IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Our CI isn't running the C unit tests because it goes via RPM,
and while we could potentially add `%check` there...I don't
quite want to do that right now since it also runs the Rust
tests which means we rebuild all the Rust code again in debug
mode etc.
Change the C unit tests to compile in C++ mode, which is
enough for local testing.
Longer term I think the C unit tests will go away in favor
of Rust tests.
Gather the current diff of `/etc`, and filter out changes in
the tree which would overwrite it.
There is an OSTree API for diffs but it's a bit awkward, missing
some APIs in the Rust bindings and also `GFile` based unfortunately.
Doing this in Rust is nicer. The dirdiff code obviously needs
a lot more testing, but I think it's right.
This adds support for e.g.:
```
$ rpm-ostree override replace https://bodhi.fedoraproject.org/updates/FEDORA-2020-2908628031
```
This will find the Koji builds from the listed update, download
all the RPMs (that aren't debuginfo) and pass them for overrides
in the same way we support `override replace http://somewebserver/foo.rpm`
now.
We also support directly linking a Koji build:
```
$ rpm-ostree override replace https://koji.fedoraproject.org/koji/buildinfo?buildID=1625029
```
Bodhi has a modern HTTP+JSON API, and the lack of a Koji equivalent
drove me to create https://github.com/cgwalters/koji-sane-json-api
and we currently depend on an instance set up in the OpenShift CI
cluster.
I hope it shouldn't take long to deploy this in Fedora Infra,
but I don't want to block on it.
Also notably this still downloads *all* the other RPMs even
ones that aren't installed. Handling that truly correctly
would require moving this logic to the daemon and core.
All of this functionality is keyed off a `cfg(feature = "fedora-integration")`
that is detected by a Rust `build.rs` which parses the build environment's
`/etc/os-release` for now.
Apparently small rpmdb changes can cause the size to stay the
same due to preallocation, and rsync defaults to skipping files
based on (name, size, mtime). It's really ostree's mtime canonicalization
that's unfortunate here.
Anyways, we obviously don't care about performance here so use
`-I` to disable that rsync check.
(Also remove the `mkdir -p` since it's not necessary since a long time)
Closes: https://github.com/coreos/rpm-ostree/issues/2435
This makes the C++ side a bit uglier because the "variable mapping"
is more Rust-native but we only use it Rust side anyways.
(We can't yet move the basearch bits to rust because it depends on
libdnf, which requires buildsystem unification)
But all the unsafe FFI conversion drops out, as do the duplicated
C unit tests.
The cool thing about this is it emphasizes how "integrated" apply-live
is versus the uncontrolled `rpm-ostree usroverlay`. We're still
tracking the state of things reliably and can print it.
(Keeping the old name for muscle memory compatibility for now)
I think `apply-live` is a clearer name; it's more imperative
and it may not be obvious (particularly to non-native English speakers)
to parse "livefs" as "live fs".
On traditional rpm systems this can hang because the outer
process may have an rpmdb lock, and the inner one wants
to acquire a lock. Here we're sandboxing the `%post` script
and it's targeting a separate temporary filesystem compared to
the booted one (so there's no double locking). Plus we don't
create the rpmdb in the target until all scripts have run.
Inspired by https://twitter.com/_msw_/status/1335981558717587473
I was looking at the output of `ostree admin config-diff`
on a base FCOS boot. It'd be really nice to trim that down
as much as possible, so we can cleanly capture the difference
between user config and system config.
Let's use static enablement rather than presets.
I still think we should do this at some point, but
the experiment with using `GKeyfile` for configuration
is IMO a failure and the variety of data formats
(treefile JSON vs YAML vs origin keyfiles vs container keyfiles)
causes a lot of confusion.
Prep for https://github.com/coreos/rpm-ostree/issues/2326
Now always based on an overlayfs:
f2773c1b55
This fixes a whole swath of problems with the previous design,
including the danger in replacing `/usr/lib/ostree-boot` which
broke booting for some people.
Further, we don't need to push a rollback deployment; the livefs
changes are always transient. So now we store livefs state
in `/run` instead of in the origin file.
Since we're doing a rewrite, it's now in Rust for much more safety.
We also always work in terms of incremental diffs between commits;
the previous huge hammer of swapping `/usr` was way too dangerous.
This effectively reverts commit: c8113bde32
We never ended up using it; instead the `rdcore` bits from
`coreos-installer` have the rootfs reprovisioning logic.
This command allows users to cheaply inject configuration files in the
initramfs stage without having to regenerate the whole initramfs (or
even a new OSTree commit). This will be useful for configuring services
involved in bringing up the root block device.
```
$ echo 'hello world' > /etc/foobar
$ rpm-ostree ex initramfs-etc --track /etc/foobar
Staging deployment... done
Run "systemctl reboot" to start a reboot
$ rpm-ostree status
State: idle
Deployments:
ostree://fedora:fedora/x86_64/coreos/testing-devel
Version: 32.20200716.dev.1 (2020-07-16T02:47:29Z)
Commit: 9a817d75bef81b955179be6e602d1e6ae350645b6323231a62ba2ee6e5b9644b
GPGSignature: (unsigned)
InitramfsEtc: /etc/foobar
● ostree://fedora:fedora/x86_64/coreos/testing-devel
Version: 32.20200716.dev.1 (2020-07-16T02:47:29Z)
Commit: 9a817d75bef81b955179be6e602d1e6ae350645b6323231a62ba2ee6e5b9644b
GPGSignature: (unsigned)
$ reboot
(boot into rd.break)
sh-5.0# cat /etc/foobar
hello world
```
See the libostree side of this at:
https://github.com/ostreedev/ostree/pull/2155
Lots more discussions in:
https://github.com/coreos/fedora-coreos-tracker/issues/94Closes: #1930
We're seeing some CI failures that I think are a bug in rojig.
In the bigger picture...we never actually started using this,
and I think longer term shipping os updates via containers
probably makes more sense.
I put a *lot* of effort into this code and it's pretty cool
so it's hard to just delete it. And *maybe* someone out there
is using it (but I doubt it). So rather than just deleting
it entirely let's make it a build-time option.
I verified that it builds at least.
In f32, ping is no longer privileged since it ships with the sysctl for
`ping_group_range` which allows unpriv pings. Check the file caps of
arping instead, which does still use them.
Now that we've bumped to the latest FCOS commit for compose tests, one
thing that came up was that our compose tests never actually included
FCOS overlays in the compose the way cosa does.
This then cause compose failures because one of the postprocess scripts
expects those files there.
Let's just nuke all postprocess scripts here to work around this. I
initially wanted to import the overlay logic from cosa, but overlays
only work in unified core mode, and sadly we still want some coverage in
non-unified mode until that's fully dropped.
And anyway, we also already do a proper `cosa build` in the vmcheck
branch of CI so it's not like we're losing that coverage.
Down the line though, I think this is a good argument for folding the
overlay dirs into rpm-ostree more natively as discussed here:
https://github.com/coreos/coreos-assembler/pull/639#issuecomment-534713737
The design of https://fedoraproject.org/wiki/Changes/Sqlite_Rpmdb
is problematic for us for multiple reasons. The first big reason
is that rpm-ostree is designed for "cross" builds and e.g. today
we use a Fedora-derived container to build RHEL CoreOS images.
However the default database lives inside the `rpm` package which
means that if we e.g. upgrade the coreos-assembler container to F33
it will suddenly try to use sqlite for RHCOS which is obviously broken.
Related to this, rebases from f32 to f33 w/layered packages
are broken: https://bugzilla.redhat.com/show_bug.cgi?id=1876194#c3
With this we can configure things to continue to use bdb for f33
for ostree-based systems, so that by enforcing an upgrade order
f32 → f33 [bdb] → f34 [sqlite] ... the intermediate f33 w/bdb
still understands sqlite and hence rebases will work.
For the Fedora CoreOS extensions work, when layering packages, we need
to be able to tell libsolv to pick the packages which will go with the
base packages. IOW, it needs to know that the base packages shouldn't be
uninstalled.
While investigating
https://github.com/coreos/fedora-coreos-tracker/issues/525, I realized
that libsolv does have a flag which allows us to express this:
`SOLVER_LOCK`.
This then allows libsolv to choose the right package for us (if found).
And in the case where it can't find a matching package, libsolv itself
will print exactly what the conflict is, which is more informative than
the "forbidden replacements" error we currently print out.
Update submodule: libdnf
We want to test upgrades that actually change files as a general
rule; in some cases we want to test "large" upgrades to validate
performance.
This code generates a "synthetic" upgrade that adds an ELF note
to a percentage of ELF files (randomly selected). By doing
it this way we are only actually testing one version of the code.
Migrated from https://github.com/coreos/coreos-assembler/pull/1635/
using the Rust code from https://github.com/ostreedev/ostree/pull/2127
Fix https://github.com/coreos/rpm-ostree/issues/2068: `remove-from-packages`
deleting files that it shouldn't.
Filter out files that user wants removed at `checkout_package_into_root()`,
instead of at the `handle_remove_files_from_package()` function that does
not check whether files are used by other rpms before removing them.
Add a helper function for whitespace_split_packages() so that it now
splits a String by whitespace only if it is not wrapped between single
quotes.
This should allow RHCOS to use syntax like podman > 1.4 in the treefile.
Also add new unit tests and tweak existing compose tests to test this
functionality.
Both `upgrade` and `deploy` already support this. There's no reason why
all the remaining "deployment-creating" commands shouldn't. Prompted by
https://github.com/openshift/machine-config-operator/issues/1897 which
will need this specifically for `rebase`.
The latest crypto-policies package changed recently to dynamically set
the policy at install time so that if FIPS is enabled, the selected
backend is `FIPS`:
9b9c9f7378
This doesn't really make sense for us though since the compose server
configuration should be decoupled from the installroot. (More generally,
this also affects e.g. `yum install --installroot`).
Override the script for now so that we always select the `DEFAULT`
policy. We'll discuss with upstream to see what the right solution is
there.
This also works around the fact that rpm-ostree doesn't yet implement
Lua (#749).
Related: https://bugzilla.redhat.com/show_bug.cgi?id=1847454
Resolves: https://github.com/coreos/fedora-coreos-tracker/issues/540
Now that cosa and FCOS have moved to f32, a bunch of tests are breaking.
Let's make them more resistant to releasever changes.
While we're here though, bump the container image we use on the target
host to f32, and update the systemd example output.
Switch to the "installed" model introduced by:
https://github.com/coreos/coreos-assembler/pull/1441
It's hard to support running tests *both* from the srcdir
and installed; in this case because we have a symlink that needs
to be followed, which kola knows how to do from the srcdir
but not when installed. Let's establish a new convention of
`tests/kolainst`. In our case we follow the symlink manually
for now.
That bit will be cleaned up when we eventually switch entirely
to kola tests.
Same motivation as
7392259332
I think we should encourage removing the writable bits from
executables. This has happened to me:
https://thomask.sdf.org/blog/2019/11/09/take-care-editing-bash-scripts.html
And not having the writable bit may help prevent hardlink
corruption with OSTree in some cases.
We can't do this by default, but add a convenient treefile option
for it.
This starts out by just doing this for RPMs, but I'll add
a secondary pass which does it during postprocessing soon too.
The main goal here is to get `assert_jq()` usable in
kola tests.
This was forked from ostree long ago but we aren't
using most of it. I want to try to move this into kola where
we're just using `tests/common` but this code references
`tests/gpghome` which we weren't using.
Only a few things here reference `SRCDIR` - change those
to fail for now if it's not set, since we're not running
those tests in kola yet. I will eventually try to
clean that up later.
Pre-FCOS we made an effort for automatic updates but nowadays
with Fedora CoreOS we generally expect people to be using zincati.
Until we fix the "agent registration" problem:
https://github.com/coreos/rpm-ostree/issues/1747
Let's not confuse people by printing `AutomaticUpdates: disabled`.
Only print if it's set to a value in non-verbose mode.
In Fedora CoreOS, we have a "coreos-pool" repo from which all packages
in lockfiles are tagged for reproducible builds. This repo is shared
across all streams, including those on f31 and f32.
Thus, it makes no sense for composes to ever pick packages unconstrained
from the pool without being guided by a lockfile. Otherwise, one can
easily end up with e.g. f32 packages in an f31 compose.
Add a new `lockfile-repos` for this which is only used for fetching
lockfile packages and nothing else. For example, this will allow
`cosa fetch --update-lockfile` to Just Work as expected by only fetching
new packages from regular yum repos.
Today, lockfiles only restrict the NEVRA of specifc package names from
which libsolv can pick. But nothing stops libsolv from picking entirely
different packages which still satisfy the manifest requests.
This was mostly a theoretical issue in Fedora CoreOS, but became reality
with the addition of Fedora 32 packages in the pool. libsolv would
happily try to pick e.g. `libcurl-minimal` from f32 instead of sticking
with the f31 `libcurl` from the lockfiles:
https://github.com/coreos/fedora-coreos-streams/issues/75#issuecomment-610734584
(But more generally, see
https://github.com/coreos/fedora-coreos-tracker/issues/454).
Let's add a `--ex-lockfile-strict` mode, which in CI and production
pipeline build contexts will require that (1) *only* locked packages are
considered by libsolv, and (2) *all* locked packages were marked for
install.
One important thing to note here is that we don't short-circuit libsolv
and manually `hy_goal_install` lockfile packages. We want to make sure
the treefile is still canonical. Strict mode simply ensures that the
result agrees with the lockfile.
That said, even in developer contexts, we don't want the
`libcurl-minimal` issue that happened to be triggered. But we still want
to allow flexibility in adding and removing packages to make hacking
easier. I have some follow-up patches which will enable this.