haproxy/doc/management.txt
Willy Tarreau 2212e6a9e2 DOC: add the "management" documentation
This doc explains how to start/stop haproxy, what signals are used
and a few debugging tricks. It's far from being complete but should
already help a number of users.

The stats part will be taken from the config doc.
2015-10-13 16:18:28 +02:00

1197 lines
64 KiB
Plaintext

------------------------
HAProxy Management Guide
------------------------
version 1.6
This document describes how to start, stop, manage, and troubleshoot HAProxy,
as well as some known limitations and traps to avoid. It does not describe how
to configure it (for this please read configuration.txt).
Note to documentation contributors :
This document is formatted with 80 columns per line, with even number of
spaces for indentation and without tabs. Please follow these rules strictly
so that it remains easily printable everywhere. If you add sections, please
update the summary below for easier searching.
Summary
-------
1. Prerequisites
2. Quick reminder about HAProxy's architecture
3. Starting HAProxy
4. Stopping and restarting HAProxy
5. File-descriptor limitations
6. Memory management
7. CPU usage
8. Logging
9. Statistics and monitoring
10. Tricks for easier configuration management
11. Well-known traps to avoid
12. Debugging and performance issues
13. Security considerations
1. Prerequisites
----------------
In this document it is assumed that the reader has sufficient administration
skills on a UNIX-like operating system, uses the shell on a daily basis and is
familiar with troubleshooting utilities such as strace and tcpdump.
2. Quick reminder about HAProxy's architecture
----------------------------------------------
HAProxy is a single-threaded, event-driven, non-blocking daemon. This means is
uses event multiplexing to schedule all of its activities instead of relying on
the system to schedule between multiple activities. Most of the time it runs as
a single process, so the output of "ps aux" on a system will report only one
"haproxy" process, unless a soft reload is in progress and an older process is
finishing its job in parallel to the new one. It is thus always easy to trace
its activity using the strace utility.
HAProxy is designed to isolate itself into a chroot jail during startup, where
it cannot perform any file-system access at all. This is also true for the
libraries it depends on (eg: libc, libssl, etc). The immediate effect is that
a running process will not be able to reload a configuration file to apply
changes, instead a new process will be started using the updated configuration
file. Some other less obvious effects are that some timezone files or resolver
files the libc might attempt to access at run time will not be found, though
this should generally not happen as they're not needed after startup. A nice
consequence of this principle is that the HAProxy process is totally stateless,
and no cleanup is needed after it's killed, so any killing method that works
will do the right thing.
HAProxy doesn't write log files, but it relies on the standard syslog protocol
to send logs to a remote server (which is often located on the same system).
HAProxy uses its internal clock to enforce timeouts, that is derived from the
system's time but where unexpected drift is corrected. This is done by limiting
the time spent waiting in poll() for an event, and measuring the time it really
took. In practice it never waits more than one second. This explains why, when
running strace over a completely idle process, periodic calls to poll() (or any
of its variants) surrounded by two gettimeofday() calls are noticed. They are
normal, completely harmless and so cheap that the load they imply is totally
undetectable at the system scale, so there's nothing abnormal there. Example :
16:35:40.002320 gettimeofday({1442759740, 2605}, NULL) = 0
16:35:40.002942 epoll_wait(0, {}, 200, 1000) = 0
16:35:41.007542 gettimeofday({1442759741, 7641}, NULL) = 0
16:35:41.007998 gettimeofday({1442759741, 8114}, NULL) = 0
16:35:41.008391 epoll_wait(0, {}, 200, 1000) = 0
16:35:42.011313 gettimeofday({1442759742, 11411}, NULL) = 0
HAProxy is a TCP proxy, not a router. It deals with established connections that
have been validated by the kernel, and not with packets of any form nor with
sockets in other states (eg: no SYN_RECV nor TIME_WAIT), though their existence
may prevent it from binding a port. It relies on the system to accept incoming
connections and to initiate outgoing connections. An immediate effect of this is
that there is no relation between packets observed on the two sides of a
forwarded connection, which can be of different size, numbers and even family.
Since a connection may only be accepted from a socket in LISTEN state, all the
sockets it is listening to are necessarily visible using the "netstat" utility
to show listening sockets. Example :
# netstat -ltnp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1629/sshd
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 2847/haproxy
tcp 0 0 0.0.0.0:443 0.0.0.0:* LISTEN 2847/haproxy
3. Starting HAProxy
-------------------
HAProxy is started by invoking the "haproxy" program with a number of arguments
passed on the command line. The actual syntax is :
$ haproxy [<options>]*
where [<options>]* is any number of options. An option always starts with '-'
followed by one of more letters, and possibly followed by one or multiple extra
arguments. Without any option, HAProxy displays the help page with a reminder
about supported options. Available options may vary slightly based on the
operating system. A fair number of these options overlap with an equivalent one
if the "global" section. In this case, the command line always has precedence
over the configuration file, so that the command line can be used to quickly
enforce some settings without touching the configuration files. The current
list of options is :
-- <cfgfile>* : all the arguments following "--" are paths to configuration
file to be loaded and processed in the declaration order. It is mostly
useful when relying on the shell to load many files that are numerically
ordered. See also "-f". The difference between "--" and "-f" is that one
"-f" must be placed before each file name, while a single "--" is needed
before all file names. Both options can be used together, the command line
ordering still applies. When more than one file is specified, each file
must start on a section boundary, so the first keyword of each file must be
one of "global", "defaults", "peers", "listen", "frontend", "backend", and
so on. A file cannot contain just a server list for example.
-f <cfgfile> : adds <cfgfile> to the list of configuration files to be
loaded. Configuration files are loaded and processed in their declaration
order. This option may be specified multiple times to load multiple files.
See also "--". The difference between "--" and "-f" is that one "-f" must
be placed before each file name, while a single "--" is needed before all
file names. Both options can be used together, the command line ordering
still applies. When more than one file is specified, each file must start
on a section boundary, so the first keyword of each file must be one of
"global", "defaults", "peers", "listen", "frontend", "backend", and so
on. A file cannot contain just a server list for example.
-C <dir> : changes to directory <dir> before loading configuration
files. This is useful when using relative paths. Warning when using
wildcards after "--" which are in fact replaced by the shell before
starting haproxy.
-D : start as a daemon. The process detaches from the current terminal after
forking, and errors are not reported anymore in the terminal. It is
equivalent to the "daemon" keyword in the "global" section of the
configuration. It is recommended to always force it in any init script so
that a faulty configuration doesn't prevent the system from booting.
-Ds : work in systemd mode. Only used by the systemd wrapper.
-L <name> : change the local peer name to <name>, which defaults to the local
hostname. This is used only with peers replication.
-N <limit> : sets the default per-proxy maxconn to <limit> instead of the
builtin default value (usually 2000). Only useful for debugging.
-V : enable verbose mode (disables quiet mode). Reverts the effect of "-q" or
"quiet".
-c : only performs a check of the configuration files and exits before trying
to bind. The exit status is zero if everything is OK, or non-zero if an
error is encountered.
-d : enable debug mode. This disables daemon mode, forces the process to stay
in foreground and to show incoming and outgoing events. It is equivalent to
the "global" section's "debug" keyword. It must never be used in an init
script.
-dG : disable use of getaddrinfo() to resolve host names into addresses. It
can be used when suspecting that getaddrinfo() doesn't work as expected.
This option was made available because many bogus implementations of
getaddrinfo() exist on various systems and cause anomalies that are
difficult to troubleshoot.
-dM[<byte>] : forces memory poisonning, which means that each and every
memory region allocated with malloc() or pool_alloc2() will be filled with
<byte> before being passed to the caller. When <byte> is not specified, it
defaults to 0x50 ('P'). While this slightly slows down operations, it is
useful to reliably trigger issues resulting from missing initializations in
the code that cause random crashes. Note that -dM0 has the effect of
turning any malloc() into a calloc(). In any case if a bug appears or
disappears when using this option it means there is a bug in haproxy, so
please report it.
-dS : disable use of the splice() system call. It is equivalent to the
"global" section's "nosplice" keyword. This may be used when splice() is
suspected to behave improperly or to cause performance issues, or when
using strace to see the forwarded data (which do not appear when using
splice()).
-dV : disable SSL verify on the server side. It is equivalent to having
"ssl-server-verify none" in the "global" section. This is useful when
trying to reproduce production issues out of the production
environment. Never use this in an init script as it degrades SSL security
to the servers.
-db : disable background mode and multi-process mode. The process remains in
foreground. It is mainly used during development or during small tests, as
Ctrl-C is enough to stop the process. Never use it in an init script.
-de : disable the use of the "epoll" poller. It is equivalent to the "global"
section's keyword "noepoll". It is mostly useful when suspecting a bug
related to this poller. On systems supporting epoll, the fallback will
generally be the "poll" poller.
-dk : disable the use of the "kqueue" poller. It is equivalent to the
"global" section's keyword "nokqueue". It is mostly useful when suspecting
a bug related to this poller. On systems supporting kqueue, the fallback
will generally be the "poll" poller.
-dp : disable the use of the "poll" poller. It is equivalent to the "global"
section's keyword "nopoll". It is mostly useful when suspecting a bug
related to this poller. On systems supporting poll, the fallback will
generally be the "select" poller, which cannot be disabled and is limited
to 1024 file descriptors.
-m <limit> : limit the total allocatable memory to <limit> megabytes per
process. This may cause some connection refusals or some slowdowns
depending on the amount of memory needed for normal operations. This is
mostly used to force the process to work in a constrained resource usage
scenario.
-n <limit> : limits the per-process connection limit to <limit>. This is
equivalent to the global section's keyword "maxconn". It has precedence
over this keyword. This may be used to quickly force lower limits to avoid
a service outage on systems where resource limits are too low.
-p <file> : write all processes' pids into <file> during startup. This is
equivalent to the "global" section's keyword "pidfile". The file is opened
before entering the chroot jail, and after doing the chdir() implied by
"-C". Each pid appears on its own line.
-q : set "quiet" mode. This disables some messages during the configuration
parsing and during startup. It can be used in combination with "-c" to
just check if a configuration file is valid or not.
-sf <pid>* : send the "finish" signal (SIGUSR1) to older processes after boot
completion to ask them to finish what they are doing and to leave. <pid>
is a list of pids to signal (one per argument). The list ends on any
option starting with a "-". It is not a problem if the list of pids is
empty, so that it can be built on the fly based on the result of a command
like "pidof" or "pgrep".
-st <pid>* : send the "terminate" signal (SIGTERM) to older processes after
boot completion to terminate them immediately without finishing what they
were doing. <pid> is a list of pids to signal (one per argument). The list
is ends on any option starting with a "-". It is not a problem if the list
of pids is empty, so that it can be built on the fly based on the result of
a command like "pidof" or "pgrep".
-v : report the version and build date.
-vv : display the version, build options, libraries versions and usable
pollers. This output is systematically requested when filing a bug report.
A safe way to start HAProxy from an init file consists in forcing the deamon
mode, storing existing pids to a pid file and using this pid file to notify
older processes to finish before leaving :
haproxy -f /etc/haproxy.cfg \
-D -p /var/run/haproxy.pid -sf $(cat /var/run/haproxy.pid)
When the configuration is split into a few specific files (eg: tcp vs http),
it is recommended to use the "-f" option :
haproxy -f /etc/haproxy/global.cfg -f /etc/haproxy/stats.cfg \
-f /etc/haproxy/default-tcp.cfg -f /etc/haproxy/tcp.cfg \
-f /etc/haproxy/default-http.cfg -f /etc/haproxy/http.cfg \
-D -p /var/run/haproxy.pid -sf $(cat /var/run/haproxy.pid)
When an unknown number of files is expected, such as customer-specific files,
it is recommended to assign them a name starting with a fixed-size sequence
number and to use "--" to load them, possibly after loading some defaults :
haproxy -f /etc/haproxy/global.cfg -f /etc/haproxy/stats.cfg \
-f /etc/haproxy/default-tcp.cfg -f /etc/haproxy/tcp.cfg \
-f /etc/haproxy/default-http.cfg -f /etc/haproxy/http.cfg \
-D -p /var/run/haproxy.pid -sf $(cat /var/run/haproxy.pid) \
-f /etc/haproxy/default-customers.cfg -- /etc/haproxy/customers/*
Sometimes a failure to start may happen for whatever reason. Then it is
important to verify if the version of HAProxy you are invoking is the expected
version and if it supports the features you are expecting (eg: SSL, PCRE,
compression, Lua, etc). This can be verified using "haproxy -vv". Some
important information such as certain build options, the target system and
the versions of the libraries being used are reported there. It is also what
you will systematically be asked for when posting a bug report :
$ haproxy -vv
HA-Proxy version 1.6-dev7-a088d3-4 2015/10/08
Copyright 2000-2015 Willy Tarreau <willy@haproxy.org>
Build options :
TARGET = linux2628
CPU = generic
CC = gcc
CFLAGS = -pg -O0 -g -fno-strict-aliasing -Wdeclaration-after-statement \
-DBUFSIZE=8030 -DMAXREWRITE=1030 -DSO_MARK=36 -DTCP_REPAIR=19
OPTIONS = USE_ZLIB=1 USE_DLMALLOC=1 USE_OPENSSL=1 USE_LUA=1 USE_PCRE=1
Default settings :
maxconn = 2000, bufsize = 8030, maxrewrite = 1030, maxpollevents = 200
Encrypted password support via crypt(3): yes
Built with zlib version : 1.2.6
Compression algorithms supported : identity("identity"), deflate("deflate"), \
raw-deflate("deflate"), gzip("gzip")
Built with OpenSSL version : OpenSSL 1.0.1o 12 Jun 2015
Running on OpenSSL version : OpenSSL 1.0.1o 12 Jun 2015
OpenSSL library supports TLS extensions : yes
OpenSSL library supports SNI : yes
OpenSSL library supports prefer-server-ciphers : yes
Built with PCRE version : 8.12 2011-01-15
PCRE library supports JIT : no (USE_PCRE_JIT not set)
Built with Lua version : Lua 5.3.1
Built with transparent proxy support using: IP_TRANSPARENT IP_FREEBIND
Available polling systems :
epoll : pref=300, test result OK
poll : pref=200, test result OK
select : pref=150, test result OK
Total: 3 (3 usable), will use epoll.
The relevant information that many non-developer users can verify here are :
- the version : 1.6-dev7-a088d3-4 above means the code is currently at commit
ID "a088d3" which is the 4th one after after official version "1.6-dev7".
Version 1.6-dev7 would show as "1.6-dev7-8c1ad7". What matters here is in
fact "1.6-dev7". This is the 7th development version of what will become
version 1.6 in the future. A development version not suitable for use in
production (unless you know exactly what you are doing). A stable version
will show as a 3-numbers version, such as "1.5.14-16f863", indicating the
14th level of fix on top of version 1.5. This is a production-ready version.
- the release date : 2015/10/08. It is represented in the universal
year/month/day format. Here this means August 8th, 2015. Given that stable
releases are issued every few months (1-2 months at the beginning, sometimes
6 months once the product becomes very stable), if you're seeing an old date
here, it means you're probably affected by a number of bugs or security
issues that have since been fixed and that it might be worth checking on the
official site.
- build options : they are relevant to people who build their packages
themselves, they can explain why things are not behaving as expected. For
example the development version above was built for Linux 2.6.28 or later,
targetting a generic CPU (no CPU-specific optimizations), and lacks any
code optimization (-O0) so it will perform poorly in terms of performance.
- libraries versions : zlib version is reported as found in the library
itself. In general zlib is considered a very stable product and upgrades
are almost never needed. OpenSSL reports two versions, the version used at
build time and the one being used, as found on the system. These ones may
differ by the last letter but never by the numbers. The build date is also
reported because most OpenSSL bugs are security issues and need to be taken
seriously, so this library absolutely needs to be kept up to date. Seeing a
4-months old version here is highly suspicious and indeed an update was
missed. PCRE provides very fast regular expressions and is highly
recommended. Certain of its extensions such as JIT are not present in all
versions and still young so some people prefer not to build with them,
which is why the biuld status is reported as well. Regarding the Lua
scripting language, HAProxy expects version 5.3 which is very young since
it was released a little time before HAProxy 1.6. It is important to check
on the Lua web site if some fixes are proposed for this branch.
- Available polling systems will affect the process's scalability when
dealing with more than about one thousand of concurrent connections. These
ones are only available when the correct system was indicated in the TARGET
variable during the build. The "epoll" mechanism is highly recommended on
Linux, and the kqueue mechanism is highly recommended on BSD. Lacking them
will result in poll() or even select() being used, causing a high CPU usage
when dealing with a lot of connections.
4. Stopping and restarting HAProxy
----------------------------------
HAProxy supports a graceful and a hard stop. The hard stop is simple, when the
SIGTERM signal is sent to the haproxy process, it immediately quits and all
established connections are closed. The graceful stop is triggered when the
SIGUSR1 signal is sent to the haproxy process. It consists in only unbinding
from listening ports, but continue to process existing connections until they
close. Once the last connection is closed, the process leaves.
The hard stop method is used for the "stop" or "restart" actions of the service
management script. The graceful stop is used for the "reload" action which
tries to seamlessly reload a new configuration in a new process.
Both of these signals may be sent by the new haproxy process itself during a
reload or restart, so that they are sent at the latest possible moment and only
if absolutely required. This is what is performed by the "-st" (hard) and "-sf"
(graceful) options respectively.
To understand better how these signals are used, it is important to understand
the whole restart mechanism.
First, an existing haproxy process is running. The administrator uses a system
specific command such as "/etc/init.d/haproxy reload" to indicate he wants to
take the new configuration file into effect. What happens then is the following.
First, the service script (/etc/init.d/haproxy or equivalent) will verify that
the configuration file parses correctly using "haproxy -c". After that it will
try to start haproxy with this configuration file, using "-st" or "-sf".
Then HAProxy tries to bind to all listening ports. If some fatal errors happen
(eg: address not present on the system, permission denied), the process quits
with an error. If a socket binding fails because a port is already in use, then
the process will first send a SIGTTOU signal to all the pids specified in the
"-st" or "-sf" pid list. This is what is called the "pause" signal. It instructs
all existing haproxy processes to temporarily stop listening to their ports so
that the new process can try to bind again. During this time, the old process
continues to process existing connections. If the binding still fails (because
for example a port is shared with another daemon), then the new process sends a
SIGTTIN signal to the old processes to instruct them to resume operations just
as if nothing happened. The old processes will then restart listening to the
ports and continue to accept connections. Not that this mechanism is system
dependant and some operating systems may not support it in multi-process mode.
If the new process manages to bind correctly to all ports, then it sends either
the SIGTERM (hard stop in case of "-st") or the SIGUSR1 (graceful stop in case
of "-sf") to all processes to notify them that it is now in charge of operations
and that the old processes will have to leave, either immediately or once they
have finished their job.
It is important to note that during this timeframe, there are two small windows
of a few milliseconds each where it is possible that a few connection failures
will be noticed during high loads. Typically observed failure rates are around
1 failure during a reload operation every 10000 new connections per second,
which means that a heavily loaded site running at 30000 new connections per
second may see about 3 failed connection upon every reload. The two situations
where this happens are :
- if the new process fails to bind due to the presence of the old process,
it will first have to go through the SIGTTOU+SIGTTIN sequence, which
typically lasts about one millisecond for a few tens of frontends, and
during which some ports will not be bound to the old process and not yet
bound to the new one. HAProxy works around this on systems that support the
SO_REUSEPORT socket options, as it allows the new process to bind without
first asking the old one to unbind. Most BSD systems have been supporting
this almost forever. Linux has been supporting this in version 2.0 and
dropped it around 2.2, but some patches were floating around by then. It
was reintroduced in kernel 3.9, so if you are observing a connection
failure rate above the one mentionned above, please ensure that your kernel
is 3.9 or newer, or that relevant patches were backported to your kernel
(less likely).
- when the old processes close the listening ports, the kernel may not always
redistribute any pending connection that was remaining in the socket's
backlog. Under high loads, a SYN packet may happen just before the socket
is closed, and will lead to an RST packet being sent to the client. In some
critical environments where even one drop is not acceptable, these ones are
sometimes dealt with using firewall rules to block SYN packets during the
reload, forcing the client to retransmit. This is totally system-dependent,
as some systems might be able to visit other listening queues and avoid
this RST. A second case concerns the ACK from the client on a local socket
that was in SYN_RECV state just before the close. This ACK will lead to an
RST packet while the haproxy process is still not aware of it. This one is
harder to get rid of, though the firewall filtering rules mentionned above
will work well if applied one second or so before restarting the process.
For the vast majority of users, such drops will never ever happen since they
don't have enough load to trigger the race conditions. And for most high traffic
users, the failure rate is still fairly within the noise margin provided that at
least SO_REUSEPORT is properly supported on their systems.
5. File-descriptor limitations
------------------------------
In order to ensure that all incoming connections will successfully be served,
HAProxy computes at load time the total number of file descriptors that will be
needed during the process's life. A regular Unix process is generally granted
1024 file descriptors by default, and a privileged process can raise this limit
itself. This is one reason for starting HAProxy as root and letting it adjust
the limit. The default limit of 1024 file descriptors roughly allow about 500
concurrent connections to be processed. The computation is based on the global
maxconn parameter which limits the total number of connections per process, the
number of listeners, the number of servers which have a health check enabled,
the agent checks, the peers, the loggers and possibly a few other technical
requirements. A simple rough estimate of this number consists in simply
doubling the maxconn value and adding a few tens to get the approximate number
of file descriptors needed.
Originally HAProxy did not know how to compute this value, and it was necessary
to pass the value using the "ulimit-n" setting in the global section. This
explains why even today a lot of configurations are seen with this setting
present. Unfortunately it was often miscalculated resulting in connection
failures when approaching maxconn instead of throttling incoming connection
while waiting for the needed resources. For this reason it is important to
remove any vestigal "ulimit-n" setting that can remain from very old versions.
Raising the number of file descriptors to accept even moderate loads is
mandatory but comes with some OS-specific adjustments. First, the select()
polling system is limited to 1024 file descriptors. In fact on Linux it used
to be capable of handling more but since certain OS ship with excessively
restrictive SELinux policies forbidding the use of select() with more than
1024 file descriptors, HAProxy now refuses to start in this case in order to
avoid any issue at run time. On all supported operating systems, poll() is
available and will not suffer from this limitation. It is automatically picked
so there is nothing ot do to get a working configuration. But poll's becomes
very slow when the number of file descriptors increases. While HAProxy does its
best to limit this performance impact (eg: via the use of the internal file
descriptor cache and batched processing), a good rule of thumb is that using
poll() with more than a thousand concurrent connections will use a lot of CPU.
For Linux systems base on kernels 2.6 and above, the epoll() system call will
be used. It's a much more scalable mechanism relying on callbacks in the kernel
that guarantee a constant wake up time regardless of the number of registered
monitored file descriptors. It is automatically used where detected, provided
that HAProxy had been built for one of the Linux flavors. Its presence and
support can be verified using "haproxy -vv".
For BSD systems which support it, kqueue() is available as an alternative. It
is much faster than poll() and even slightly faster than epoll() thanks to its
batched handling of changes. At least FreeBSD and OpenBSD support it. Just like
with Linux's epoll(), its support and availability are reported in the output
of "haproxy -vv".
Having a good poller is one thing, but it is mandatory that the process can
reach the limits. When HAProxy starts, it immediately sets the new process's
file descriptor limits and verifies if it succeeds. In case of failure, it
reports it before forking so that the administrator can see the problem. As
long as the process is started by as root, there should be no reason for this
setting to fail. However, it can fail if the process is started by an
unprivileged user. If there is a compelling reason for *not* starting haproxy
as root (eg: started by end users, or by a per-application account), then the
file descriptor limit can be raised by the system administrator for this
specific user. The effectiveness of the setting can be verified by issuing
"ulimit -n" from the user's command line. It should reflect the new limit.
Warning: when an unprivileged user's limits are changed in this user's account,
it is fairly common that these values are only considered when the user logs in
and not at all in some scripts run at system boot time nor in crontabs. This is
totally dependent on the operating system, keep in mind to check "ulimit -n"
before starting haproxy when running this way. The general advice is never to
start haproxy as an unprivileged user for production purposes. Another good
reason is that it prevents haproxy from enabling some security protections.
Once it is certain that the system will allow the haproxy process to use the
requested number of file descriptors, two new system-specific limits may be
encountered. The first one is the system-wide file descriptor limit, which is
the total number of file descriptors opened on the system, covering all
processes. When this limit is reached, accept() or socket() will typically
return ENFILE. The second one is the per-process hard limit on the number of
file descriptors, it prevents setrlimit() from being set higher. Both are very
dependent on the operating system. On Linux, the system limit is set at boot
based on the amount of memory. It can be changed with the "fs.file-max" sysctl.
And the per-process hard limit is set to 1048576 by default, but it can be
changed using the "fs.nr_open" sysctl.
File descriptor limitations may be observed on a running process when they are
set too low. The strace utility will report that accept() and socket() return
"-1 EMFILE" when the process's limits have been reached. In this case, simply
raising the "ulimit-n" value (or removing it) will solve the problem. If these
system calls return "-1 ENFILE" then it means that the kernel's limits have
been reached and that something must be done on a system-wide parameter. These
trouble must absolutely be addressed, as they result in high CPU usage (when
accept() fails) and failed connections that are generally visible to the user.
One solution also consists in lowering the global maxconn value to enforce
serialization, and possibly to disable HTTP keep-alive to force connections
to be released and reused faster.
6. Memory management
--------------------
HAProxy uses a simple and fast pool-based memory management. Since it relies on
a small number of different object types, it's much more efficient to pick new
objects from a pool which already contains objects of the appropriate size than
to call malloc() for each different size. The pools are organized as a stack or
LIFO, so that newly allocated objects are taken from recently released objects
still hot in the CPU caches. Pools of similar sizes are merged together, in
order to limit memory fragmentation.
By default, since the focus is set on performance, each released object is put
back into the pool it came from, and allocated objects are never freed since
they are expected to be reused very soon.
On the CLI, it is possible to check how memory is being used in pools thanks to
the "show pools" command :
> show pools
Dumping pools usage. Use SIGQUIT to flush them.
- Pool pipe (32 bytes) : 5 allocated (160 bytes), 5 used, 3 users [SHARED]
- Pool hlua_com (48 bytes) : 0 allocated (0 bytes), 0 used, 1 users [SHARED]
- Pool vars (64 bytes) : 0 allocated (0 bytes), 0 used, 2 users [SHARED]
- Pool task (112 bytes) : 5 allocated (560 bytes), 5 used, 1 users [SHARED]
- Pool session (128 bytes) : 1 allocated (128 bytes), 1 used, 2 users [SHARED]
- Pool http_txn (272 bytes) : 0 allocated (0 bytes), 0 used, 1 users [SHARED]
- Pool connection (352 bytes) : 2 allocated (704 bytes), 2 used, 1 users [SHARED]
- Pool hdr_idx (416 bytes) : 0 allocated (0 bytes), 0 used, 1 users [SHARED]
- Pool stream (864 bytes) : 1 allocated (864 bytes), 1 used, 1 users [SHARED]
- Pool requri (1024 bytes) : 0 allocated (0 bytes), 0 used, 1 users [SHARED]
- Pool buffer (8064 bytes) : 3 allocated (24192 bytes), 2 used, 1 users [SHARED]
Total: 11 pools, 26608 bytes allocated, 18544 used.
The pool name is only indicative, it's the name of the first object type using
this pool. The size in parenthesis is the object size for objects in this pool.
Object sizes are always rounded up to the closest multiple of 16 bytes. The
number of objects currently allocated and the equivalent number of bytes is
reported so that it is easy to know which pool is responsible for the highest
memory usage. The number of objects currently in use is reported as well in the
"used" field. The difference between "allocated" and "used" corresponds to the
objects that have been freed and are available for immediate use.
It is possible to limit the amount of memory allocated per process using the
"-m" command line option, followed by a number of megabytes. It covers all of
the process's addressable space, so that includes memory used by some libraries
as well as the stack, but it is a reliable limit when building a resource
constrained system. It works the same way as "ulimit -v" on systems which have
it, or "ulimit -d" for the other ones.
If a memory allocation fails due to the memory limit being reached or because
the system doesn't have any enough memory, then haproxy will first start to
free all available objects from all pools before attempting to allocate memory
again. This mechanism of releasing unused memory can be triggered by sending
the signal SIGQUIT to the haproxy process. When doing so, the pools state prior
to the flush will also be reported to stderr when the process runs in
foreground.
During a reload operation, the process switched to the graceful stop state also
automatically performs some flushes after releasing any connection so that all
possible memory is released to save it for the new process.
7. CPU usage
------------
HAProxy normally spends most of its time in the system and a smaller part in
userland. A finely tuned 3.5 GHz CPU can sustain a rate about 80000 end-to-end
connection setups and closes per second at 100% CPU on a single core. When one
core is saturated, typical figures are :
- 95% system, 5% user for long TCP connections or large HTTP objects
- 85% system and 15% user for short TCP connections or small HTTP objects in
close mode
- 70% system and 30% user for small HTTP objects in keep-alive mode
The amount of rules processing and regular expressions will increase the user
land part. The presence of firewall rules, connection tracking, complex routing
tables in the system will instead increase the system part.
On most systems, the CPU time observed during network transfers can be cut in 4
parts :
- the interrupt part, which concerns all the processing performed upon I/O
receipt, before the target process is even known. Typically Rx packets are
accounted for in interrupt. On some systems such as Linux where interrupt
processing may be deferred to a dedicated thread, it can appear as softirq,
and the thread is called ksoftirqd/0 (for CPU 0). The CPU taking care of
this load is generally defined by the hardware settings, though in the case
of softirq it is often possible to remap the processing to another CPU.
This interrupt part will often be perceived as parasitic since it's not
associated with any process, but it actually is some processing being done
to prepare the work for the process.
- the system part, which concerns all the processing done using kernel code
called from userland. System calls are accounted as system for example. All
synchronously delivered Tx packets will be accounted for as system time. If
some packets have to be deferred due to queues filling up, they may then be
processed in interrupt context later (eg: upon receipt of an ACK opening a
TCP window).
- the user part, which exclusively runs application code in userland. HAProxy
runs exclusively in this part, though it makes heavy use of system calls.
Rules processing, regular expressions, compression, encryption all add to
the user portion of CPU consumption.
- the idle part, which is what the CPU does when there is nothing to do. For
example HAProxy waits for an incoming connection, or waits for some data to
leave, meaning the system is waiting for an ACK from the client to push
these data.
In practice regarding HAProxy's activity, it is in general reasonably accurate
(but totally inexact) to consider that interrupt/softirq are caused by Rx
processing in kernel drivers, that user-land is caused by layer 7 processing
in HAProxy, and that system time is caused by network processing on the Tx
path.
Since HAProxy runs around an event loop, it waits for new events using poll()
(or any alternative) and processes all these events as fast as possible before
going back to poll() waiting for new events. It measures the time spent waiting
in poll() compared to the time spent doing processing events. The ratio of
polling time vs total time is called the "idle" time, it's the amount of time
spent waiting for something to happen. This ratio is reported in the stats page
on the "idle" line, or "Idle_pct" on the CLI. When it's close to 100%, it means
the load is extremely low. When it's close to 0%, it means that there is
constantly some activity. While it cannot be very accurate on an overloaded
system due to other processes possibly preempting the CPU from the haproxy
process, it still provides a good estimate about how HAProxy considers it is
working : if the load is low and the idle ratio is low as well, it may indicate
that HAProxy has a lot of work to do, possibly due to very expensive rules that
have to be processed. Conversely, if HAProxy indicates the idle is close to
100% while things are slow, it means that it cannot do anything to speed things
up because it is already waiting for incoming data to process. In the example
below, haproxy is completely idle :
$ echo "show info" | socat - /var/run/haproxy.sock | grep ^Idle
Idle_pct: 100
When the idle ratio starts to become very low, it is important to tune the
system and place processes and interrupts correctly to save the most possible
CPU resources for all tasks. If a firewall is present, it may be worth trying
to disable it or to tune it to ensure it is not responsible for a large part
of the performance limitation. It's worth noting that unloading a stateful
firewall generally reduces both the amount of interrupt/softirq and of system
usage since such firewalls act both on the Rx and the Tx paths. On Linux,
unloading the nf_conntrack and ip_conntrack modules will show whether there is
anything to gain. If so, then the module runs with default settings and you'll
have to figure how to tune it for better performance. In general this consists
in considerably increasing the hash table size. On FreeBSD, "pfctl -d" will
disable the "pf" firewall and its stateful engine at the same time.
If it is observed that a lot of time is spent in interrupt/softirq, it is
important to ensure that they don't run on the same CPU. Most systems tend to
pin the tasks on the CPU where they receive the network traffic because for
certain workloads it improves things. But with heavily network-bound workloads
it is the opposite as the haproxy process will have to fight against its kernel
counterpart. Pinning haproxy to one CPU core and the interrupts to another one,
all sharing the same L3 cache tends to sensibly increase network performance
because in practice the amount of work for haproxy and the network stack are
quite close, so they can almost fill an entire CPU each. On Linux this is done
using taskset (for haproxy) or using cpu-map (from the haproxy config), and the
interrupts are assigned under /proc/irq. Many network interfaces support
multiple queues and multiple interrupts. In general it helps to spread them
across a small number of CPU cores provided they all share the same L3 cache.
Please always stop irq_balance which always does the worst possible thing on
such workloads.
For CPU-bound workloads consisting in a lot of SSL traffic or a lot of
compression, it may be worth using multiple processes dedicated to certain
tasks, though there is no universal rule here and experimentation will have to
be performed.
In order to increase the CPU capacity, it is possible to make HAProxy run as
several processes, using the "nbproc" directive in the global section. There
are some limitations though :
- health checks are run per process, so the target servers will get as many
checks as there are running processes ;
- maxconn values and queues are per-process so the correct value must be set
to avoid overloading the servers ;
- outgoing connections should avoid using port ranges to avoid conflicts
- stick-tables are per process and are not shared between processes ;
- each peers section may only run on a single process at a time ;
- the CLI operations will only act on a single process at a time.
With this in mind, it appears that the easiest setup often consists in having
one first layer running on multiple processes and in charge for the heavy
processing, passing the traffic to a second layer running in a single process.
This mechanism is suited to SSL and compression which are the two CPU-heavy
features. Instances can easily be chained over UNIX sockets (which are cheaper
than TCP sockets and which do not waste ports), adn the proxy protocol which is
useful to pass client information to the next stage. When doing so, it is
generally a good idea to bind all the single-process tasks to process number 1
and extra tasks to next processes, as this will make it easier to generate
similar configurations for different machines.
On Linux versions 3.9 and above, running HAProxy in multi-process mode is much
more efficient when each process uses a distinct listening socket on the same
IP:port ; this will make the kernel evenly distribute the load across all
processes instead of waking them all up. Please check the "process" option of
the "bind" keyword lines in the configuration manual for more information.
8. Logging
----------
For logging, HAProxy always relies on a syslog server since it does not perform
any file-system access. The standard way of using it is to send logs over UDP
to the log server (by default on port 514). Very commonly this is configured to
127.0.0.1 where the local syslog daemon is running, but it's also used over the
network to log to a central server. The central server provides additional
benefits especially in active-active scenarios where it is desirable to keep
the logs merged in arrival order. HAProxy may also make use of a UNIX socket to
send its logs to the local syslog daemon, but it is not recommended at all,
because if the syslog server is restarted while haproxy runs, the socket will
be replaced and new logs will be lost. Since HAProxy will be isolated inside a
chroot jail, it will not have the ability to reconnect to the new socket. It
has also been observed in field that the log buffers in use on UNIX sockets are
very small and lead to lost messages even at very light loads. But this can be
fine for testing however.
It is recommended to add the following directive to the "global" section to
make HAProxy log to the local daemon using facility "local0" :
log 127.0.0.1:514 local0
and then to add the following one to each "defaults" section or to each frontend
and backend section :
log global
This way, all logs will be centralized through the global definition of where
the log server is.
Some syslog daemons do not listen to UDP traffic by default, so depending on
the daemon being used, the syntax to enable this will vary :
- on sysklogd, you need to pass argument "-r" on the daemon's command line
so that it listens to a UDP socket for "remote" logs ; note that there is
no way to limit it to address 127.0.0.1 so it will also receive logs from
remote systems ;
- on rsyslogd, the following lines must be added to the configuration file :
$ModLoad imudp
$UDPServerAddress *
$UDPServerRun 514
- on syslog-ng, a new source can be created the following way, it then needs
to be added as a valid source in one of the "log" directives :
source s_udp {
udp(ip(127.0.0.1) port(514));
};
Please consult your syslog daemon's manual for more information. If no logs are
seen in the system's log files, please consider the following tests :
- restart haproxy. Each frontend and backend logs one line indicating it's
starting. If these logs are received, it means logs are working.
- run "strace -tt -s100 -etrace=sendmsg -p <haproxy's pid>" and perform some
activity that you expect to be logged. You should see the log messages
being sent using sendmsg() there. If they don't appear, restart using
strace on top of haproxy. If you still see no logs, it definitely means
that something is wrong in your configuration.
- run tcpdump to watch for port 514, for example on the loopback interface if
the traffic is being sent locally : "tcpdump -As0 -ni lo port 514". If the
packets are seen there, it's the proof they're sent then the syslogd daemon
needs to be troubleshooted.
While traffic logs are sent from the frontends (where the incoming connections
are accepted), backends also need to be able to send logs in order to report a
server state change consecutive to a health check. Please consult HAProxy's
configuration manual for more information regarding all possible log settings.
It is convenient to chose a facility that is not used by other deamons. HAProxy
examples often suggest "local0" for traffic logs and "local1" for admin logs
because they're never seen in field. A single facility would be enough as well.
Having separate logs is convenient for log analysis, but it's also important to
remember that logs may sometimes convey confidential information, and as such
they must not be mixed with other logs that may accidently be handed out to
unauthorized people.
For in-field troubleshooting without impacting the server's capacity too much,
it is recommended to make use of the "halog" utility provided with HAProxy.
This is sort of a grep-like utility designed to process HAProxy log files at
a very fast data rate. Typical figures range between 1 and 2 GB of logs per
second. It is capable of extracting only certain logs (eg: search for some
classes of HTTP status codes, connection termination status, search by response
time ranges, look for errors only), count lines, limit the output to a number
of lines, and perform some more advanced statistics such as sorting servers
by response time or error counts, sorting URLs by time or count, sorting client
addresses by access count, and so on. It is pretty convenient to quickly spot
anomalies such as a bot looping on the site, and block them.
9. Statistics and monitoring
----------------------------
10. Tricks for easier configuration management
----------------------------------------------
It is very common that two HAProxy nodes constituting a cluster share exactly
the same configuration modulo a few addresses. Instead of having to maintain a
duplicate configuration for each node, which will inevitably diverge, it is
possible to include environment variables in the configuration. Thus multiple
configuration may share the exact same file with only a few different system
wide environment variables. This started in version 1.5 where only addresses
were allowed to include environment variables, and 1.6 goes further by
supporting environment variables everywhere. The syntax is the same as in the
UNIX shell, a variable starts with a dollar sign ('$'), followed by an opening
curly brace ('{'), then the variable name followed by the closing brace ('}').
Except for addresses, environment variables are only interpreted in arguments
surrounded with double quotes (this was necessary not to break existing setups
using regular expressions involving the dollar symbol).
Environment variables also make it convenient to write configurations which are
expected to work on various sites where only the address changes. It can also
permit to remove passwords from some configs. Example below where the the file
"site1.env" file is sourced by the init script upon startup :
$ cat site1.env
LISTEN=192.168.1.1
CACHE_PFX=192.168.11
SERVER_PFX=192.168.22
LOGGER=192.168.33.1
STATSLP=admin:pa$$w0rd
ABUSERS=/etc/haproxy/abuse.lst
TIMEOUT=10s
$ cat haproxy.cfg
global
log "${LOGGER}:514" local0
defaults
mode http
timeout client "${TIMEOUT}"
timeout server "${TIMEOUT}"
timeout connect 5s
frontend public
bind "${LISTEN}:80"
http-request reject if { src -f "${ABUSERS}" }
stats uri /stats
stats auth "${STATSLP}"
use_backend cache if { path_end .jpg .css .ico }
default_backend server
backend cache
server cache1 "${CACHE_PFX}.1:18080" check
server cache2 "${CACHE_PFX}.2:18080" check
backend server
server cache1 "${SERVER_PFX}.1:8080" check
server cache2 "${SERVER_PFX}.2:8080" check
11. Well-known traps to avoid
-----------------------------
Once in a while, someone reports that after a system reboot, the haproxy
service wasn't started, and that once they start it by hand it works. Most
often, these people are running a clustered IP address mechanism such as
keepalived, to assign the service IP address to the master node only, and while
it used to work when they used to bind haproxy to address 0.0.0.0, it stopped
working after they bound it to the virtual IP address. What happens here is
that when the service starts, the virtual IP address is not yet owned by the
local node, so when HAProxy wants to bind to it, the system rejects this
because it is not a local IP address. The fix doesn't consist in delaying the
haproxy service startup (since it wouldn't stand a restart), but instead to
properly configure the system to allow binding to non-local addresses. This is
easily done on Linux by setting the net.ipv4.ip_nonlocal_bind sysctl to 1. This
is also needed in order to transparently intercept the IP traffic that passes
through HAProxy for a specific target address.
Multi-process configurations involving source port ranges may apparently seem
to work but they will cause some random failures under high loads because more
than one process may try to use the same source port to connect to the same
server, which is not possible. The system will report an error and a retry will
happen, picking another port. A high value in the "retries" parameter may hide
the effect to a certain extent but this also comes with increased CPU usage and
processing time. Logs will also report a certain number of retries. For this
reason, port ranges should be avoided in multi-process configurations.
Since HAProxy uses SO_REUSEPORT and supports having multiple independant
processes bound to the same IP:port, during troubleshooting it can happen that
an old process was not stopped before a new one was started. This provides
absurd test results which tend to indicate that any change to the configuration
is ignored. The reason is that in fact even the new process is restarted with a
new configuration, the old one also gets some incoming connections and
processes them, returning unexpected results. When in doubt, just stop the new
process and try again. If it still works, it very likely means that an old
process remains alive and has to be stopped. Linux's "netstat -lntp" is of good
help here.
When adding entries to an ACL from the command line (eg: when blacklisting a
source address), it is important to keep in mind that these entries are not
synchronized to the file and that if someone reloads the configuration, these
updates will be lost. While this is often the desired effect (for blacklisting)
it may not necessarily match expectations when the change was made as a fix for
a problem. See the "add acl" action of the CLI interface.
12. Debugging and performance issues
------------------------------------
When HAProxy is started with the "-d" option, it will stay in the foreground
and will print one line per event, such as an incoming connection, the end of a
connection, and for each request or response header line seen. This debug
output is emitted before the contents are processed, so they don't consider the
local modifications. The main use is to show the request and response without
having to run a network sniffer. The output is less readable when multiple
connections are handled in parallel, though the "debug2ansi" and "debug2html"
scripts found in the examples/ directory definitely help here by coloring the
output.
If a request or response is rejected because HAProxy finds it is malformed, the
best thing to do is to connect to the CLI and issue "show errors", which will
report the last captured faulty request and response for each frontend and
backend, with all the necessary information to indicate precisely the first
character of the input stream that was rejected. This is sometimes needed to
prove to customers or to developers that a bug is present in their code. In
this case it is often possible to relax the checks (but still keep the
captures) using "option accept-invalid-http-request" or its equivalent for
responses coming from the server "option accept-invalid-http-response". Please
see the configuration manual for more details.
Example :
> show errors
Total events captured on [13/Oct/2015:13:43:47.169] : 1
[13/Oct/2015:13:43:40.918] frontend HAProxyLocalStats (#2): invalid request
backend <NONE> (#-1), server <NONE> (#-1), event #0
src 127.0.0.1:51981, session #0, session flags 0x00000080
HTTP msg state 26, msg flags 0x00000000, tx flags 0x00000000
HTTP chunk len 0 bytes, HTTP body len 0 bytes
buffer flags 0x00808002, out 0 bytes, total 31 bytes
pending 31 bytes, wrapping at 8040, error at position 13:
00000 GET /invalid request HTTP/1.1\r\n
The output of "show info" on the CLI provides a number of useful information
regarding the maximum connection rate ever reached, maximum SSL key rate ever
reached, and in general all information which can help to explain temporary
issues regarding CPU or memory usage. Example :
> show info
Name: HAProxy
Version: 1.6-dev7-e32d18-17
Release_date: 2015/10/12
Nbproc: 1
Process_num: 1
Pid: 7949
Uptime: 0d 0h02m39s
Uptime_sec: 159
Memmax_MB: 0
Ulimit-n: 120032
Maxsock: 120032
Maxconn: 60000
Hard_maxconn: 60000
CurrConns: 0
CumConns: 3
CumReq: 3
MaxSslConns: 0
CurrSslConns: 0
CumSslConns: 0
Maxpipes: 0
PipesUsed: 0
PipesFree: 0
ConnRate: 0
ConnRateLimit: 0
MaxConnRate: 1
SessRate: 0
SessRateLimit: 0
MaxSessRate: 1
SslRate: 0
SslRateLimit: 0
MaxSslRate: 0
SslFrontendKeyRate: 0
SslFrontendMaxKeyRate: 0
SslFrontendSessionReuse_pct: 0
SslBackendKeyRate: 0
SslBackendMaxKeyRate: 0
SslCacheLookups: 0
SslCacheMisses: 0
CompressBpsIn: 0
CompressBpsOut: 0
CompressBpsRateLim: 0
ZlibMemUsage: 0
MaxZlibMemUsage: 0
Tasks: 5
Run_queue: 1
Idle_pct: 100
node: wtap
description:
When an issue seems to randomly appear on a new version of HAProxy (eg: every
second request is aborted, occasional crash, etc), it is worth trying to enable
memory poisonning so that each call to malloc() is immediately followed by the
filling of the memory area with a configurable byte. By default this byte is
0x50 (ASCII for 'P'), but any other byte can be used, including zero (which
will have the same effect as a calloc() and which may make issues disappear).
Memory poisonning is enabled on the command line using the "-dM" option. It
slightly hurts performance and is not recommended for use in production. If
an issue happens all the time with it or never happens when poisoonning uses
byte zero, it clearly means you've found a bug and you definitely need to
report it. Otherwise if there's no clear change, the problem it is not related.
When debugging some latency issues, it is important to use both strace and
tcpdump on the local machine, and another tcpdump on the remote system. The
reason for this is that there are delays everywhere in the processing chain and
it is important to know which one is causing latency to know where to act. In
practice, the local tcpdump will indicate when the input data come in. Strace
will indicate when haproxy receives these data (using recv/recvfrom). Warning,
openssl uses read()/write() syscalls instead of recv()/send(). Strace will also
show when haproxy sends the data, and tcpdump will show when the system sends
these data to the interface. Then the external tcpdump will show when the data
sent are really received (since the local one only shows when the packets are
queued). The benefit of sniffing on the local system is that strace and tcpdump
will use the same reference clock. Strace should be used with "-tts200" to get
complete timestamps and report large enough chunks of data to read them.
Tcpdump should be used with "-nvvttSs0" to report full packets, real sequence
numbers and complete timestamps.
In practice, received data are almost always immediately received by haproxy
(unless the machine has a saturated CPU or these data are invalid and not
delivered). If these data are received but not sent, it generally is because
the output buffer is saturated (ie: recipient doesn't consume the data fast
enough). This can be confirmed by seeing that the polling doesn't notify of
the ability to write on the output file descriptor for some time (it's often
easier to spot in the strace output when the data finally leave and then roll
back to see when the write event was notified). It generally matches an ACK
received from the recipient, and detected by tcpdump. Once the data are sent,
they may spend some time in the system doing nothing. Here again, the TCP
congestion window may be limited and not allow these data to leave, waiting for
an ACK to open the window. If the traffic is idle and the data take 40 ms or
200 ms to leave, it's a different issue (which is not an issue), it's the fact
that the Nagle algorithm prevents empty packets from leaving immediately, in
hope that they will be merged with subsequent data. HAProxy automatically
disables Nagle in pure TCP mode and in tunnels. However it definitely remains
enabled when forwarding an HTTP body (and this contributes to the performance
improvement there by reducing the number of packets). Some HTTP non-compliant
applications may be sensitive to the latency when delivering incomplete HTTP
response messages. In this case you will have to enable "option http-no-delay"
to disable Nagle in order to work around their design, keeping in mind that any
other proxy in the chain may similarly be impacted. If tcpdump reports that data
leave immediately but the other end doesn't see them quickly, it can mean there
is a congestionned WAN link, a congestionned LAN with flow control enabled and
preventing the data from leaving, or more commonly that HAProxy is in fact
running in a virtual machine and that for whatever reason the hypervisor has
decided that the data didn't need to be sent immediately. In virtualized
environments, latency issues are almost always caused by the virtualization
layer, so in order to save time, it's worth first comparing tcpdump in the VM
and on the external components. Any difference has to be credited to the
hypervisor and its accompanying drivers.
When some TCP SACK segments are seen in tcpdump traces (using -vv), it always
means that the side sending them has got the proof of a lost packet. While not
seeing them doesn't mean there are no losses, seeing them definitely means the
network is lossy. Losses are normal on a network, but at a rate where SACKs are
not noticeable at the naked eye. If they appear a lot in the traces, it is
worth investigating exactly what happens and where the packets are lost. HTTP
doesn't cope well with TCP losses, which introduce huge latencies.
The "netstat -i" command will report statistics per interface. An interface
where the Rx-Ovr counter grows indicates that the system doesn't have enough
resources to receive all incoming packets and that they're lost before being
processed by the network driver. Rx-Drp indicates that some received packets
were lost in the network stack because the application doesn't process them
fast enough. This can happen during some attacks as well. Tx-Drp means that
the output queues were full and packets had to be dropped. When using TCP it
should be very rare, but will possibly indicte a saturated outgoing link.
13. Security considerations
---------------------------
HAProxy is designed to run with very limited privileges. The standard way to
use it is to isolate it into a chroot jail and to drop its privileges to a
non-root user without any permissions inside this jail so that if any future
vulnerability were to be discovered, its compromise would not affect the rest
of the system.
In order to perfom a chroot, it first needs to be started as a root user. It is
pointless to build hand-made chroots to start the process there, these ones are
painful to build, are never properly maintained and always contain way more
bugs than the main file-system. And in case of compromise, the intruder can use
the purposely built file-system. Unfortunately many administrators confuse
"start as root" and "run as root", resulting in the uid change to be done prior
to starting haproxy, and reducing the effective security restrictions.
HAProxy will need to be started as root in order to :
- adjust the file descriptor limits
- bind to privileged port numbers
- bind to a specific network interface
- transparently listen to a foreign address
- isolate itself inside the chroot jail
- drop to another non-privileged UID
HAProxy may require to be run as root in order to :
- bind to an interface for outgoing connections
- bind to privileged source ports for outgoing connections
- transparently bind to a foreing address for outgoing connections
Most users will never need the "run as root" case. But the "start as root"
covers most usages.
A safe configuration will have :
- a chroot statement pointing to an empty location without any access
permissions. This can be prepared this way on the UNIX command line :
# mkdir /var/empty && chmod 0 /var/empty || echo "Failed"
and referenced like this in the HAProxy configuration's global section :
chroot /var/empty
- both a uid/user and gid/group statements in the global section :
user haproxy
group haproxy
- a stats socket whose mode, uid and gid are set to match the user and/or
group allowed to access the CLI so that nobody may access it :
stats socket /var/run/haproxy.stat uid hatop gid hatop mode 600