incorporated Encapsulated PostScript File Format Specification
|
||
- BSI Online Library
|
||
- Libdmtx Data Matrix ECC200 decoding library
|
||
|
||
7.5 Standards Compliance
|
||
|
||
Zint was developed to provide compliance with the following British and
|
||
international standards:
|
||
|
||
7.5.1 Symbology Standards
|
||
|
||
- ISO/IEC 24778:2008 Information technology - Automatic identification and
|
||
data capture techniques - Aztec Code bar code symbology specification
|
||
- ANSI/AIM BC12-1998 - Uniform Symbology Specification Channel Code
|
||
- BS EN 798:1996 Bar coding - Symbology specifications - ‘Codabar’
|
||
- AIM Europe ISS-X-24 - Uniform Symbology Specification Codablock-F (1995)
|
||
- ISO/IEC 15417:2007 Information technology - Automatic identification and
|
||
data capture techniques - Code 128 bar code symbology specification
|
||
- BS EN 12323:2005 AIDC technologies - Symbology specifications - Code 16K
|
||
- ISO/IEC 16388:2007 Information technology - Automatic identification and
|
||
data capture techniques - Code 39 bar code symbology specification
|
||
- ANSI/AIM BC6-2000 - Uniform Symbology Specification Code 49
|
||
- ANSI/AIM BC5-1995 - Uniform Symbology Specification Code 93
|
||
- AIM Uniform Symbology Specification Code One (1994)
|
||
- ISO/IEC 16022:2006 Information technology - Automatic identification and
|
||
data capture techniques - Data Matrix ECC200 bar code symbology
|
||
specification
|
||
- ISO/IEC 21471:2020 Information technology - Automatic identification and
|
||
data capture techniques - Extended rectangular data matrix (DMRE) bar code
|
||
symbology specification
|
||
- AIM TSC1705001 (v 4.0 Draft 0.15) - Information technology - Automatic
|
||
identification and data capture techniques - Bar code symbology
|
||
specification - DotCode (Revised 28th May 2019)
|
||
- ISO/IEC 15420:2009 Information technology - Automatic identification and
|
||
data capture techniques - EAN/UPC bar code symbology specification
|
||
- AIMD014 (v 1.63) - Information technology, Automatic identification and data
|
||
capture techniques - Bar code symbology specification - Grid Matrix
|
||
(Released 9th Dec 2008)
|
||
- ISO/IEC 24723:2010 Information technology - Automatic identification and
|
||
data capture techniques - GS1 Composite bar code symbology specification
|
||
- ISO/IEC 24724:2011 Information technology - Automatic identification and
|
||
data capture techniques - GS1 DataBar bar code symbology specification
|
||
- ISO/IEC 20830:2021 Information technology - Automatic identification and
|
||
data capture techniques - Han Xin Code bar code symbology specification
|
||
- ISO/IEC 16390:2007 Information technology - Automatic identification and
|
||
data capture techniques - Interleaved 2 of 5 bar code symbology
|
||
specification
|
||
- ISO/IEC 16023:2000 Information technology - International symbology
|
||
specification - MaxiCode
|
||
- ISO/IEC 24728:2006 Information technology - Automatic identification and
|
||
data capture techniques - MicroPDF417 bar code symbology specification
|
||
- ISO/IEC 15438:2015 Information technology - Automatic identification and
|
||
data capture techniques - PDF417 bar code symbology specification
|
||
- ISO/IEC 18004:2015 Information technology - Automatic identification and
|
||
data capture techniques - QR Code bar code symbology specification
|
||
- ISO/IEC 23941:2022 Information technology - Automatic identification and
|
||
data capture techniques - Rectangular Micro QR Code (rMQR) bar code
|
||
symbology specification
|
||
- AIMD/TSC15032-43 (v 0.99c) - International Technical Specification -
|
||
Ultracode Symbology (Draft) (Released 4th Nov 2015)
|
||
|
||
A number of other specification documents have also been referenced, such as
|
||
MIL-STD-1189 Rev. B (1989) (LOGMARS), USPS DMM 300 2006 (2011) (POSTNET, PLANET,
|
||
FIM) and USPS-B-3200 (2015) (IMAIL). Those not named include postal and delivery
|
||
company references in particular.
|
||
|
||
7.5.2 General Standards
|
||
|
||
- AIM ITS/04-001 International Technical Standard - Extended Channel
|
||
Interpretations Part 1: Identification Schemes and Protocol (Released 24th
|
||
May 2004)
|
||
- AIM ITS/04-023 International Technical Standard - Extended Channel
|
||
Interpretations Part 3: Register (Version 2, February 2022)
|
||
- GS1 General Specifications Release 22.0 (Jan 2022)
|
||
- ANSI/HIBC 2.6-2016 - The Health Industry Bar Code (HIBC) Supplier Labeling
|
||
Standard
|
||
|
||
Annex A. Character Encoding
|
||
|
||
This section is intended as a quick reference to the character sets used by
|
||
Zint. All symbologies use standard ASCII input as shown in section A.1, but some
|
||
support extended characters as shown in the subsequent section A.2 Latin
|
||
Alphabet No. 1 (ISO/IEC 8859-1).
|
||
|
||
A.1 ASCII Standard
|
||
|
||
The ubiquitous ASCII standard is well known to most computer users. It’s
|
||
reproduced here for reference.
|
||
|
||
Hex 0 1 2 3 4 5 6 7
|
||
----- ----- ----- ------- --- --- --- --- -----
|
||
0 NUL DLE SPACE 0 @ P ` p
|
||
1 SOH DC1 ! 1 A Q a q
|
||
2 STX DC2 " 2 B R b r
|
||
3 ETX DC3 # 3 C S c s
|
||
4 EOT DC4 $ 4 D T d t
|
||
5 ENQ NAK % 5 E U e u
|
||
6 ACK SYN & 6 F V f v
|
||
7 BEL ETB ' 7 G W g w
|
||
8 BS CAN ( 8 H X h x
|
||
9 TAB EM ) 9 I Y i y
|
||
A LF SUB * : J Z j z
|
||
B VT ESC + ; K [ k {
|
||
C FF FS , < L \ l |
|
||
D CR GS - = M ] m }
|
||
E SO RS . > N ^ n ~
|
||
F SI US / ? O _ o DEL
|
||
|
||
: Table : ASCII:
|
||
|
||
A.2 Latin Alphabet No. 1 (ISO/IEC 8859-1)
|
||
|
||
ISO/IEC 8859-1 defines additional characters common in western European
|
||
languages like French, German, Italian and Spanish. This extension is the
|
||
default encoding of many barcodes (see Table : Default Character Sets) when a
|
||
codepoint above hex 9F is encoded. Note that codepoints hex 80 to 9F are not
|
||
defined.
|
||
|
||
Hex 8 9 A B C D E F
|
||
----- --- --- ------ --- --- --- --- ---
|
||
0 NBSP ° À Ð à ð
|
||
1 ¡ ± Á Ñ á ñ
|
||
2 ¢ ² Â Ò â ò
|
||
3 £ ³ Ã Ó ã ó
|
||
4 ¤ ´ Ä Ô ä ô
|
||
5 ¥ μ Å Õ å õ
|
||
6 ¦ ¶ Æ Ö æ ö
|
||
7 § · Ç × ç ÷
|
||
8 ¨ ¸ È Ø è ø
|
||
9 © ¹ É Ù é ù
|
||
A ª º Ê Ú ê ú
|
||
B « » Ë Û ë û
|
||
C ¬ ¼ Ì Ü ì ü
|
||
D SHY ½ Í Ý í ý
|
||
E ® ¾ Î Þ î þ
|
||
F ¯ ¿ Ï ß ï ÿ
|
||
|
||
: Table : ISO/IEC 8859-1:
|
||
|
||
Annex B. Man Page ZINT(1)
|
||
|
||
% ZINT(1) Version 2.11.0.9 % % June 2022
|
||
|
||
NAME
|
||
|
||
zint - encode data as a barcode image
|
||
|
||
SYNOPSIS
|
||
|
||
zint [-h | --help]
|
||
zint [options]
|
||
|
||
DESCRIPTION
|
||
|
||
zint takes input data from the command line or a file to encode in a barcode
|
||
which is then output to an image file.
|
||
|
||
Input data is UTF-8, unless --binary is specified.
|
||
|
||
Human Readable Text (HRT) is displayed by default for those barcodes that
|
||
support HRT, unless --notext is specified.
|
||
|
||
The output image file (specified with -o | --output) may be in one of these
|
||
formats: Windows Bitmap (BMP), Enhanced Metafile Format (EMF), Encapsulated
|
||
PostScript (EPS), Graphics Interchange Format (GIF), ZSoft Paintbrush (PCX),
|
||
Portable Network Format (PNG), Scalable Vector Graphic (SVG), or Tagged Image
|
||
File Format (TIF).
|
||
|
||
OPTIONS
|
||
|
||
-h, --help
|
||
Print usage information summarizing command line options.
|
||
|
||
-b TYPE, --barcode=TYPE
|
||
Set the barcode symbology that will be used to encode the data. TYPE is the
|
||
number or name of the barcode symbology. If not given, the symbology
|
||
defaults to 20 (Code 128). To see what types are available, use the -t |
|
||
--types option. Type names are case-insensitive, and non-alphanumerics are
|
||
ignored.
|
||
|
||
--addongap=INTEGER
|
||
For EAN/UPC symbologies, set the gap between the main data and the add-on.
|
||
INTEGER is in integral multiples of the X-dimension. The maximum gap that
|
||
can be set is 12. The minimum is 7, except for UPC-A, when the minimum is 9.
|
||
|
||
--batch
|
||
Treat each line of an input file specified with -i | --input as a separate
|
||
data set and produce a barcode image for each one. The barcode images are
|
||
outputted by default to numbered filenames starting with “00001.png”,
|
||
“00002.png” etc., which can be changed by using the -o | --output option.
|
||
|
||
--bg=COLOUR
|
||
Specify a background (paper) colour where COLOUR is in hex RRGGBB or
|
||
RRGGBBAA format.
|
||
|
||
--binary
|
||
Treat input data as raw 8-bit binary data instead of the default UTF-8.
|
||
Automatic code page translation to an ECI page is disabled, and no
|
||
validation of the data’s character encoding takes place.
|
||
|
||
--bind
|
||
Add horizontal boundary bars (also known as bearer bars) to the symbol. The
|
||
width of the boundary bars is specified by the --border option. --bind can
|
||
also be used to add row separator bars to symbols stacked with multiple -d |
|
||
--data inputs, in which case the width of the separator bars is specified
|
||
with the --separator option.
|
||
|
||
--bold
|
||
Use bold text for the Human Readable Text (HRT).
|
||
|
||
--border=INTEGER
|
||
Set the width of boundary bars (--bind) or box borders (--box), where
|
||
INTEGER is in integral multiples of the X-dimension. The default is zero.
|
||
|
||
--box
|
||
Add a box around the symbol. The width of the borders is specified by the
|
||
--border option.
|
||
|
||
--cmyk
|
||
Use the CMYK colour space when outputting to Encapsulated PostScript (EPS)
|
||
or TIF files.
|
||
|
||
--cols=INTEGER
|
||
Set the number of data columns in the symbol to INTEGER. Affects
|
||
Codablock-F, DotCode, GS1 DataBar Expanded Stacked (DBAR_EXPSTK),
|
||
MicroPDF417 and PDF417 symbols.
|
||
|
||
--compliantheight
|
||
|
||
Warn if the height specified by the --height option is not compliant with
|
||
the barcode’s specification, or if --height is not given, default to the
|
||
height specified by the specification (if any).
|
||
|
||
-d, --data=DATA
|
||
|
||
Specify the input DATA to encode. The --esc option may be used to enter
|
||
non-printing characters using escape sequences. The DATA should be UTF-8,
|
||
unless the --binary option is given, in which case it can be anything.
|
||
|
||
--direct
|
||
|
||
Send output to stdout, which in most cases should be re-directed to a pipe
|
||
or a file. Use --filetype to specify output format.
|
||
|
||
--dmre
|
||
|
||
For Data Matrix symbols, allow Data Matrix Rectangular Extended (RMRE) sizes
|
||
when considering automatic sizes.
|
||
|
||
--dotsize=NUMBER
|
||
|
||
Set the radius of the dots in dotty mode (--dotty). NUMBER is in multiples
|
||
of the X-dimension, and may be floating-point. The default is 0.8.
|
||
|
||
--dotty
|
||
|
||
Use dots instead of squares for matrix symbols. DotCode is always in dotty
|
||
mode.
|
||
|
||
--dump
|
||
|
||
Dump a hexadecimal representation of the symbol’s encodation to stdout. The
|
||
same representation may be outputted to a file by using a .txt extension
|
||
with -o | --output or by specifying --filetype=txt.
|
||
|
||
-e, --ecinos
|
||
|
||
Display the table of ECIs (Extended Channel Interpretations).
|
||
|
||
--eci=INTEGER
|
||
|
||
Set the ECI code for the input data to INTEGER. See -e | --ecinos for a list
|
||
of the ECIs available. ECIs are supported by Aztec Code, Code One, Data
|
||
Matrix, DotCode, Grid Matrix, Han Xin Code, MaxiCode, MicroPDF417, PDF417,
|
||
QR Code, rMQR and Ultracode
|
||
|
||
--esc
|
||
|
||
Process escape characters in the input data. The escape sequences are:
|
||
|
||
\0 (0x00) NUL Null character
|
||
\E (0x04) EOT End of Transmission
|
||
\a (0x07) BEL Bell
|
||
\b (0x08) BS Backspace
|
||
\t (0x09) HT Horizontal Tab
|
||
\n (0x0A) LF Line Feed
|
||
\v (0x0B) VT Vertical Tab
|
||
\f (0x0C) FF Form Feed
|
||
\r (0x0D) CR Carriage Return
|
||
\e (0x1B) ESC Escape
|
||
\G (0x1D) GS Group Separator
|
||
\R (0x1E) RS Record Separator
|
||
\\ (0x5C) \ Backslash
|
||
\dNNN (NNN) Any 8-bit character where NNN is
|
||
decimal (000-255)
|
||
\xNN (0xNN) Any 8-bit character where NN is
|
||
hexadecimal
|
||
\uNNNN (U+NNNN) Any 16-bit Unicode BMP character
|
||
where NNNN is hexadecimal
|
||
\UNNNNNN (U+NNNNNN) Any 21-bit Unicode character
|
||
where NNNNNN is hexadecimal
|
||
|
||
--fast
|
||
|
||
Use faster if less optimal encodation (currently affects Data Matrix only).
|
||
|
||
--fg=COLOUR
|
||
|
||
Specify a foreground (ink) colour where COLOUR is in hex RRGGBB or RRGGBBAA
|
||
format.
|
||
|
||
--filetype=TYPE
|
||
|
||
Set the output file type to TYPE, which is one of BMP, EMF, EPS, GIF, PCX,
|
||
PNG, SVG, TIF, TXT.
|
||
|
||
--fullmultibyte
|
||
|
||
Use the multibyte modes of Grid Matrix, Han Xin and QR Code for non-ASCII
|
||
data.
|
||
|
||
--gs1
|
||
|
||
Treat input as GS1 compatible data. Application Identifiers (AIs) should be
|
||
placed in square brackets "[]" (but see --gs1parens).
|
||
|
||
--gs1nocheck
|
||
|
||
Do not check the validity of GS1 data.
|
||
|
||
--gs1parens
|
||
|
||
Process parentheses "()" as GS1 AI delimiters, rather than square brackets
|
||
"[]". The input data must not otherwise contain parentheses.
|
||
|
||
--gssep
|
||
|
||
For Data Matrix in GS1 mode, use GS (0x1D) as the GS1 data separator instead
|
||
of FNC1.
|
||
|
||
--guarddescent=NUMBER
|
||
|
||
For EAN/UPC symbols, set the height the guard bars descend below the main
|
||
bars, where NUMBER is in multiples of the X-dimension. NUMBER may be
|
||
floating-point.
|
||
|
||
--height=NUMBER
|
||
|
||
Set the height of the symbol in multiples of the X-dimension. NUMBER may be
|
||
floating-point.
|
||
|
||
--heightperrow
|
||
|
||
Treat height as per-row. Affects Codablock-F, Code16K, Code 49, GS1 DataBar
|
||
Expanded Stacked (DBAR_EXPSTK), MicroPDF417 and PDF417.
|
||
|
||
-i, --input=FILE
|
||
|
||
Read the input data from FILE.
|
||
|
||
--init
|
||
|
||
Create a Reader Initialisation (Programming) symbol.
|
||
|
||
--mask=INTEGER
|
||
|
||
Set the masking pattern to use for DotCode, Han Xin or QR Code to INTEGER,
|
||
overriding the automatic selection.
|
||
|
||
--mirror
|
||
|
||
Use the batch data to determine the filename in batch mode (--batch).
|
||
|
||
--mode=INTEGER
|
||
|
||
For MaxiCode and GS1 Composite symbols, set the encoding mode to INTEGER.
|
||
|
||
For MaxiCode (SCM is Structured Carrier Message, with 3 fields: postcode,
|
||
3-digit ISO 3166-1 country code, 3-digit service code):
|
||
|
||
2 SCM with 9-digit numeric postcode
|
||
3 SCM with 6-character alphanumeric postcode
|
||
4 Enhanced ECC for the primary part of the message
|
||
5 Enhanced ECC for all of the message
|
||
6 Reader Initialisation (Programming)
|
||
|
||
For GS1 Composite symbols (names end in _CC, i.e. EANX_CC, GS1_128_CC,
|
||
DBAR_OMN_CC etc.):
|
||
|
||
1 CC-A
|
||
2 CC-B
|
||
3 CC-C (GS1_128_CC only)
|
||
|
||
--nobackground
|
||
|
||
Remove the background colour (EMF, EPS, GIF, PNG, SVG and TIF only).
|
||
|
||
--noquietzones
|
||
|
||
Disable any quiet zones for symbols that define them by default.
|
||
|
||
--notext
|
||
|
||
Remove the Human Readable Text (HRT).
|
||
|
||
-o, --output=FILE
|
||
|
||
Send the output to FILE. When not in batch mode, the default is “out.png”
|
||
(or “out.gif” if zint built without PNG support). When in batch mode
|
||
(--batch), special characters can be used to format the output filenames:
|
||
|
||
~ Insert a number or 0
|
||
# Insert a number or space
|
||
@ Insert a number or * (+ on Windows)
|
||
Any other Insert literally
|
||
|
||
--primary=STRING
|
||
|
||
For MaxiCode, set the content of the primary message. For GS1 Composite
|
||
symbols, set the content of the linear symbol.
|
||
|
||
--quietzones
|
||
|
||
Add compliant quiet zones for symbols that specify them. This is in addition
|
||
to any whitespace specified by -w | --whitesp or --vwhitesp.
|
||
|
||
-r, --reverse
|
||
|
||
Reverse the foreground and background colours (white on black). Known as
|
||
“reflectance reversal” or “reversed reflectance”.
|
||
|
||
--rotate=INTEGER
|
||
|
||
Rotate the symbol by INTEGER degrees, where INTEGER can be 0, 90, 270 or
|
||
360.
|
||
|
||
--rows=INTEGER
|
||
|
||
Set the number of rows for Codablock-F or PDF417 to INTEGER. It will also
|
||
set the minimum number of rows for Code 16k or Code 49, and the maximum
|
||
number of rows for GS1 DataBar Expanded Stacked (DBAR_EXPSTK).
|
||
|
||
--scale=NUMBER
|
||
|
||
Adjust the size of the X-dimension. NUMBER may be floating-point, and is
|
||
multiplied by 2 (except for MaxiCode) before being applied. The default
|
||
scale is 1.
|
||
|
||
For MaxiCode, the scale is multiplied by 10 for raster output, by 20 for EMF
|
||
output, and by 2 otherwise.
|
||
|
||
Increments of 0.5 (half-integers) are recommended for non-MaxiCode raster
|
||
output (BMP, GIF, PCX, PNG and TIF).
|
||
|
||
--scmvv=INTEGER
|
||
|
||
For MaxiCode, prefix the Structured Carrier Message (SCM) with
|
||
"[)>\R01\Gvv", where vv is a 2-digit INTEGER.
|
||
|
||
--secure=INTEGER
|
||
|
||
Set the error correction level (ECC) to INTEGER. The meaning is specific to
|
||
the following matrix symbols (all except PDF417 are approximate):
|
||
|
||
Aztec Code 1 to 4 (10%, 23%, 36%, 50%)
|
||
Grid Matrix 1 to 5 (10% to 50%)
|
||
Han Xin 1 to 4 (8%, 15%, 23%, 30%)
|
||
Micro QR 1 to 3 (7%, 15%, 25%) (L, M, Q)
|
||
PDF417 0 to 8 (2^(INTEGER + 1) codewords)
|
||
QR Code 1 to 4 (7%, 15%, 25%, 30%) (L, M, Q, H)
|
||
rMQR 2 or 4 (15% or 30%) (M or H)
|
||
Ultracode 1 to 6 (0%, 5%, 9%, 17%, 25%, 33%)
|
||
|
||
--segN=ECI,DATA
|
||
|
||
Set the ECI & DATA content for segment N, where N is 1 to 9. -d | --data
|
||
must still be given, and counts as segment 0, its ECI given by --eci.
|
||
Segments must be consecutive.
|
||
|
||
--separator=INTEGER
|
||
|
||
Set the height of row separator bars for stacked symbologies, where INTEGER
|
||
is in integral multiples of the X-dimension. The default is zero.
|
||
|
||
--small
|
||
|
||
Use small text for Human Readable Text (HRT).
|
||
|
||
--square
|
||
|
||
For Data Matrix symbols, exclude rectangular sizes when considering
|
||
automatic sizes.
|
||
|
||
--structapp=I,C[,ID]
|
||
|
||
Set Structured Append info, where I is the 1-based index, C is the total
|
||
number of symbols in the sequence, and ID, which is optional, is the
|
||
identifier that all symbols in the sequence share. Structured Append is
|
||
supported by Aztec Code, Code One, Data Matrix, DotCode, Grid Matrix,
|
||
MaxiCode, MicroPDF417, PDF417, QR Code and Ultracode.
|
||
|
||
-t, --types
|
||
|
||
Display the table of barcode types (symbologies). The numbers or names can
|
||
be used with -b | --barcode.
|
||
|
||
--vers=INTEGER
|
||
|
||
Set the symbol version (size, check digits, other options) to INTEGER. The
|
||
meaning is symbol-specific.
|
||
|
||
For most matrix symbols, it specifies size:
|
||
|
||
Aztec Code 1 to 36 (1 to 4 compact)
|
||
Code One 1 to 10
|
||
Data Matrix 1 to 48 (31 to 48 DMRE)
|
||
Grid Matrix 1 to 13
|
||
Han Xin 1 to 84
|
||
Micro QR 1 to 4 (M1, M2, M3, M4)
|
||
QR Code 1 to 40
|
||
rMQR 1 to 38 (33 to 38 automatic width)
|
||
|
||
For a number of linear symbols, it specifies check character options (“hide”
|
||
or “hidden” means don’t show in HRT, “show” or “visible” means do display in
|
||
HRT):
|
||
|
||
C25IATA 1 or 2 (add visible or hidden check digit)
|
||
C25IND ditto
|
||
C25INTER ditto
|
||
C25LOGIC ditto
|
||
C25STANDARD ditto
|
||
Codabar 1 or 2 (add hidden or visible check digit)
|
||
Code 11 0 or 1 (no or 1 visible check digit only)
|
||
(default is 2 visible check digits)
|
||
Code 39 1 (add visible check digit)
|
||
Code 93 1 (hide the default check characters)
|
||
EXCODE39 1 (add visible check digit)
|
||
LOGMARS 1 (add visible check digit)
|
||
MSI Plessey 0 to 6 (none to various visible options)
|
||
1, 2 (mod-10, mod-10 + mod-10)
|
||
3, 4 (mod-11 IBM, mod-11 IBM + mod-10)
|
||
5, 6 (mod-11 NCR, mod-11 NCR + mod-10)
|
||
+10 (hide)
|
||
|
||
For a few other symbologies, it specifies other characteristics:
|
||
|
||
Channel Code 3 to 8 (no. of channels)
|
||
DAFT 50 to 900 (permille tracker ratio)
|
||
Ultracode 2 (revision 2)
|
||
VIN 1 (add international prefix)
|
||
|
||
-v, --version
|
||
|
||
Display zint version.
|
||
|
||
--vwhitesp=INTEGER
|
||
|
||
Set the height of vertical whitespace above and below the barcode, where
|
||
INTEGER is in integral multiples of the X-dimension.
|
||
|
||
-w, --whitesp=INTEGER
|
||
|
||
Set the width of horizontal whitespace either side of the barcode, where
|
||
INTEGER is in integral multiples of the X-dimension.
|
||
|
||
--werror
|
||
|
||
Convert all warnings into errors.
|
||
|
||
EXIT STATUS
|
||
|
||
0
|
||
Success (including when given informational options -h | --help, -e |
|
||
--ecinos, -t | --types, -v | --version).
|
||
|
||
2
|
||
Invalid option given but overridden by Zint (ZINT_WARN_INVALID_OPTION)
|
||
|
||
3
|
||
Automatic ECI inserted by Zint (ZINT_WARN_USES_ECI)
|
||
|
||
4
|
||
Symbol created not compliant with standards (ZINT_WARN_NONCOMPLIANT)
|
||
|
||
5
|
||
Input data wrong length (ZINT_ERROR_TOO_LONG)
|
||
|
||
6
|
||
Input data incorrect (ZINT_ERROR_INVALID_DATA)
|
||
|
||
7
|
||
Input check digit incorrect (ZINT_ERROR_INVALID_CHECK)
|
||
|
||
8
|
||
Incorrect option given (ZINT_ERROR_INVALID_OPTION)
|
||
|
||
9
|
||
Internal error (should not happen) (ZINT_ERROR_ENCODING_PROBLEM)
|
||
|
||
10
|
||
Error opening output file (ZINT_ERROR_FILE_ACCESS)
|
||
|
||
11
|
||
Memory allocation (malloc) failure (ZINT_ERROR_MEMORY)
|
||
|
||
12
|
||
Error writing to output file (ZINT_ERROR_FILE_WRITE)
|
||
|
||
13
|
||
Error counterpart of warning if --werror given (ZINT_ERROR_USES_ECI)
|
||
|
||
14
|
||
Error counterpart of warning if --werror given (ZINT_ERROR_NONCOMPLIANT)
|
||
|
||
EXAMPLES
|
||
|
||
Create “out.png” (or “out.gif” if zint built without PNG support) in the current
|
||
directory, as a Code 128 symbol.
|
||
|
||
zint -d 'This Text'
|
||
|
||
Create “qr.svg” in the current directory, as a QR Code symbol.
|
||
|
||
zint -b QRCode -d 'This Text' -o 'qr.svg'
|
||
|
||
Use batch mode to read from an input file “ean_nos.txt” containing 13-digit
|
||
GTINs, to create a series of EAN-13 barcodes, formatting the output filenames to
|
||
“ean001.gif”, “ean002.gif” etc. using the special character “~”.
|
||
|
||
zint -b EANX --batch -i 'ean_nos.txt' -o 'ean~~~.gif'
|
||
|
||
BUGS
|
||
|
||
Please send bug reports to https://sourceforge.net/p/zint/tickets/.
|
||
|
||
SEE ALSO
|
||
|
||
Full documention for zint (and the API libzint and the GUI zint-qt) is available
|
||
from http://zint.org.uk/Manual.aspx, and at
|
||
https://sourceforge.net/p/zint/docs/manual.txt.
|
||
|
||
CONFORMING TO
|
||
|
||
Zint is designed to be compliant with a number of international standards,
|
||
including:
|
||
|
||
ISO/IEC 24778:2008, ANSI/AIM BC12-1998, EN 798:1996, AIM ISS-X-24 (1995),
|
||
ISO/IEC 15417:2007, EN 12323:2005, ISO/IEC 16388:2007, ANSI/AIM BC6-2000,
|
||
ANSI/AIM BC5-1995, AIM USS Code One (1994), ISO/IEC 16022:2006, ISO/IEC
|
||
21471:2019, ISO/IEC 15420:2009, AIMD014 (v 1.63) (2008), ISO/IEC 24723:2010,
|
||
ISO/IEC 24724:2011, ISO/IEC 20830:2021, ISO/IEC 16390:2007, ISO/IEC 16023:2000,
|
||
ISO/IEC 24728:2006, ISO/IEC 15438:2015, ISO/IEC 18004:2015, ISO/IEC 23941:2022,
|
||
AIM ITS/04-023 (2022)
|
||
|
||
COPYRIGHT
|
||
|
||
Copyright © 2022 Robin Stuart. Released under GNU GPL 3.0 or later.
|
||
|
||
AUTHOR
|
||
|
||
Robin Stuart robin@zint.org.uk
|
||
|
||
[1] See the Homebrew website https://brew.sh.
|
||
|
||
[2] In Unicode contexts, BMP stands for Basic Multilingual Plane, the plane 0
|
||
codeset from U+0000 to U+D7FF and U+E000 to U+FFFF (i.e. excluding surrogates).
|
||
Not to be confused with the Windows Bitmap file format BMP!
|
||
|
||
[3] The symbologies marked with an asterisk (*) in Table
|
||
: Barcode Types (Symbologies) above used different names in Zint before version
|
||
2.9.0. For example, symbology 29 used the name BARCODE_RSS14. These names are
|
||
now deprecated but are still recognised by Zint and will continue to be
|
||
supported in future versions.
|
||
|
||
[4] Shift JIS (JIS X 0201 Roman) re-maps two ASCII characters: backslash (\) to
|
||
the yen sign (¥), and tilde (~) to overline (U+203E).
|
||
|
||
[5] ISO/IEC 646 Invariant is a subset of ASCII with 12 characters undefined: #,
|
||
$, @, [, \, ], ^, `, {, |, }, ~.
|
||
|
||
[6] The height value is ignored for Aztec (including HIBC and Aztec Rune), Code
|
||
One, Data Matrix (including HIBC), DotCode, Grid Matrix, Han Xin, MaxiCode, QR
|
||
Code (including HIBC, Micro QR, rMQR and UPNQR), and Ultracode - all of which
|
||
have a fixed width-to-height ratio (or, in the case of Code One, a fixed
|
||
height).
|
||
|
||
[7] The BARCODE_BIND flag is always set for Codablock-F, Code 16K and Code 49.
|
||
Special considerations apply to ITF-14 - see 6.1.2.6 ITF-14.
|
||
|
||
[8] Codablock-F, Code 16K, Code 49, EAN-2 to EAN-13, ISBN, ITF-14, UPC-A and
|
||
UPC-E have compliant quiet zones added by default.
|