2968 lines
89 KiB
C
2968 lines
89 KiB
C
/*
|
|
* Backend variables and functions.
|
|
*
|
|
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
*/
|
|
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <syslog.h>
|
|
#include <string.h>
|
|
#include <ctype.h>
|
|
#include <sys/types.h>
|
|
|
|
#include <haproxy/acl.h>
|
|
#include <haproxy/api.h>
|
|
#include <haproxy/arg.h>
|
|
#include <haproxy/backend.h>
|
|
#include <haproxy/channel.h>
|
|
#include <haproxy/check.h>
|
|
#include <haproxy/frontend.h>
|
|
#include <haproxy/global.h>
|
|
#include <haproxy/hash.h>
|
|
#include <haproxy/http.h>
|
|
#include <haproxy/http_ana.h>
|
|
#include <haproxy/http_htx.h>
|
|
#include <haproxy/htx.h>
|
|
#include <haproxy/lb_chash.h>
|
|
#include <haproxy/lb_fas.h>
|
|
#include <haproxy/lb_fwlc.h>
|
|
#include <haproxy/lb_fwrr.h>
|
|
#include <haproxy/lb_map.h>
|
|
#include <haproxy/log.h>
|
|
#include <haproxy/namespace.h>
|
|
#include <haproxy/obj_type.h>
|
|
#include <haproxy/payload.h>
|
|
#include <haproxy/proto_tcp.h>
|
|
#include <haproxy/protocol.h>
|
|
#include <haproxy/proxy.h>
|
|
#include <haproxy/queue.h>
|
|
#include <haproxy/sample.h>
|
|
#include <haproxy/server.h>
|
|
#include <haproxy/session.h>
|
|
#include <haproxy/ssl_sock.h>
|
|
#include <haproxy/stream.h>
|
|
#include <haproxy/stream_interface.h>
|
|
#include <haproxy/task.h>
|
|
#include <haproxy/ticks.h>
|
|
#include <haproxy/time.h>
|
|
#include <haproxy/trace.h>
|
|
|
|
#define TRACE_SOURCE &trace_strm
|
|
|
|
int be_lastsession(const struct proxy *be)
|
|
{
|
|
if (be->be_counters.last_sess)
|
|
return now.tv_sec - be->be_counters.last_sess;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* helper function to invoke the correct hash method */
|
|
static unsigned int gen_hash(const struct proxy* px, const char* key, unsigned long len)
|
|
{
|
|
unsigned int hash;
|
|
|
|
switch (px->lbprm.algo & BE_LB_HASH_FUNC) {
|
|
case BE_LB_HFCN_DJB2:
|
|
hash = hash_djb2(key, len);
|
|
break;
|
|
case BE_LB_HFCN_WT6:
|
|
hash = hash_wt6(key, len);
|
|
break;
|
|
case BE_LB_HFCN_CRC32:
|
|
hash = hash_crc32(key, len);
|
|
break;
|
|
case BE_LB_HFCN_SDBM:
|
|
/* this is the default hash function */
|
|
default:
|
|
hash = hash_sdbm(key, len);
|
|
break;
|
|
}
|
|
|
|
return hash;
|
|
}
|
|
|
|
/*
|
|
* This function recounts the number of usable active and backup servers for
|
|
* proxy <p>. These numbers are returned into the p->srv_act and p->srv_bck.
|
|
* This function also recomputes the total active and backup weights. However,
|
|
* it does not update tot_weight nor tot_used. Use update_backend_weight() for
|
|
* this.
|
|
* This functions is designed to be called before server's weight and state
|
|
* commit so it uses 'next' weight and states values.
|
|
*
|
|
* threads: this is the caller responsibility to lock data. For now, this
|
|
* function is called from lb modules, so it should be ok. But if you need to
|
|
* call it from another place, be careful (and update this comment).
|
|
*/
|
|
void recount_servers(struct proxy *px)
|
|
{
|
|
struct server *srv;
|
|
|
|
px->srv_act = px->srv_bck = 0;
|
|
px->lbprm.tot_wact = px->lbprm.tot_wbck = 0;
|
|
px->lbprm.fbck = NULL;
|
|
for (srv = px->srv; srv != NULL; srv = srv->next) {
|
|
if (!srv_willbe_usable(srv))
|
|
continue;
|
|
|
|
if (srv->flags & SRV_F_BACKUP) {
|
|
if (!px->srv_bck &&
|
|
!(px->options & PR_O_USE_ALL_BK))
|
|
px->lbprm.fbck = srv;
|
|
px->srv_bck++;
|
|
srv->cumulative_weight = px->lbprm.tot_wbck;
|
|
px->lbprm.tot_wbck += srv->next_eweight;
|
|
} else {
|
|
px->srv_act++;
|
|
srv->cumulative_weight = px->lbprm.tot_wact;
|
|
px->lbprm.tot_wact += srv->next_eweight;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* This function simply updates the backend's tot_weight and tot_used values
|
|
* after servers weights have been updated. It is designed to be used after
|
|
* recount_servers() or equivalent.
|
|
*
|
|
* threads: this is the caller responsibility to lock data. For now, this
|
|
* function is called from lb modules, so it should be ok. But if you need to
|
|
* call it from another place, be careful (and update this comment).
|
|
*/
|
|
void update_backend_weight(struct proxy *px)
|
|
{
|
|
if (px->srv_act) {
|
|
px->lbprm.tot_weight = px->lbprm.tot_wact;
|
|
px->lbprm.tot_used = px->srv_act;
|
|
}
|
|
else if (px->lbprm.fbck) {
|
|
/* use only the first backup server */
|
|
px->lbprm.tot_weight = px->lbprm.fbck->next_eweight;
|
|
px->lbprm.tot_used = 1;
|
|
}
|
|
else {
|
|
px->lbprm.tot_weight = px->lbprm.tot_wbck;
|
|
px->lbprm.tot_used = px->srv_bck;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This function tries to find a running server for the proxy <px> following
|
|
* the source hash method. Depending on the number of active/backup servers,
|
|
* it will either look for active servers, or for backup servers.
|
|
* If any server is found, it will be returned. If no valid server is found,
|
|
* NULL is returned.
|
|
*/
|
|
static struct server *get_server_sh(struct proxy *px, const char *addr, int len, const struct server *avoid)
|
|
{
|
|
unsigned int h, l;
|
|
|
|
if (px->lbprm.tot_weight == 0)
|
|
return NULL;
|
|
|
|
l = h = 0;
|
|
|
|
/* note: we won't hash if there's only one server left */
|
|
if (px->lbprm.tot_used == 1)
|
|
goto hash_done;
|
|
|
|
while ((l + sizeof (int)) <= len) {
|
|
h ^= ntohl(*(unsigned int *)(&addr[l]));
|
|
l += sizeof (int);
|
|
}
|
|
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
|
|
h = full_hash(h);
|
|
hash_done:
|
|
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
|
|
return chash_get_server_hash(px, h, avoid);
|
|
else
|
|
return map_get_server_hash(px, h);
|
|
}
|
|
|
|
/*
|
|
* This function tries to find a running server for the proxy <px> following
|
|
* the URI hash method. In order to optimize cache hits, the hash computation
|
|
* ends at the question mark. Depending on the number of active/backup servers,
|
|
* it will either look for active servers, or for backup servers.
|
|
* If any server is found, it will be returned. If no valid server is found,
|
|
* NULL is returned. The lbprm.arg_opt{1,2,3} values correspond respectively to
|
|
* the "whole" optional argument (boolean), the "len" argument (numeric) and
|
|
* the "depth" argument (numeric).
|
|
*
|
|
* This code was contributed by Guillaume Dallaire, who also selected this hash
|
|
* algorithm out of a tens because it gave him the best results.
|
|
*
|
|
*/
|
|
static struct server *get_server_uh(struct proxy *px, char *uri, int uri_len, const struct server *avoid)
|
|
{
|
|
unsigned int hash = 0;
|
|
int c;
|
|
int slashes = 0;
|
|
const char *start, *end;
|
|
|
|
if (px->lbprm.tot_weight == 0)
|
|
return NULL;
|
|
|
|
/* note: we won't hash if there's only one server left */
|
|
if (px->lbprm.tot_used == 1)
|
|
goto hash_done;
|
|
|
|
if (px->lbprm.arg_opt2) // "len"
|
|
uri_len = MIN(uri_len, px->lbprm.arg_opt2);
|
|
|
|
start = end = uri;
|
|
while (uri_len--) {
|
|
c = *end;
|
|
if (c == '/') {
|
|
slashes++;
|
|
if (slashes == px->lbprm.arg_opt3) /* depth+1 */
|
|
break;
|
|
}
|
|
else if (c == '?' && !px->lbprm.arg_opt1) // "whole"
|
|
break;
|
|
end++;
|
|
}
|
|
|
|
hash = gen_hash(px, start, (end - start));
|
|
|
|
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
|
|
hash = full_hash(hash);
|
|
hash_done:
|
|
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
|
|
return chash_get_server_hash(px, hash, avoid);
|
|
else
|
|
return map_get_server_hash(px, hash);
|
|
}
|
|
|
|
/*
|
|
* This function tries to find a running server for the proxy <px> following
|
|
* the URL parameter hash method. It looks for a specific parameter in the
|
|
* URL and hashes it to compute the server ID. This is useful to optimize
|
|
* performance by avoiding bounces between servers in contexts where sessions
|
|
* are shared but cookies are not usable. If the parameter is not found, NULL
|
|
* is returned. If any server is found, it will be returned. If no valid server
|
|
* is found, NULL is returned.
|
|
*/
|
|
static struct server *get_server_ph(struct proxy *px, const char *uri, int uri_len, const struct server *avoid)
|
|
{
|
|
unsigned int hash = 0;
|
|
const char *start, *end;
|
|
const char *p;
|
|
const char *params;
|
|
int plen;
|
|
|
|
/* when tot_weight is 0 then so is srv_count */
|
|
if (px->lbprm.tot_weight == 0)
|
|
return NULL;
|
|
|
|
if ((p = memchr(uri, '?', uri_len)) == NULL)
|
|
return NULL;
|
|
|
|
p++;
|
|
|
|
uri_len -= (p - uri);
|
|
plen = px->lbprm.arg_len;
|
|
params = p;
|
|
|
|
while (uri_len > plen) {
|
|
/* Look for the parameter name followed by an equal symbol */
|
|
if (params[plen] == '=') {
|
|
if (memcmp(params, px->lbprm.arg_str, plen) == 0) {
|
|
/* OK, we have the parameter here at <params>, and
|
|
* the value after the equal sign, at <p>
|
|
* skip the equal symbol
|
|
*/
|
|
p += plen + 1;
|
|
start = end = p;
|
|
uri_len -= plen + 1;
|
|
|
|
while (uri_len && *end != '&') {
|
|
uri_len--;
|
|
end++;
|
|
}
|
|
hash = gen_hash(px, start, (end - start));
|
|
|
|
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
|
|
hash = full_hash(hash);
|
|
|
|
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
|
|
return chash_get_server_hash(px, hash, avoid);
|
|
else
|
|
return map_get_server_hash(px, hash);
|
|
}
|
|
}
|
|
/* skip to next parameter */
|
|
p = memchr(params, '&', uri_len);
|
|
if (!p)
|
|
return NULL;
|
|
p++;
|
|
uri_len -= (p - params);
|
|
params = p;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* this does the same as the previous server_ph, but check the body contents
|
|
*/
|
|
static struct server *get_server_ph_post(struct stream *s, const struct server *avoid)
|
|
{
|
|
unsigned int hash = 0;
|
|
struct channel *req = &s->req;
|
|
struct proxy *px = s->be;
|
|
struct htx *htx = htxbuf(&req->buf);
|
|
struct htx_blk *blk;
|
|
unsigned int plen = px->lbprm.arg_len;
|
|
unsigned long len;
|
|
const char *params, *p, *start, *end;
|
|
|
|
if (px->lbprm.tot_weight == 0)
|
|
return NULL;
|
|
|
|
p = params = NULL;
|
|
len = 0;
|
|
for (blk = htx_get_first_blk(htx); blk; blk = htx_get_next_blk(htx, blk)) {
|
|
enum htx_blk_type type = htx_get_blk_type(blk);
|
|
struct ist v;
|
|
|
|
if (type != HTX_BLK_DATA)
|
|
continue;
|
|
v = htx_get_blk_value(htx, blk);
|
|
p = params = v.ptr;
|
|
len = v.len;
|
|
break;
|
|
}
|
|
|
|
while (len > plen) {
|
|
/* Look for the parameter name followed by an equal symbol */
|
|
if (params[plen] == '=') {
|
|
if (memcmp(params, px->lbprm.arg_str, plen) == 0) {
|
|
/* OK, we have the parameter here at <params>, and
|
|
* the value after the equal sign, at <p>
|
|
* skip the equal symbol
|
|
*/
|
|
p += plen + 1;
|
|
start = end = p;
|
|
len -= plen + 1;
|
|
|
|
while (len && *end != '&') {
|
|
if (unlikely(!HTTP_IS_TOKEN(*p))) {
|
|
/* if in a POST, body must be URI encoded or it's not a URI.
|
|
* Do not interpret any possible binary data as a parameter.
|
|
*/
|
|
if (likely(HTTP_IS_LWS(*p))) /* eol, uncertain uri len */
|
|
break;
|
|
return NULL; /* oh, no; this is not uri-encoded.
|
|
* This body does not contain parameters.
|
|
*/
|
|
}
|
|
len--;
|
|
end++;
|
|
/* should we break if vlen exceeds limit? */
|
|
}
|
|
hash = gen_hash(px, start, (end - start));
|
|
|
|
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
|
|
hash = full_hash(hash);
|
|
|
|
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
|
|
return chash_get_server_hash(px, hash, avoid);
|
|
else
|
|
return map_get_server_hash(px, hash);
|
|
}
|
|
}
|
|
/* skip to next parameter */
|
|
p = memchr(params, '&', len);
|
|
if (!p)
|
|
return NULL;
|
|
p++;
|
|
len -= (p - params);
|
|
params = p;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/*
|
|
* This function tries to find a running server for the proxy <px> following
|
|
* the Header parameter hash method. It looks for a specific parameter in the
|
|
* URL and hashes it to compute the server ID. This is useful to optimize
|
|
* performance by avoiding bounces between servers in contexts where sessions
|
|
* are shared but cookies are not usable. If the parameter is not found, NULL
|
|
* is returned. If any server is found, it will be returned. If no valid server
|
|
* is found, NULL is returned. When lbprm.arg_opt1 is set, the hash will only
|
|
* apply to the middle part of a domain name ("use_domain_only" option).
|
|
*/
|
|
static struct server *get_server_hh(struct stream *s, const struct server *avoid)
|
|
{
|
|
unsigned int hash = 0;
|
|
struct proxy *px = s->be;
|
|
unsigned int plen = px->lbprm.arg_len;
|
|
unsigned long len;
|
|
const char *p;
|
|
const char *start, *end;
|
|
struct htx *htx = htxbuf(&s->req.buf);
|
|
struct http_hdr_ctx ctx = { .blk = NULL };
|
|
|
|
/* tot_weight appears to mean srv_count */
|
|
if (px->lbprm.tot_weight == 0)
|
|
return NULL;
|
|
|
|
/* note: we won't hash if there's only one server left */
|
|
if (px->lbprm.tot_used == 1)
|
|
goto hash_done;
|
|
|
|
http_find_header(htx, ist2(px->lbprm.arg_str, plen), &ctx, 0);
|
|
|
|
/* if the header is not found or empty, let's fallback to round robin */
|
|
if (!ctx.blk || !ctx.value.len)
|
|
return NULL;
|
|
|
|
/* Found a the param_name in the headers.
|
|
* we will compute the hash based on this value ctx.val.
|
|
*/
|
|
len = ctx.value.len;
|
|
p = ctx.value.ptr;
|
|
|
|
if (!px->lbprm.arg_opt1) {
|
|
hash = gen_hash(px, p, len);
|
|
} else {
|
|
int dohash = 0;
|
|
p += len;
|
|
/* special computation, use only main domain name, not tld/host
|
|
* going back from the end of string, start hashing at first
|
|
* dot stop at next.
|
|
* This is designed to work with the 'Host' header, and requires
|
|
* a special option to activate this.
|
|
*/
|
|
end = p;
|
|
while (len) {
|
|
if (dohash) {
|
|
/* Rewind the pointer until the previous char
|
|
* is a dot, this will allow to set the start
|
|
* position of the domain. */
|
|
if (*(p - 1) == '.')
|
|
break;
|
|
}
|
|
else if (*p == '.') {
|
|
/* The pointer is rewinded to the dot before the
|
|
* tld, we memorize the end of the domain and
|
|
* can enter the domain processing. */
|
|
end = p;
|
|
dohash = 1;
|
|
}
|
|
p--;
|
|
len--;
|
|
}
|
|
start = p;
|
|
hash = gen_hash(px, start, (end - start));
|
|
}
|
|
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
|
|
hash = full_hash(hash);
|
|
hash_done:
|
|
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
|
|
return chash_get_server_hash(px, hash, avoid);
|
|
else
|
|
return map_get_server_hash(px, hash);
|
|
}
|
|
|
|
/* RDP Cookie HASH. */
|
|
static struct server *get_server_rch(struct stream *s, const struct server *avoid)
|
|
{
|
|
unsigned int hash = 0;
|
|
struct proxy *px = s->be;
|
|
unsigned long len;
|
|
int ret;
|
|
struct sample smp;
|
|
int rewind;
|
|
|
|
/* tot_weight appears to mean srv_count */
|
|
if (px->lbprm.tot_weight == 0)
|
|
return NULL;
|
|
|
|
memset(&smp, 0, sizeof(smp));
|
|
|
|
rewind = co_data(&s->req);
|
|
c_rew(&s->req, rewind);
|
|
|
|
ret = fetch_rdp_cookie_name(s, &smp, px->lbprm.arg_str, px->lbprm.arg_len);
|
|
len = smp.data.u.str.data;
|
|
|
|
c_adv(&s->req, rewind);
|
|
|
|
if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || len == 0)
|
|
return NULL;
|
|
|
|
/* note: we won't hash if there's only one server left */
|
|
if (px->lbprm.tot_used == 1)
|
|
goto hash_done;
|
|
|
|
/* Found the param_name in the headers.
|
|
* we will compute the hash based on this value ctx.val.
|
|
*/
|
|
hash = gen_hash(px, smp.data.u.str.area, len);
|
|
|
|
if ((px->lbprm.algo & BE_LB_HASH_MOD) == BE_LB_HMOD_AVAL)
|
|
hash = full_hash(hash);
|
|
hash_done:
|
|
if ((px->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
|
|
return chash_get_server_hash(px, hash, avoid);
|
|
else
|
|
return map_get_server_hash(px, hash);
|
|
}
|
|
|
|
/* random value */
|
|
static struct server *get_server_rnd(struct stream *s, const struct server *avoid)
|
|
{
|
|
unsigned int hash = 0;
|
|
struct proxy *px = s->be;
|
|
struct server *prev, *curr;
|
|
int draws = px->lbprm.arg_opt1; // number of draws
|
|
|
|
/* tot_weight appears to mean srv_count */
|
|
if (px->lbprm.tot_weight == 0)
|
|
return NULL;
|
|
|
|
curr = NULL;
|
|
do {
|
|
prev = curr;
|
|
hash = ha_random32();
|
|
curr = chash_get_server_hash(px, hash, avoid);
|
|
if (!curr)
|
|
break;
|
|
|
|
/* compare the new server to the previous best choice and pick
|
|
* the one with the least currently served requests.
|
|
*/
|
|
if (prev && prev != curr &&
|
|
curr->served * prev->cur_eweight > prev->served * curr->cur_eweight)
|
|
curr = prev;
|
|
} while (--draws > 0);
|
|
|
|
return curr;
|
|
}
|
|
|
|
/*
|
|
* This function applies the load-balancing algorithm to the stream, as
|
|
* defined by the backend it is assigned to. The stream is then marked as
|
|
* 'assigned'.
|
|
*
|
|
* This function MAY NOT be called with SF_ASSIGNED already set. If the stream
|
|
* had a server previously assigned, it is rebalanced, trying to avoid the same
|
|
* server, which should still be present in target_srv(&s->target) before the call.
|
|
* The function tries to keep the original connection slot if it reconnects to
|
|
* the same server, otherwise it releases it and tries to offer it.
|
|
*
|
|
* It is illegal to call this function with a stream in a queue.
|
|
*
|
|
* It may return :
|
|
* SRV_STATUS_OK if everything is OK. ->srv and ->target are assigned.
|
|
* SRV_STATUS_NOSRV if no server is available. Stream is not ASSIGNED
|
|
* SRV_STATUS_FULL if all servers are saturated. Stream is not ASSIGNED
|
|
* SRV_STATUS_INTERNAL for other unrecoverable errors.
|
|
*
|
|
* Upon successful return, the stream flag SF_ASSIGNED is set to indicate that
|
|
* it does not need to be called anymore. This means that target_srv(&s->target)
|
|
* can be trusted in balance and direct modes.
|
|
*
|
|
*/
|
|
|
|
int assign_server(struct stream *s)
|
|
{
|
|
struct connection *conn = NULL;
|
|
struct server *conn_slot;
|
|
struct server *srv = NULL, *prev_srv;
|
|
int err;
|
|
|
|
DPRINTF(stderr,"assign_server : s=%p\n",s);
|
|
|
|
err = SRV_STATUS_INTERNAL;
|
|
if (unlikely(s->pend_pos || s->flags & SF_ASSIGNED))
|
|
goto out_err;
|
|
|
|
prev_srv = objt_server(s->target);
|
|
conn_slot = s->srv_conn;
|
|
|
|
/* We have to release any connection slot before applying any LB algo,
|
|
* otherwise we may erroneously end up with no available slot.
|
|
*/
|
|
if (conn_slot)
|
|
sess_change_server(s, NULL);
|
|
|
|
/* We will now try to find the good server and store it into <objt_server(s->target)>.
|
|
* Note that <objt_server(s->target)> may be NULL in case of dispatch or proxy mode,
|
|
* as well as if no server is available (check error code).
|
|
*/
|
|
|
|
srv = NULL;
|
|
s->target = NULL;
|
|
|
|
if ((s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_HI &&
|
|
((s->sess->flags & SESS_FL_PREFER_LAST) ||
|
|
(s->be->options & PR_O_PREF_LAST))) {
|
|
struct sess_srv_list *srv_list;
|
|
list_for_each_entry(srv_list, &s->sess->srv_list, srv_list) {
|
|
struct server *tmpsrv = objt_server(srv_list->target);
|
|
|
|
if (tmpsrv && tmpsrv->proxy == s->be &&
|
|
((s->sess->flags & SESS_FL_PREFER_LAST) ||
|
|
(!s->be->max_ka_queue ||
|
|
server_has_room(tmpsrv) || (
|
|
tmpsrv->nbpend + 1 < s->be->max_ka_queue))) &&
|
|
srv_currently_usable(tmpsrv)) {
|
|
list_for_each_entry(conn, &srv_list->conn_list, session_list) {
|
|
if (!(conn->flags & CO_FL_WAIT_XPRT)) {
|
|
srv = tmpsrv;
|
|
s->target = &srv->obj_type;
|
|
if (conn->flags & CO_FL_SESS_IDLE) {
|
|
conn->flags &= ~CO_FL_SESS_IDLE;
|
|
s->sess->idle_conns--;
|
|
}
|
|
goto out_ok;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (s->be->lbprm.algo & BE_LB_KIND) {
|
|
|
|
/* we must check if we have at least one server available */
|
|
if (!s->be->lbprm.tot_weight) {
|
|
err = SRV_STATUS_NOSRV;
|
|
goto out;
|
|
}
|
|
|
|
/* First check whether we need to fetch some data or simply call
|
|
* the LB lookup function. Only the hashing functions will need
|
|
* some input data in fact, and will support multiple algorithms.
|
|
*/
|
|
switch (s->be->lbprm.algo & BE_LB_LKUP) {
|
|
case BE_LB_LKUP_RRTREE:
|
|
srv = fwrr_get_next_server(s->be, prev_srv);
|
|
break;
|
|
|
|
case BE_LB_LKUP_FSTREE:
|
|
srv = fas_get_next_server(s->be, prev_srv);
|
|
break;
|
|
|
|
case BE_LB_LKUP_LCTREE:
|
|
srv = fwlc_get_next_server(s->be, prev_srv);
|
|
break;
|
|
|
|
case BE_LB_LKUP_CHTREE:
|
|
case BE_LB_LKUP_MAP:
|
|
if ((s->be->lbprm.algo & BE_LB_KIND) == BE_LB_KIND_RR) {
|
|
if ((s->be->lbprm.algo & BE_LB_PARM) == BE_LB_RR_RANDOM)
|
|
srv = get_server_rnd(s, prev_srv);
|
|
else if ((s->be->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
|
|
srv = chash_get_next_server(s->be, prev_srv);
|
|
else
|
|
srv = map_get_server_rr(s->be, prev_srv);
|
|
break;
|
|
}
|
|
else if ((s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_HI) {
|
|
/* unknown balancing algorithm */
|
|
err = SRV_STATUS_INTERNAL;
|
|
goto out;
|
|
}
|
|
|
|
switch (s->be->lbprm.algo & BE_LB_PARM) {
|
|
case BE_LB_HASH_SRC:
|
|
conn = objt_conn(strm_orig(s));
|
|
if (conn && conn_get_src(conn) && conn->src->ss_family == AF_INET) {
|
|
srv = get_server_sh(s->be,
|
|
(void *)&((struct sockaddr_in *)conn->src)->sin_addr,
|
|
4, prev_srv);
|
|
}
|
|
else if (conn && conn_get_src(conn) && conn->src->ss_family == AF_INET6) {
|
|
srv = get_server_sh(s->be,
|
|
(void *)&((struct sockaddr_in6 *)conn->src)->sin6_addr,
|
|
16, prev_srv);
|
|
}
|
|
else {
|
|
/* unknown IP family */
|
|
err = SRV_STATUS_INTERNAL;
|
|
goto out;
|
|
}
|
|
break;
|
|
|
|
case BE_LB_HASH_URI:
|
|
/* URI hashing */
|
|
if (IS_HTX_STRM(s) && s->txn->req.msg_state >= HTTP_MSG_BODY) {
|
|
struct ist uri;
|
|
|
|
uri = htx_sl_req_uri(http_get_stline(htxbuf(&s->req.buf)));
|
|
srv = get_server_uh(s->be, uri.ptr, uri.len, prev_srv);
|
|
}
|
|
break;
|
|
|
|
case BE_LB_HASH_PRM:
|
|
/* URL Parameter hashing */
|
|
if (IS_HTX_STRM(s) && s->txn->req.msg_state >= HTTP_MSG_BODY) {
|
|
struct ist uri;
|
|
|
|
uri = htx_sl_req_uri(http_get_stline(htxbuf(&s->req.buf)));
|
|
srv = get_server_ph(s->be, uri.ptr, uri.len, prev_srv);
|
|
|
|
if (!srv && s->txn->meth == HTTP_METH_POST)
|
|
srv = get_server_ph_post(s, prev_srv);
|
|
}
|
|
break;
|
|
|
|
case BE_LB_HASH_HDR:
|
|
/* Header Parameter hashing */
|
|
if (IS_HTX_STRM(s) && s->txn->req.msg_state >= HTTP_MSG_BODY)
|
|
srv = get_server_hh(s, prev_srv);
|
|
break;
|
|
|
|
case BE_LB_HASH_RDP:
|
|
/* RDP Cookie hashing */
|
|
srv = get_server_rch(s, prev_srv);
|
|
break;
|
|
|
|
default:
|
|
/* unknown balancing algorithm */
|
|
err = SRV_STATUS_INTERNAL;
|
|
goto out;
|
|
}
|
|
|
|
/* If the hashing parameter was not found, let's fall
|
|
* back to round robin on the map.
|
|
*/
|
|
if (!srv) {
|
|
if ((s->be->lbprm.algo & BE_LB_LKUP) == BE_LB_LKUP_CHTREE)
|
|
srv = chash_get_next_server(s->be, prev_srv);
|
|
else
|
|
srv = map_get_server_rr(s->be, prev_srv);
|
|
}
|
|
|
|
/* end of map-based LB */
|
|
break;
|
|
|
|
default:
|
|
/* unknown balancing algorithm */
|
|
err = SRV_STATUS_INTERNAL;
|
|
goto out;
|
|
}
|
|
|
|
if (!srv) {
|
|
err = SRV_STATUS_FULL;
|
|
goto out;
|
|
}
|
|
else if (srv != prev_srv) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.cum_lbconn, 1);
|
|
_HA_ATOMIC_ADD(&srv->counters.cum_lbconn, 1);
|
|
}
|
|
s->target = &srv->obj_type;
|
|
}
|
|
else if (s->be->options & (PR_O_DISPATCH | PR_O_TRANSP)) {
|
|
s->target = &s->be->obj_type;
|
|
}
|
|
else if ((s->be->options & PR_O_HTTP_PROXY)) {
|
|
conn = cs_conn(objt_cs(s->si[1].end));
|
|
|
|
if (conn && conn->dst && is_addr(conn->dst)) {
|
|
/* in proxy mode, we need a valid destination address */
|
|
s->target = &s->be->obj_type;
|
|
} else {
|
|
err = SRV_STATUS_NOSRV;
|
|
goto out;
|
|
}
|
|
}
|
|
else {
|
|
err = SRV_STATUS_NOSRV;
|
|
goto out;
|
|
}
|
|
|
|
out_ok:
|
|
s->flags |= SF_ASSIGNED;
|
|
err = SRV_STATUS_OK;
|
|
out:
|
|
|
|
/* Either we take back our connection slot, or we offer it to someone
|
|
* else if we don't need it anymore.
|
|
*/
|
|
if (conn_slot) {
|
|
if (conn_slot == srv) {
|
|
sess_change_server(s, srv);
|
|
} else {
|
|
if (may_dequeue_tasks(conn_slot, s->be))
|
|
process_srv_queue(conn_slot);
|
|
}
|
|
}
|
|
|
|
out_err:
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* This function assigns a server address to a stream, and sets SF_ADDR_SET.
|
|
* The address is taken from the currently assigned server, or from the
|
|
* dispatch or transparent address.
|
|
*
|
|
* It may return :
|
|
* SRV_STATUS_OK if everything is OK.
|
|
* SRV_STATUS_INTERNAL for other unrecoverable errors.
|
|
*
|
|
* Upon successful return, the stream flag SF_ADDR_SET is set. This flag is
|
|
* not cleared, so it's to the caller to clear it if required.
|
|
*/
|
|
int assign_server_address(struct stream *s)
|
|
{
|
|
struct connection *cli_conn = objt_conn(strm_orig(s));
|
|
|
|
DPRINTF(stderr,"assign_server_address : s=%p\n",s);
|
|
|
|
if (!sockaddr_alloc(&s->target_addr))
|
|
return SRV_STATUS_INTERNAL;
|
|
|
|
if ((s->flags & SF_DIRECT) || (s->be->lbprm.algo & BE_LB_KIND)) {
|
|
/* A server is necessarily known for this stream */
|
|
if (!(s->flags & SF_ASSIGNED))
|
|
return SRV_STATUS_INTERNAL;
|
|
|
|
*s->target_addr = __objt_server(s->target)->addr;
|
|
set_host_port(s->target_addr, __objt_server(s->target)->svc_port);
|
|
|
|
if (!is_addr(s->target_addr) && cli_conn) {
|
|
/* if the server has no address, we use the same address
|
|
* the client asked, which is handy for remapping ports
|
|
* locally on multiple addresses at once. Nothing is done
|
|
* for AF_UNIX addresses.
|
|
*/
|
|
if (!conn_get_dst(cli_conn)) {
|
|
/* do nothing if we can't retrieve the address */
|
|
} else if (cli_conn->dst->ss_family == AF_INET) {
|
|
((struct sockaddr_in *)s->target_addr)->sin_addr = ((struct sockaddr_in *)cli_conn->dst)->sin_addr;
|
|
} else if (cli_conn->dst->ss_family == AF_INET6) {
|
|
((struct sockaddr_in6 *)s->target_addr)->sin6_addr = ((struct sockaddr_in6 *)cli_conn->dst)->sin6_addr;
|
|
}
|
|
}
|
|
|
|
/* if this server remaps proxied ports, we'll use
|
|
* the port the client connected to with an offset. */
|
|
if ((__objt_server(s->target)->flags & SRV_F_MAPPORTS) && cli_conn) {
|
|
int base_port;
|
|
|
|
if (conn_get_dst(cli_conn)) {
|
|
/* First, retrieve the port from the incoming connection */
|
|
base_port = get_host_port(cli_conn->dst);
|
|
|
|
/* Second, assign the outgoing connection's port */
|
|
base_port += get_host_port(s->target_addr);
|
|
set_host_port(s->target_addr, base_port);
|
|
}
|
|
}
|
|
}
|
|
else if (s->be->options & PR_O_DISPATCH) {
|
|
/* connect to the defined dispatch addr */
|
|
*s->target_addr = s->be->dispatch_addr;
|
|
}
|
|
else if ((s->be->options & PR_O_TRANSP) && cli_conn) {
|
|
/* in transparent mode, use the original dest addr if no dispatch specified */
|
|
if (conn_get_dst(cli_conn) &&
|
|
(cli_conn->dst->ss_family == AF_INET || cli_conn->dst->ss_family == AF_INET6))
|
|
*s->target_addr = *cli_conn->dst;
|
|
}
|
|
else if (s->be->options & PR_O_HTTP_PROXY) {
|
|
/* If HTTP PROXY option is set, then server is already assigned
|
|
* during incoming client request parsing. */
|
|
}
|
|
else {
|
|
/* no server and no LB algorithm ! */
|
|
return SRV_STATUS_INTERNAL;
|
|
}
|
|
|
|
s->flags |= SF_ADDR_SET;
|
|
return SRV_STATUS_OK;
|
|
}
|
|
|
|
/* This function assigns a server to stream <s> if required, and can add the
|
|
* connection to either the assigned server's queue or to the proxy's queue.
|
|
* If ->srv_conn is set, the stream is first released from the server.
|
|
* It may also be called with SF_DIRECT and/or SF_ASSIGNED though. It will
|
|
* be called before any connection and after any retry or redispatch occurs.
|
|
*
|
|
* It is not allowed to call this function with a stream in a queue.
|
|
*
|
|
* Returns :
|
|
*
|
|
* SRV_STATUS_OK if everything is OK.
|
|
* SRV_STATUS_NOSRV if no server is available. objt_server(s->target) = NULL.
|
|
* SRV_STATUS_QUEUED if the connection has been queued.
|
|
* SRV_STATUS_FULL if the server(s) is/are saturated and the
|
|
* connection could not be queued at the server's,
|
|
* which may be NULL if we queue on the backend.
|
|
* SRV_STATUS_INTERNAL for other unrecoverable errors.
|
|
*
|
|
*/
|
|
int assign_server_and_queue(struct stream *s)
|
|
{
|
|
struct pendconn *p;
|
|
struct server *srv;
|
|
int err;
|
|
|
|
if (s->pend_pos)
|
|
return SRV_STATUS_INTERNAL;
|
|
|
|
err = SRV_STATUS_OK;
|
|
if (!(s->flags & SF_ASSIGNED)) {
|
|
struct server *prev_srv = objt_server(s->target);
|
|
|
|
err = assign_server(s);
|
|
if (prev_srv) {
|
|
/* This stream was previously assigned to a server. We have to
|
|
* update the stream's and the server's stats :
|
|
* - if the server changed :
|
|
* - set TX_CK_DOWN if txn.flags was TX_CK_VALID
|
|
* - set SF_REDISP if it was successfully redispatched
|
|
* - increment srv->redispatches and be->redispatches
|
|
* - if the server remained the same : update retries.
|
|
*/
|
|
|
|
if (prev_srv != objt_server(s->target)) {
|
|
if (s->txn && (s->txn->flags & TX_CK_MASK) == TX_CK_VALID) {
|
|
s->txn->flags &= ~TX_CK_MASK;
|
|
s->txn->flags |= TX_CK_DOWN;
|
|
}
|
|
s->flags |= SF_REDISP;
|
|
_HA_ATOMIC_ADD(&prev_srv->counters.redispatches, 1);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.redispatches, 1);
|
|
} else {
|
|
_HA_ATOMIC_ADD(&prev_srv->counters.retries, 1);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.retries, 1);
|
|
}
|
|
}
|
|
}
|
|
|
|
switch (err) {
|
|
case SRV_STATUS_OK:
|
|
/* we have SF_ASSIGNED set */
|
|
srv = objt_server(s->target);
|
|
if (!srv)
|
|
return SRV_STATUS_OK; /* dispatch or proxy mode */
|
|
|
|
/* If we already have a connection slot, no need to check any queue */
|
|
if (s->srv_conn == srv)
|
|
return SRV_STATUS_OK;
|
|
|
|
/* OK, this stream already has an assigned server, but no
|
|
* connection slot yet. Either it is a redispatch, or it was
|
|
* assigned from persistence information (direct mode).
|
|
*/
|
|
if ((s->flags & SF_REDIRECTABLE) && srv->rdr_len) {
|
|
/* server scheduled for redirection, and already assigned. We
|
|
* don't want to go further nor check the queue.
|
|
*/
|
|
sess_change_server(s, srv); /* not really needed in fact */
|
|
return SRV_STATUS_OK;
|
|
}
|
|
|
|
/* We might have to queue this stream if the assigned server is full.
|
|
* We know we have to queue it into the server's queue, so if a maxqueue
|
|
* is set on the server, we must also check that the server's queue is
|
|
* not full, in which case we have to return FULL.
|
|
*/
|
|
if (srv->maxconn &&
|
|
(srv->nbpend || srv->served >= srv_dynamic_maxconn(srv))) {
|
|
|
|
if (srv->maxqueue > 0 && srv->nbpend >= srv->maxqueue)
|
|
return SRV_STATUS_FULL;
|
|
|
|
p = pendconn_add(s);
|
|
if (p)
|
|
return SRV_STATUS_QUEUED;
|
|
else
|
|
return SRV_STATUS_INTERNAL;
|
|
}
|
|
|
|
/* OK, we can use this server. Let's reserve our place */
|
|
sess_change_server(s, srv);
|
|
return SRV_STATUS_OK;
|
|
|
|
case SRV_STATUS_FULL:
|
|
/* queue this stream into the proxy's queue */
|
|
p = pendconn_add(s);
|
|
if (p)
|
|
return SRV_STATUS_QUEUED;
|
|
else
|
|
return SRV_STATUS_INTERNAL;
|
|
|
|
case SRV_STATUS_NOSRV:
|
|
return err;
|
|
|
|
case SRV_STATUS_INTERNAL:
|
|
return err;
|
|
|
|
default:
|
|
return SRV_STATUS_INTERNAL;
|
|
}
|
|
}
|
|
|
|
/* If an explicit source binding is specified on the server and/or backend, and
|
|
* this source makes use of the transparent proxy, then it is extracted now and
|
|
* assigned to the stream's pending connection. This function assumes that an
|
|
* outgoing connection has already been assigned to s->si[1].end.
|
|
*/
|
|
static void assign_tproxy_address(struct stream *s)
|
|
{
|
|
#if defined(CONFIG_HAP_TRANSPARENT)
|
|
struct server *srv = objt_server(s->target);
|
|
struct conn_src *src;
|
|
struct connection *cli_conn;
|
|
struct connection *srv_conn;
|
|
|
|
if (objt_cs(s->si[1].end))
|
|
srv_conn = cs_conn(__objt_cs(s->si[1].end));
|
|
else
|
|
srv_conn = objt_conn(s->si[1].end);
|
|
|
|
if (srv && srv->conn_src.opts & CO_SRC_BIND)
|
|
src = &srv->conn_src;
|
|
else if (s->be->conn_src.opts & CO_SRC_BIND)
|
|
src = &s->be->conn_src;
|
|
else
|
|
return;
|
|
|
|
if (!sockaddr_alloc(&srv_conn->src))
|
|
return;
|
|
|
|
switch (src->opts & CO_SRC_TPROXY_MASK) {
|
|
case CO_SRC_TPROXY_ADDR:
|
|
*srv_conn->src = src->tproxy_addr;
|
|
break;
|
|
case CO_SRC_TPROXY_CLI:
|
|
case CO_SRC_TPROXY_CIP:
|
|
/* FIXME: what can we do if the client connects in IPv6 or unix socket ? */
|
|
cli_conn = objt_conn(strm_orig(s));
|
|
if (cli_conn && conn_get_src(cli_conn))
|
|
*srv_conn->src = *cli_conn->src;
|
|
else {
|
|
sockaddr_free(&srv_conn->src);
|
|
}
|
|
break;
|
|
case CO_SRC_TPROXY_DYN:
|
|
if (src->bind_hdr_occ && IS_HTX_STRM(s)) {
|
|
char *vptr;
|
|
size_t vlen;
|
|
|
|
/* bind to the IP in a header */
|
|
((struct sockaddr_in *)srv_conn->src)->sin_family = AF_INET;
|
|
((struct sockaddr_in *)srv_conn->src)->sin_port = 0;
|
|
((struct sockaddr_in *)srv_conn->src)->sin_addr.s_addr = 0;
|
|
if (http_get_htx_hdr(htxbuf(&s->req.buf),
|
|
ist2(src->bind_hdr_name, src->bind_hdr_len),
|
|
src->bind_hdr_occ, NULL, &vptr, &vlen)) {
|
|
((struct sockaddr_in *)srv_conn->src)->sin_addr.s_addr =
|
|
htonl(inetaddr_host_lim(vptr, vptr + vlen));
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
sockaddr_free(&srv_conn->src);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Attempt to get a backend connection from the specified mt_list array
|
|
* (safe or idle connections). The <is_safe> argument means what type of
|
|
* connection the caller wants.
|
|
*/
|
|
static struct connection *conn_backend_get(struct server *srv, int is_safe)
|
|
{
|
|
struct mt_list *mt_list = is_safe ? srv->safe_conns : srv->idle_conns;
|
|
struct connection *conn;
|
|
int i; // thread number
|
|
int found = 0;
|
|
int stop;
|
|
|
|
/* We need to lock even if this is our own list, because another
|
|
* thread may be trying to migrate that connection, and we don't want
|
|
* to end up with two threads using the same connection.
|
|
*/
|
|
i = tid;
|
|
HA_SPIN_LOCK(OTHER_LOCK, &idle_conns[tid].takeover_lock);
|
|
conn = MT_LIST_POP(&mt_list[tid], struct connection *, list);
|
|
|
|
/* If we failed to pick a connection from the idle list, let's try again with
|
|
* the safe list.
|
|
*/
|
|
if (!conn && !is_safe && srv->curr_safe_nb > 0) {
|
|
conn = MT_LIST_POP(&srv->safe_conns[tid], struct connection *, list);
|
|
if (conn) {
|
|
is_safe = 1;
|
|
mt_list = srv->safe_conns;
|
|
}
|
|
}
|
|
HA_SPIN_UNLOCK(OTHER_LOCK, &idle_conns[tid].takeover_lock);
|
|
|
|
/* If we found a connection in our own list, and we don't have to
|
|
* steal one from another thread, then we're done.
|
|
*/
|
|
if (conn)
|
|
goto done;
|
|
|
|
/* pool sharing globally disabled ? */
|
|
if (!(global.tune.options & GTUNE_IDLE_POOL_SHARED))
|
|
goto done;
|
|
|
|
/* Are we allowed to pick from another thread ? We'll still try
|
|
* it if we're running low on FDs as we don't want to create
|
|
* extra conns in this case, otherwise we can give up if we have
|
|
* too few idle conns.
|
|
*/
|
|
if (srv->curr_idle_conns < srv->low_idle_conns &&
|
|
ha_used_fds < global.tune.pool_low_count)
|
|
goto done;
|
|
|
|
/* Lookup all other threads for an idle connection, starting from last
|
|
* unvisited thread.
|
|
*/
|
|
stop = srv->next_takeover;
|
|
if (stop >= global.nbthread)
|
|
stop = 0;
|
|
|
|
for (i = stop; !found && (i = ((i + 1 == global.nbthread) ? 0 : i + 1)) != stop;) {
|
|
struct mt_list *elt1, elt2;
|
|
|
|
if (!srv->curr_idle_thr[i] || i == tid)
|
|
continue;
|
|
|
|
HA_SPIN_LOCK(OTHER_LOCK, &idle_conns[i].takeover_lock);
|
|
mt_list_for_each_entry_safe(conn, &mt_list[i], list, elt1, elt2) {
|
|
if (conn->mux->takeover && conn->mux->takeover(conn, i) == 0) {
|
|
MT_LIST_DEL_SAFE(elt1);
|
|
_HA_ATOMIC_ADD(&activity[tid].fd_takeover, 1);
|
|
found = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!found && !is_safe && srv->curr_safe_nb > 0) {
|
|
mt_list_for_each_entry_safe(conn, &srv->safe_conns[i], list, elt1, elt2) {
|
|
if (conn->mux->takeover && conn->mux->takeover(conn, i) == 0) {
|
|
MT_LIST_DEL_SAFE(elt1);
|
|
_HA_ATOMIC_ADD(&activity[tid].fd_takeover, 1);
|
|
found = 1;
|
|
is_safe = 1;
|
|
mt_list = srv->safe_conns;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
HA_SPIN_UNLOCK(OTHER_LOCK, &idle_conns[i].takeover_lock);
|
|
}
|
|
|
|
if (!found)
|
|
conn = NULL;
|
|
done:
|
|
if (conn) {
|
|
_HA_ATOMIC_STORE(&srv->next_takeover, (i + 1 == global.nbthread) ? 0 : i + 1);
|
|
srv_use_idle_conn(srv, conn);
|
|
}
|
|
return conn;
|
|
}
|
|
|
|
/*
|
|
* This function initiates a connection to the server assigned to this stream
|
|
* (s->target, s->si[1].addr.to). It will assign a server if none
|
|
* is assigned yet.
|
|
* It can return one of :
|
|
* - SF_ERR_NONE if everything's OK
|
|
* - SF_ERR_SRVTO if there are no more servers
|
|
* - SF_ERR_SRVCL if the connection was refused by the server
|
|
* - SF_ERR_PRXCOND if the connection has been limited by the proxy (maxconn)
|
|
* - SF_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...)
|
|
* - SF_ERR_INTERNAL for any other purely internal errors
|
|
* Additionally, in the case of SF_ERR_RESOURCE, an emergency log will be emitted.
|
|
* The server-facing stream interface is expected to hold a pre-allocated connection
|
|
* in s->si[1].conn.
|
|
*/
|
|
int connect_server(struct stream *s)
|
|
{
|
|
struct connection *cli_conn = objt_conn(strm_orig(s));
|
|
struct connection *srv_conn = NULL;
|
|
struct conn_stream *srv_cs = NULL;
|
|
struct server *srv;
|
|
int reuse = 0;
|
|
int init_mux = 0;
|
|
int err;
|
|
|
|
|
|
/* This will catch some corner cases such as lying connections resulting from
|
|
* retries or connect timeouts but will rarely trigger.
|
|
*/
|
|
si_release_endpoint(&s->si[1]);
|
|
|
|
/* first, search for a matching connection in the session's idle conns */
|
|
srv_conn = session_get_conn(s->sess, s->target);
|
|
if (srv_conn)
|
|
reuse = 1;
|
|
|
|
srv = objt_server(s->target);
|
|
|
|
if (srv && !reuse) {
|
|
srv_conn = NULL;
|
|
|
|
/* Below we pick connections from the safe, idle or
|
|
* available (which are safe too) lists based
|
|
* on the strategy, the fact that this is a first or second
|
|
* (retryable) request, with the indicated priority (1 or 2) :
|
|
*
|
|
* SAFE AGGR ALWS
|
|
*
|
|
* +-----+-----+ +-----+-----+ +-----+-----+
|
|
* req| 1st | 2nd | req| 1st | 2nd | req| 1st | 2nd |
|
|
* ----+-----+-----+ ----+-----+-----+ ----+-----+-----+
|
|
* safe| - | 2 | safe| 1 | 2 | safe| 1 | 2 |
|
|
* ----+-----+-----+ ----+-----+-----+ ----+-----+-----+
|
|
* idle| - | 1 | idle| - | 1 | idle| 2 | 1 |
|
|
* ----+-----+-----+ ----+-----+-----+ ----+-----+-----+
|
|
*
|
|
* Idle conns are necessarily looked up on the same thread so
|
|
* that there is no concurrency issues.
|
|
*/
|
|
if (srv->available_conns && !LIST_ISEMPTY(&srv->available_conns[tid]) &&
|
|
((s->be->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR)) {
|
|
srv_conn = LIST_ELEM(srv->available_conns[tid].n, struct connection *, list);
|
|
reuse = 1;
|
|
}
|
|
else if (!srv_conn && srv->curr_idle_conns > 0) {
|
|
if (srv->idle_conns && srv->safe_conns &&
|
|
((s->be->options & PR_O_REUSE_MASK) != PR_O_REUSE_NEVR &&
|
|
s->txn && (s->txn->flags & TX_NOT_FIRST)) &&
|
|
srv->curr_idle_nb + srv->curr_safe_nb > 0) {
|
|
/* we're on the second column of the tables above, let's
|
|
* try idle then safe.
|
|
*/
|
|
srv_conn = conn_backend_get(srv, 0);
|
|
}
|
|
else if (srv->safe_conns &&
|
|
((s->txn && (s->txn->flags & TX_NOT_FIRST)) ||
|
|
(s->be->options & PR_O_REUSE_MASK) >= PR_O_REUSE_AGGR) &&
|
|
srv->curr_safe_nb > 0) {
|
|
srv_conn = conn_backend_get(srv, 1);
|
|
}
|
|
else if (srv->idle_conns &&
|
|
((s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) &&
|
|
srv->curr_idle_nb > 0) {
|
|
srv_conn = conn_backend_get(srv, 0);
|
|
}
|
|
/* If we've picked a connection from the pool, we now have to
|
|
* detach it. We may have to get rid of the previous idle
|
|
* connection we had, so for this we try to swap it with the
|
|
* other owner's. That way it may remain alive for others to
|
|
* pick.
|
|
*/
|
|
if (srv_conn)
|
|
reuse = 1;
|
|
}
|
|
}
|
|
|
|
|
|
/* here reuse might have been set above, indicating srv_conn finally
|
|
* is OK.
|
|
*/
|
|
if (reuse) {
|
|
/* Disable connection reuse if a dynamic source is used.
|
|
* As long as we don't share connections between servers,
|
|
* we don't need to disable connection reuse on no-idempotent
|
|
* requests nor when PROXY protocol is used.
|
|
*/
|
|
if (srv && srv->conn_src.opts & CO_SRC_BIND) {
|
|
if ((srv->conn_src.opts & CO_SRC_TPROXY_MASK) == CO_SRC_TPROXY_DYN)
|
|
reuse = 0;
|
|
}
|
|
else if (s->be->conn_src.opts & CO_SRC_BIND) {
|
|
if ((s->be->conn_src.opts & CO_SRC_TPROXY_MASK) == CO_SRC_TPROXY_DYN)
|
|
reuse = 0;
|
|
}
|
|
}
|
|
|
|
if (ha_used_fds > global.tune.pool_high_count && srv && srv->idle_conns) {
|
|
struct connection *tokill_conn;
|
|
|
|
/* We can't reuse a connection, and e have more FDs than deemd
|
|
* acceptable, attempt to kill an idling connection
|
|
*/
|
|
/* First, try from our own idle list */
|
|
tokill_conn = MT_LIST_POP(&srv->idle_conns[tid],
|
|
struct connection *, list);
|
|
if (tokill_conn)
|
|
tokill_conn->mux->destroy(tokill_conn->ctx);
|
|
/* If not, iterate over other thread's idling pool, and try to grab one */
|
|
else {
|
|
int i;
|
|
|
|
for (i = tid; (i = ((i + 1 == global.nbthread) ? 0 : i + 1)) != tid;) {
|
|
// just silence stupid gcc which reports an absurd
|
|
// out-of-bounds warning for <i> which is always
|
|
// exactly zero without threads, but it seems to
|
|
// see it possibly larger.
|
|
ALREADY_CHECKED(i);
|
|
|
|
HA_SPIN_LOCK(OTHER_LOCK, &idle_conns[tid].takeover_lock);
|
|
tokill_conn = MT_LIST_POP(&srv->idle_conns[i],
|
|
struct connection *, list);
|
|
if (!tokill_conn)
|
|
tokill_conn = MT_LIST_POP(&srv->safe_conns[i],
|
|
struct connection *, list);
|
|
if (tokill_conn) {
|
|
/* We got one, put it into the concerned thread's to kill list, and wake it's kill task */
|
|
|
|
MT_LIST_ADDQ(&idle_conns[i].toremove_conns,
|
|
(struct mt_list *)&tokill_conn->list);
|
|
task_wakeup(idle_conns[i].cleanup_task, TASK_WOKEN_OTHER);
|
|
HA_SPIN_UNLOCK(OTHER_LOCK, &idle_conns[tid].takeover_lock);
|
|
break;
|
|
}
|
|
HA_SPIN_UNLOCK(OTHER_LOCK, &idle_conns[tid].takeover_lock);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
if (reuse) {
|
|
if (srv_conn->mux) {
|
|
int avail = srv_conn->mux->avail_streams(srv_conn);
|
|
|
|
if (avail <= 1) {
|
|
/* No more streams available, remove it from the list */
|
|
MT_LIST_DEL(&srv_conn->list);
|
|
}
|
|
|
|
if (avail >= 1) {
|
|
srv_cs = srv_conn->mux->attach(srv_conn, s->sess);
|
|
if (srv_cs)
|
|
si_attach_cs(&s->si[1], srv_cs);
|
|
else
|
|
srv_conn = NULL;
|
|
}
|
|
else
|
|
srv_conn = NULL;
|
|
}
|
|
/* otherwise srv_conn is left intact */
|
|
}
|
|
else
|
|
srv_conn = NULL;
|
|
|
|
/* no reuse or failed to reuse the connection above, pick a new one */
|
|
if (!srv_conn) {
|
|
srv_conn = conn_new(s->target);
|
|
srv_cs = NULL;
|
|
|
|
if (srv_conn) {
|
|
srv_conn->owner = s->sess;
|
|
if ((s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_NEVR)
|
|
conn_set_private(srv_conn);
|
|
}
|
|
}
|
|
|
|
if (!srv_conn || !sockaddr_alloc(&srv_conn->dst)) {
|
|
if (srv_conn)
|
|
conn_free(srv_conn);
|
|
return SF_ERR_RESOURCE;
|
|
}
|
|
|
|
if (!(s->flags & SF_ADDR_SET)) {
|
|
err = assign_server_address(s);
|
|
if (err != SRV_STATUS_OK) {
|
|
conn_free(srv_conn);
|
|
return SF_ERR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
/* copy the target address into the connection */
|
|
*srv_conn->dst = *s->target_addr;
|
|
|
|
/* Copy network namespace from client connection */
|
|
srv_conn->proxy_netns = cli_conn ? cli_conn->proxy_netns : NULL;
|
|
|
|
if (!conn_xprt_ready(srv_conn) && !srv_conn->mux) {
|
|
/* set the correct protocol on the output stream interface */
|
|
if (srv)
|
|
conn_prepare(srv_conn, protocol_by_family(srv_conn->dst->ss_family), srv->xprt);
|
|
else if (obj_type(s->target) == OBJ_TYPE_PROXY) {
|
|
/* proxies exclusively run on raw_sock right now */
|
|
conn_prepare(srv_conn, protocol_by_family(srv_conn->dst->ss_family), xprt_get(XPRT_RAW));
|
|
if (!(srv_conn->ctrl)) {
|
|
conn_free(srv_conn);
|
|
return SF_ERR_INTERNAL;
|
|
}
|
|
}
|
|
else {
|
|
conn_free(srv_conn);
|
|
return SF_ERR_INTERNAL; /* how did we get there ? */
|
|
}
|
|
|
|
srv_cs = si_alloc_cs(&s->si[1], srv_conn);
|
|
if (!srv_cs) {
|
|
conn_free(srv_conn);
|
|
return SF_ERR_RESOURCE;
|
|
}
|
|
srv_conn->ctx = srv_cs;
|
|
#if defined(USE_OPENSSL) && defined(TLSEXT_TYPE_application_layer_protocol_negotiation)
|
|
if (!srv ||
|
|
(srv->use_ssl != 1 || (!(srv->ssl_ctx.alpn_str) && !(srv->ssl_ctx.npn_str)) ||
|
|
srv->mux_proto || s->be->mode != PR_MODE_HTTP))
|
|
#endif
|
|
init_mux = 1;
|
|
|
|
/* process the case where the server requires the PROXY protocol to be sent */
|
|
srv_conn->send_proxy_ofs = 0;
|
|
|
|
if (srv && srv->pp_opts) {
|
|
conn_set_private(srv_conn);
|
|
srv_conn->flags |= CO_FL_SEND_PROXY;
|
|
srv_conn->send_proxy_ofs = 1; /* must compute size */
|
|
if (cli_conn)
|
|
conn_get_dst(cli_conn);
|
|
}
|
|
|
|
assign_tproxy_address(s);
|
|
|
|
if (srv && (srv->flags & SRV_F_SOCKS4_PROXY)) {
|
|
srv_conn->send_proxy_ofs = 1;
|
|
srv_conn->flags |= CO_FL_SOCKS4;
|
|
}
|
|
}
|
|
else if (!conn_xprt_ready(srv_conn)) {
|
|
if (srv_conn->mux->reset)
|
|
srv_conn->mux->reset(srv_conn);
|
|
}
|
|
else {
|
|
/* Only consider we're doing reuse if the connection was
|
|
* ready.
|
|
*/
|
|
if (srv_conn->mux->ctl(srv_conn, MUX_STATUS, NULL) & MUX_STATUS_READY)
|
|
s->flags |= SF_SRV_REUSED;
|
|
}
|
|
|
|
/* flag for logging source ip/port */
|
|
if (strm_fe(s)->options2 & PR_O2_SRC_ADDR)
|
|
s->si[1].flags |= SI_FL_SRC_ADDR;
|
|
|
|
/* disable lingering */
|
|
if (s->be->options & PR_O_TCP_NOLING)
|
|
s->si[1].flags |= SI_FL_NOLINGER;
|
|
|
|
if (s->flags & SF_SRV_REUSED) {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.reuse, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.reuse, 1);
|
|
} else {
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.connect, 1);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.connect, 1);
|
|
}
|
|
|
|
err = si_connect(&s->si[1], srv_conn);
|
|
if (err != SF_ERR_NONE)
|
|
return err;
|
|
|
|
#ifdef USE_OPENSSL
|
|
if (srv && srv->ssl_ctx.sni) {
|
|
struct sample *smp;
|
|
|
|
smp = sample_fetch_as_type(s->be, s->sess, s, SMP_OPT_DIR_REQ | SMP_OPT_FINAL,
|
|
srv->ssl_ctx.sni, SMP_T_STR);
|
|
if (smp_make_safe(smp)) {
|
|
ssl_sock_set_servername(srv_conn, smp->data.u.str.area);
|
|
conn_set_private(srv_conn);
|
|
}
|
|
}
|
|
#endif /* USE_OPENSSL */
|
|
|
|
/* The CO_FL_SEND_PROXY flag may have been set by the connect method,
|
|
* if so, add our handshake pseudo-XPRT now.
|
|
*/
|
|
if ((srv_conn->flags & CO_FL_HANDSHAKE)) {
|
|
if (xprt_add_hs(srv_conn) < 0) {
|
|
conn_full_close(srv_conn);
|
|
return SF_ERR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
/* We have to defer the mux initialization until after si_connect()
|
|
* has been called, as we need the xprt to have been properly
|
|
* initialized, or any attempt to recv during the mux init may
|
|
* fail, and flag the connection as CO_FL_ERROR.
|
|
*/
|
|
if (init_mux) {
|
|
if (conn_install_mux_be(srv_conn, srv_cs, s->sess) < 0) {
|
|
conn_full_close(srv_conn);
|
|
return SF_ERR_INTERNAL;
|
|
}
|
|
/* If we're doing http-reuse always, and the connection is not
|
|
* private with available streams (an http2 connection), add it
|
|
* to the available list, so that others can use it right
|
|
* away. If the connection is private, add it in the session
|
|
* server list.
|
|
*/
|
|
if (srv && ((s->be->options & PR_O_REUSE_MASK) == PR_O_REUSE_ALWS) &&
|
|
!(srv_conn->flags & CO_FL_PRIVATE) && srv_conn->mux->avail_streams(srv_conn) > 0)
|
|
LIST_ADDQ(&srv->available_conns[tid], mt_list_to_list(&srv_conn->list));
|
|
else if (srv_conn->flags & CO_FL_PRIVATE) {
|
|
/* If it fail now, the same will be done in mux->detach() callback */
|
|
session_add_conn(srv_conn->owner, srv_conn, srv_conn->target);
|
|
}
|
|
}
|
|
|
|
#if USE_OPENSSL && (defined(OPENSSL_IS_BORINGSSL) || (HA_OPENSSL_VERSION_NUMBER >= 0x10101000L))
|
|
|
|
if (!reuse && cli_conn && srv && srv_conn->mux &&
|
|
(srv->ssl_ctx.options & SRV_SSL_O_EARLY_DATA) &&
|
|
/* Only attempt to use early data if either the client sent
|
|
* early data, so that we know it can handle a 425, or if
|
|
* we are allwoed to retry requests on early data failure, and
|
|
* it's our first try
|
|
*/
|
|
((cli_conn->flags & CO_FL_EARLY_DATA) ||
|
|
((s->be->retry_type & PR_RE_EARLY_ERROR) &&
|
|
s->si[1].conn_retries == s->be->conn_retries)) &&
|
|
!channel_is_empty(si_oc(&s->si[1])) &&
|
|
srv_conn->flags & CO_FL_SSL_WAIT_HS)
|
|
srv_conn->flags &= ~(CO_FL_SSL_WAIT_HS | CO_FL_WAIT_L6_CONN);
|
|
#endif
|
|
|
|
/* set connect timeout */
|
|
s->si[1].exp = tick_add_ifset(now_ms, s->be->timeout.connect);
|
|
|
|
if (srv) {
|
|
int count;
|
|
|
|
s->flags |= SF_CURR_SESS;
|
|
count = _HA_ATOMIC_ADD(&srv->cur_sess, 1);
|
|
HA_ATOMIC_UPDATE_MAX(&srv->counters.cur_sess_max, count);
|
|
if (s->be->lbprm.server_take_conn)
|
|
s->be->lbprm.server_take_conn(srv);
|
|
}
|
|
|
|
/* Now handle synchronously connected sockets. We know the stream-int
|
|
* is at least in state SI_ST_CON. These ones typically are UNIX
|
|
* sockets, socket pairs, and occasionally TCP connections on the
|
|
* loopback on a heavily loaded system.
|
|
*/
|
|
if ((srv_conn->flags & CO_FL_ERROR || srv_cs->flags & CS_FL_ERROR))
|
|
s->si[1].flags |= SI_FL_ERR;
|
|
|
|
/* If we had early data, and the handshake ended, then
|
|
* we can remove the flag, and attempt to wake the task up,
|
|
* in the event there's an analyser waiting for the end of
|
|
* the handshake.
|
|
*/
|
|
if (!(srv_conn->flags & (CO_FL_WAIT_XPRT | CO_FL_EARLY_SSL_HS)))
|
|
srv_cs->flags &= ~CS_FL_WAIT_FOR_HS;
|
|
|
|
if (!si_state_in(s->si[1].state, SI_SB_EST|SI_SB_DIS|SI_SB_CLO) &&
|
|
(srv_conn->flags & CO_FL_WAIT_XPRT) == 0) {
|
|
s->si[1].exp = TICK_ETERNITY;
|
|
si_oc(&s->si[1])->flags |= CF_WRITE_NULL;
|
|
if (s->si[1].state == SI_ST_CON)
|
|
s->si[1].state = SI_ST_RDY;
|
|
}
|
|
|
|
/* Report EOI on the channel if it was reached from the mux point of
|
|
* view.
|
|
*
|
|
* Note: This test is only required because si_cs_process is also the SI
|
|
* wake callback. Otherwise si_cs_recv()/si_cs_send() already take
|
|
* care of it.
|
|
*/
|
|
if ((srv_cs->flags & CS_FL_EOI) && !(si_ic(&s->si[1])->flags & CF_EOI))
|
|
si_ic(&s->si[1])->flags |= (CF_EOI|CF_READ_PARTIAL);
|
|
|
|
/* catch all sync connect while the mux is not already installed */
|
|
if (!srv_conn->mux && !(srv_conn->flags & CO_FL_WAIT_XPRT)) {
|
|
if (conn_create_mux(srv_conn) < 0) {
|
|
conn_full_close(srv_conn);
|
|
return SF_ERR_INTERNAL;
|
|
}
|
|
}
|
|
|
|
return SF_ERR_NONE; /* connection is OK */
|
|
}
|
|
|
|
|
|
/* This function performs the "redispatch" part of a connection attempt. It
|
|
* will assign a server if required, queue the connection if required, and
|
|
* handle errors that might arise at this level. It can change the server
|
|
* state. It will return 1 if it encounters an error, switches the server
|
|
* state, or has to queue a connection. Otherwise, it will return 0 indicating
|
|
* that the connection is ready to use.
|
|
*/
|
|
|
|
int srv_redispatch_connect(struct stream *s)
|
|
{
|
|
struct server *srv;
|
|
int conn_err;
|
|
|
|
/* We know that we don't have any connection pending, so we will
|
|
* try to get a new one, and wait in this state if it's queued
|
|
*/
|
|
redispatch:
|
|
conn_err = assign_server_and_queue(s);
|
|
srv = objt_server(s->target);
|
|
|
|
switch (conn_err) {
|
|
case SRV_STATUS_OK:
|
|
break;
|
|
|
|
case SRV_STATUS_FULL:
|
|
/* The server has reached its maxqueue limit. Either PR_O_REDISP is set
|
|
* and we can redispatch to another server, or it is not and we return
|
|
* 503. This only makes sense in DIRECT mode however, because normal LB
|
|
* algorithms would never select such a server, and hash algorithms
|
|
* would bring us on the same server again. Note that s->target is set
|
|
* in this case.
|
|
*/
|
|
if (((s->flags & (SF_DIRECT|SF_FORCE_PRST)) == SF_DIRECT) &&
|
|
(s->be->options & PR_O_REDISP)) {
|
|
s->flags &= ~(SF_DIRECT | SF_ASSIGNED | SF_ADDR_SET);
|
|
sockaddr_free(&s->target_addr);
|
|
goto redispatch;
|
|
}
|
|
|
|
if (!s->si[1].err_type) {
|
|
s->si[1].err_type = SI_ET_QUEUE_ERR;
|
|
}
|
|
|
|
_HA_ATOMIC_ADD(&srv->counters.failed_conns, 1);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1);
|
|
return 1;
|
|
|
|
case SRV_STATUS_NOSRV:
|
|
/* note: it is guaranteed that srv == NULL here */
|
|
if (!s->si[1].err_type) {
|
|
s->si[1].err_type = SI_ET_CONN_ERR;
|
|
}
|
|
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1);
|
|
return 1;
|
|
|
|
case SRV_STATUS_QUEUED:
|
|
s->si[1].exp = tick_add_ifset(now_ms, s->be->timeout.queue);
|
|
s->si[1].state = SI_ST_QUE;
|
|
/* do nothing else and do not wake any other stream up */
|
|
return 1;
|
|
|
|
case SRV_STATUS_INTERNAL:
|
|
default:
|
|
if (!s->si[1].err_type) {
|
|
s->si[1].err_type = SI_ET_CONN_OTHER;
|
|
}
|
|
|
|
if (srv)
|
|
srv_inc_sess_ctr(srv);
|
|
if (srv)
|
|
srv_set_sess_last(srv);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.failed_conns, 1);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1);
|
|
|
|
/* release other streams waiting for this server */
|
|
if (may_dequeue_tasks(srv, s->be))
|
|
process_srv_queue(srv);
|
|
return 1;
|
|
}
|
|
/* if we get here, it's because we got SRV_STATUS_OK, which also
|
|
* means that the connection has not been queued.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
/* Check if the connection request is in such a state that it can be aborted. */
|
|
static int back_may_abort_req(struct channel *req, struct stream *s)
|
|
{
|
|
return ((req->flags & (CF_READ_ERROR)) ||
|
|
((req->flags & (CF_SHUTW_NOW|CF_SHUTW)) && /* empty and client aborted */
|
|
(channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE))));
|
|
}
|
|
|
|
/* Update back stream interface status for input states SI_ST_ASS, SI_ST_QUE,
|
|
* SI_ST_TAR. Other input states are simply ignored.
|
|
* Possible output states are SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ, SI_ST_CON
|
|
* and SI_ST_EST. Flags must have previously been updated for timeouts and other
|
|
* conditions.
|
|
*/
|
|
void back_try_conn_req(struct stream *s)
|
|
{
|
|
struct server *srv = objt_server(s->target);
|
|
struct stream_interface *si = &s->si[1];
|
|
struct channel *req = &s->req;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
|
|
if (si->state == SI_ST_ASS) {
|
|
/* Server assigned to connection request, we have to try to connect now */
|
|
int conn_err;
|
|
|
|
/* Before we try to initiate the connection, see if the
|
|
* request may be aborted instead.
|
|
*/
|
|
if (back_may_abort_req(req, s)) {
|
|
si->err_type |= SI_ET_CONN_ABRT;
|
|
DBG_TRACE_STATE("connection aborted", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
goto abort_connection;
|
|
}
|
|
|
|
conn_err = connect_server(s);
|
|
srv = objt_server(s->target);
|
|
|
|
if (conn_err == SF_ERR_NONE) {
|
|
/* state = SI_ST_CON or SI_ST_EST now */
|
|
if (srv)
|
|
srv_inc_sess_ctr(srv);
|
|
if (srv)
|
|
srv_set_sess_last(srv);
|
|
DBG_TRACE_STATE("connection attempt", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
goto end;
|
|
}
|
|
|
|
/* We have received a synchronous error. We might have to
|
|
* abort, retry immediately or redispatch.
|
|
*/
|
|
if (conn_err == SF_ERR_INTERNAL) {
|
|
if (!si->err_type) {
|
|
si->err_type = SI_ET_CONN_OTHER;
|
|
}
|
|
|
|
if (srv)
|
|
srv_inc_sess_ctr(srv);
|
|
if (srv)
|
|
srv_set_sess_last(srv);
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.failed_conns, 1);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1);
|
|
|
|
/* release other streams waiting for this server */
|
|
sess_change_server(s, NULL);
|
|
if (may_dequeue_tasks(srv, s->be))
|
|
process_srv_queue(srv);
|
|
|
|
/* Failed and not retryable. */
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
req->flags |= CF_WRITE_ERROR;
|
|
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
|
|
/* we may need to know the position in the queue for logging */
|
|
pendconn_cond_unlink(s->pend_pos);
|
|
|
|
/* no stream was ever accounted for this server */
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
DBG_TRACE_STATE("internal error during connection", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
goto end;
|
|
}
|
|
|
|
/* We are facing a retryable error, but we don't want to run a
|
|
* turn-around now, as the problem is likely a source port
|
|
* allocation problem, so we want to retry now.
|
|
*/
|
|
si->state = SI_ST_CER;
|
|
si->flags &= ~SI_FL_ERR;
|
|
back_handle_st_cer(s);
|
|
|
|
DBG_TRACE_STATE("connection error, retry", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
/* now si->state is one of SI_ST_CLO, SI_ST_TAR, SI_ST_ASS, SI_ST_REQ */
|
|
}
|
|
else if (si->state == SI_ST_QUE) {
|
|
/* connection request was queued, check for any update */
|
|
if (!pendconn_dequeue(s)) {
|
|
/* The connection is not in the queue anymore. Either
|
|
* we have a server connection slot available and we
|
|
* go directly to the assigned state, or we need to
|
|
* load-balance first and go to the INI state.
|
|
*/
|
|
si->exp = TICK_ETERNITY;
|
|
if (unlikely(!(s->flags & SF_ASSIGNED)))
|
|
si->state = SI_ST_REQ;
|
|
else {
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->state = SI_ST_ASS;
|
|
}
|
|
DBG_TRACE_STATE("dequeue connection request", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
goto end;
|
|
}
|
|
|
|
/* Connection request still in queue... */
|
|
if (si->flags & SI_FL_EXP) {
|
|
/* ... and timeout expired */
|
|
si->exp = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_EXP;
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
|
|
/* we may need to know the position in the queue for logging */
|
|
pendconn_cond_unlink(s->pend_pos);
|
|
|
|
if (srv)
|
|
_HA_ATOMIC_ADD(&srv->counters.failed_conns, 1);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1);
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
req->flags |= CF_WRITE_TIMEOUT;
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_QUEUE_TO;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
DBG_TRACE_STATE("connection request still queued", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
goto end;
|
|
}
|
|
|
|
/* Connection remains in queue, check if we have to abort it */
|
|
if (back_may_abort_req(req, s)) {
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
|
|
/* we may need to know the position in the queue for logging */
|
|
pendconn_cond_unlink(s->pend_pos);
|
|
|
|
si->err_type |= SI_ET_QUEUE_ABRT;
|
|
DBG_TRACE_STATE("abort queued connection request", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
goto abort_connection;
|
|
}
|
|
|
|
/* Nothing changed */
|
|
}
|
|
else if (si->state == SI_ST_TAR) {
|
|
/* Connection request might be aborted */
|
|
if (back_may_abort_req(req, s)) {
|
|
si->err_type |= SI_ET_CONN_ABRT;
|
|
DBG_TRACE_STATE("connection aborted", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
goto abort_connection;
|
|
}
|
|
|
|
if (!(si->flags & SI_FL_EXP))
|
|
return; /* still in turn-around */
|
|
|
|
si->flags &= ~SI_FL_EXP;
|
|
si->exp = TICK_ETERNITY;
|
|
|
|
/* we keep trying on the same server as long as the stream is
|
|
* marked "assigned".
|
|
* FIXME: Should we force a redispatch attempt when the server is down ?
|
|
*/
|
|
if (s->flags & SF_ASSIGNED)
|
|
si->state = SI_ST_ASS;
|
|
else
|
|
si->state = SI_ST_REQ;
|
|
|
|
DBG_TRACE_STATE("retry connection now", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
}
|
|
|
|
end:
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
return;
|
|
|
|
abort_connection:
|
|
/* give up */
|
|
si->exp = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_EXP;
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
DBG_TRACE_DEVEL("leaving on error", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
return;
|
|
}
|
|
|
|
/* This function initiates a server connection request on a stream interface
|
|
* already in SI_ST_REQ state. Upon success, the state goes to SI_ST_ASS for
|
|
* a real connection to a server, indicating that a server has been assigned,
|
|
* or SI_ST_EST for a successful connection to an applet. It may also return
|
|
* SI_ST_QUE, or SI_ST_CLO upon error.
|
|
*/
|
|
void back_handle_st_req(struct stream *s)
|
|
{
|
|
struct stream_interface *si = &s->si[1];
|
|
|
|
if (si->state != SI_ST_REQ)
|
|
return;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
|
|
if (unlikely(obj_type(s->target) == OBJ_TYPE_APPLET)) {
|
|
/* the applet directly goes to the EST state */
|
|
struct appctx *appctx = objt_appctx(si->end);
|
|
|
|
if (!appctx || appctx->applet != __objt_applet(s->target))
|
|
appctx = si_register_handler(si, objt_applet(s->target));
|
|
|
|
if (!appctx) {
|
|
/* No more memory, let's immediately abort. Force the
|
|
* error code to ignore the ERR_LOCAL which is not a
|
|
* real error.
|
|
*/
|
|
s->flags &= ~(SF_ERR_MASK | SF_FINST_MASK);
|
|
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
s->req.flags |= CF_WRITE_ERROR;
|
|
si->err_type = SI_ET_CONN_RES;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
DBG_TRACE_STATE("failed to register applet", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
goto end;
|
|
}
|
|
|
|
if (tv_iszero(&s->logs.tv_request))
|
|
s->logs.tv_request = now;
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->state = SI_ST_EST;
|
|
si->err_type = SI_ET_NONE;
|
|
be_set_sess_last(s->be);
|
|
|
|
DBG_TRACE_STATE("applet registered", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
/* let back_establish() finish the job */
|
|
goto end;
|
|
}
|
|
|
|
/* Try to assign a server */
|
|
if (srv_redispatch_connect(s) != 0) {
|
|
/* We did not get a server. Either we queued the
|
|
* connection request, or we encountered an error.
|
|
*/
|
|
if (si->state == SI_ST_QUE) {
|
|
DBG_TRACE_STATE("connection request queued", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
goto end;
|
|
}
|
|
|
|
/* we did not get any server, let's check the cause */
|
|
si_shutr(si);
|
|
si_shutw(si);
|
|
s->req.flags |= CF_WRITE_ERROR;
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_CONN_OTHER;
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
DBG_TRACE_STATE("connection request failed", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
goto end;
|
|
}
|
|
|
|
/* The server is assigned */
|
|
s->logs.t_queue = tv_ms_elapsed(&s->logs.tv_accept, &now);
|
|
si->state = SI_ST_ASS;
|
|
be_set_sess_last(s->be);
|
|
DBG_TRACE_STATE("connection request assigned to a server", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
|
|
end:
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
}
|
|
|
|
/* This function is called with (si->state == SI_ST_CON) meaning that a
|
|
* connection was attempted and that the file descriptor is already allocated.
|
|
* We must check for timeout, error and abort. Possible output states are
|
|
* SI_ST_CER (error), SI_ST_DIS (abort), and SI_ST_CON (no change). This only
|
|
* works with connection-based streams. We know that there were no I/O event
|
|
* when reaching this function. Timeouts and errors are *not* cleared.
|
|
*/
|
|
void back_handle_st_con(struct stream *s)
|
|
{
|
|
struct stream_interface *si = &s->si[1];
|
|
struct channel *req = &s->req;
|
|
struct channel *rep = &s->res;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
|
|
/* the client might want to abort */
|
|
if ((rep->flags & CF_SHUTW) ||
|
|
((req->flags & CF_SHUTW_NOW) &&
|
|
(channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE)))) {
|
|
si->flags |= SI_FL_NOLINGER;
|
|
si_shutw(si);
|
|
si->err_type |= SI_ET_CONN_ABRT;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
/* Note: state = SI_ST_DIS now */
|
|
DBG_TRACE_STATE("client abort during connection attempt", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
goto end;
|
|
}
|
|
|
|
done:
|
|
/* retryable error ? */
|
|
if (si->flags & (SI_FL_EXP|SI_FL_ERR)) {
|
|
if (!si->err_type) {
|
|
if (si->flags & SI_FL_ERR)
|
|
si->err_type = SI_ET_CONN_ERR;
|
|
else
|
|
si->err_type = SI_ET_CONN_TO;
|
|
}
|
|
|
|
si->state = SI_ST_CER;
|
|
DBG_TRACE_STATE("connection failed, retry", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
}
|
|
|
|
end:
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
}
|
|
|
|
/* This function is called with (si->state == SI_ST_CER) meaning that a
|
|
* previous connection attempt has failed and that the file descriptor
|
|
* has already been released. Possible causes include asynchronous error
|
|
* notification and time out. Possible output states are SI_ST_CLO when
|
|
* retries are exhausted, SI_ST_TAR when a delay is wanted before a new
|
|
* connection attempt, SI_ST_ASS when it's wise to retry on the same server,
|
|
* and SI_ST_REQ when an immediate redispatch is wanted. The buffers are
|
|
* marked as in error state. Timeouts and errors are cleared before retrying.
|
|
*/
|
|
void back_handle_st_cer(struct stream *s)
|
|
{
|
|
struct stream_interface *si = &s->si[1];
|
|
struct conn_stream *cs = objt_cs(si->end);
|
|
struct connection *conn = cs_conn(cs);
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
|
|
si->exp = TICK_ETERNITY;
|
|
si->flags &= ~SI_FL_EXP;
|
|
|
|
/* we probably have to release last stream from the server */
|
|
if (objt_server(s->target)) {
|
|
health_adjust(objt_server(s->target), HANA_STATUS_L4_ERR);
|
|
|
|
if (s->flags & SF_CURR_SESS) {
|
|
s->flags &= ~SF_CURR_SESS;
|
|
_HA_ATOMIC_SUB(&__objt_server(s->target)->cur_sess, 1);
|
|
}
|
|
|
|
if ((si->flags & SI_FL_ERR) &&
|
|
conn && conn->err_code == CO_ER_SSL_MISMATCH_SNI) {
|
|
/* We tried to connect to a server which is configured
|
|
* with "verify required" and which doesn't have the
|
|
* "verifyhost" directive. The server presented a wrong
|
|
* certificate (a certificate for an unexpected name),
|
|
* which implies that we have used SNI in the handshake,
|
|
* and that the server doesn't have the associated cert
|
|
* and presented a default one.
|
|
*
|
|
* This is a serious enough issue not to retry. It's
|
|
* especially important because this wrong name might
|
|
* either be the result of a configuration error, and
|
|
* retrying will only hammer the server, or is caused
|
|
* by the use of a wrong SNI value, most likely
|
|
* provided by the client and we don't want to let the
|
|
* client provoke retries.
|
|
*/
|
|
si->conn_retries = 0;
|
|
DBG_TRACE_DEVEL("Bad SSL cert, disable connection retries", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
}
|
|
}
|
|
|
|
/* ensure that we have enough retries left */
|
|
si->conn_retries--;
|
|
if (si->conn_retries < 0 || !(s->be->retry_type & PR_RE_CONN_FAILED)) {
|
|
if (!si->err_type) {
|
|
si->err_type = SI_ET_CONN_ERR;
|
|
}
|
|
|
|
if (objt_server(s->target))
|
|
_HA_ATOMIC_ADD(&objt_server(s->target)->counters.failed_conns, 1);
|
|
_HA_ATOMIC_ADD(&s->be->be_counters.failed_conns, 1);
|
|
sess_change_server(s, NULL);
|
|
if (may_dequeue_tasks(objt_server(s->target), s->be))
|
|
process_srv_queue(objt_server(s->target));
|
|
|
|
/* shutw is enough so stop a connecting socket */
|
|
si_shutw(si);
|
|
s->req.flags |= CF_WRITE_ERROR;
|
|
s->res.flags |= CF_READ_ERROR;
|
|
|
|
si->state = SI_ST_CLO;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
|
|
DBG_TRACE_STATE("connection failed", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
goto end;
|
|
}
|
|
|
|
stream_choose_redispatch(s);
|
|
|
|
if (si->flags & SI_FL_ERR) {
|
|
/* The error was an asynchronous connection error, and we will
|
|
* likely have to retry connecting to the same server, most
|
|
* likely leading to the same result. To avoid this, we wait
|
|
* MIN(one second, connect timeout) before retrying. We don't
|
|
* do it when the failure happened on a reused connection
|
|
* though.
|
|
*/
|
|
|
|
int delay = 1000;
|
|
|
|
if (s->be->timeout.connect && s->be->timeout.connect < delay)
|
|
delay = s->be->timeout.connect;
|
|
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_CONN_ERR;
|
|
|
|
/* only wait when we're retrying on the same server */
|
|
if ((si->state == SI_ST_ASS ||
|
|
(s->be->lbprm.algo & BE_LB_KIND) != BE_LB_KIND_RR ||
|
|
(s->be->srv_act <= 1)) && !(s->flags & SF_SRV_REUSED)) {
|
|
si->state = SI_ST_TAR;
|
|
si->exp = tick_add(now_ms, MS_TO_TICKS(delay));
|
|
}
|
|
si->flags &= ~SI_FL_ERR;
|
|
DBG_TRACE_STATE("retry a new connection", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
}
|
|
|
|
end:
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
}
|
|
|
|
/* This function is called with (si->state == SI_ST_RDY) meaning that a
|
|
* connection was attempted, that the file descriptor is already allocated,
|
|
* and that it has succeeded. We must still check for errors and aborts.
|
|
* Possible output states are SI_ST_EST (established), SI_ST_CER (error),
|
|
* and SI_ST_DIS (abort). This only works with connection-based streams.
|
|
* Timeouts and errors are *not* cleared.
|
|
*/
|
|
void back_handle_st_rdy(struct stream *s)
|
|
{
|
|
struct stream_interface *si = &s->si[1];
|
|
struct channel *req = &s->req;
|
|
struct channel *rep = &s->res;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
/* We know the connection at least succeeded, though it could have
|
|
* since met an error for any other reason. At least it didn't time out
|
|
* eventhough the timeout might have been reported right after success.
|
|
* We need to take care of various situations here :
|
|
* - everything might be OK. We have to switch to established.
|
|
* - an I/O error might have been reported after a successful transfer,
|
|
* which is not retryable and needs to be logged correctly, and needs
|
|
* established as well
|
|
* - SI_ST_CON implies !CF_WROTE_DATA but not conversely as we could
|
|
* have validated a connection with incoming data (e.g. TCP with a
|
|
* banner protocol), or just a successful connect() probe.
|
|
* - the client might have requested a connection abort, this needs to
|
|
* be checked before we decide to retry anything.
|
|
*/
|
|
|
|
/* it's still possible to handle client aborts or connection retries
|
|
* before any data were sent.
|
|
*/
|
|
if (!(req->flags & CF_WROTE_DATA)) {
|
|
/* client abort ? */
|
|
if ((rep->flags & CF_SHUTW) ||
|
|
((req->flags & CF_SHUTW_NOW) &&
|
|
(channel_is_empty(req) || (s->be->options & PR_O_ABRT_CLOSE)))) {
|
|
/* give up */
|
|
si->flags |= SI_FL_NOLINGER;
|
|
si_shutw(si);
|
|
si->err_type |= SI_ET_CONN_ABRT;
|
|
if (s->srv_error)
|
|
s->srv_error(s, si);
|
|
DBG_TRACE_STATE("client abort during connection attempt", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
goto end;
|
|
}
|
|
|
|
/* retryable error ? */
|
|
if (si->flags & SI_FL_ERR) {
|
|
if (!si->err_type)
|
|
si->err_type = SI_ET_CONN_ERR;
|
|
si->state = SI_ST_CER;
|
|
DBG_TRACE_STATE("connection failed, retry", STRM_EV_STRM_PROC|STRM_EV_SI_ST|STRM_EV_STRM_ERR, s);
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
/* data were sent and/or we had no error, back_establish() will
|
|
* now take over.
|
|
*/
|
|
DBG_TRACE_STATE("connection established", STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
si->err_type = SI_ET_NONE;
|
|
si->state = SI_ST_EST;
|
|
|
|
end:
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_PROC|STRM_EV_SI_ST, s);
|
|
}
|
|
|
|
/* sends a log message when a backend goes down, and also sets last
|
|
* change date.
|
|
*/
|
|
void set_backend_down(struct proxy *be)
|
|
{
|
|
be->last_change = now.tv_sec;
|
|
_HA_ATOMIC_ADD(&be->down_trans, 1);
|
|
|
|
if (!(global.mode & MODE_STARTING)) {
|
|
ha_alert("%s '%s' has no server available!\n", proxy_type_str(be), be->id);
|
|
send_log(be, LOG_EMERG, "%s %s has no server available!\n", proxy_type_str(be), be->id);
|
|
}
|
|
}
|
|
|
|
/* Apply RDP cookie persistence to the current stream. For this, the function
|
|
* tries to extract an RDP cookie from the request buffer, and look for the
|
|
* matching server in the list. If the server is found, it is assigned to the
|
|
* stream. This always returns 1, and the analyser removes itself from the
|
|
* list. Nothing is performed if a server was already assigned.
|
|
*/
|
|
int tcp_persist_rdp_cookie(struct stream *s, struct channel *req, int an_bit)
|
|
{
|
|
struct proxy *px = s->be;
|
|
int ret;
|
|
struct sample smp;
|
|
struct server *srv = px->srv;
|
|
uint16_t port;
|
|
uint32_t addr;
|
|
char *p;
|
|
|
|
DBG_TRACE_ENTER(STRM_EV_STRM_ANA|STRM_EV_TCP_ANA, s);
|
|
|
|
if (s->flags & SF_ASSIGNED)
|
|
goto no_cookie;
|
|
|
|
memset(&smp, 0, sizeof(smp));
|
|
|
|
ret = fetch_rdp_cookie_name(s, &smp, s->be->rdp_cookie_name, s->be->rdp_cookie_len);
|
|
if (ret == 0 || (smp.flags & SMP_F_MAY_CHANGE) || smp.data.u.str.data == 0)
|
|
goto no_cookie;
|
|
|
|
/* Considering an rdp cookie detected using acl, str ended with <cr><lf> and should return.
|
|
* The cookie format is <ip> "." <port> where "ip" is the integer corresponding to the
|
|
* server's IP address in network order, and "port" is the integer corresponding to the
|
|
* server's port in network order. Comments please Emeric.
|
|
*/
|
|
addr = strtoul(smp.data.u.str.area, &p, 10);
|
|
if (*p != '.')
|
|
goto no_cookie;
|
|
p++;
|
|
|
|
port = ntohs(strtoul(p, &p, 10));
|
|
if (*p != '.')
|
|
goto no_cookie;
|
|
|
|
s->target = NULL;
|
|
while (srv) {
|
|
if (srv->addr.ss_family == AF_INET &&
|
|
port == srv->svc_port &&
|
|
addr == ((struct sockaddr_in *)&srv->addr)->sin_addr.s_addr) {
|
|
if ((srv->cur_state != SRV_ST_STOPPED) || (px->options & PR_O_PERSIST)) {
|
|
/* we found the server and it is usable */
|
|
s->flags |= SF_DIRECT | SF_ASSIGNED;
|
|
s->target = &srv->obj_type;
|
|
break;
|
|
}
|
|
}
|
|
srv = srv->next;
|
|
}
|
|
|
|
no_cookie:
|
|
req->analysers &= ~an_bit;
|
|
req->analyse_exp = TICK_ETERNITY;
|
|
DBG_TRACE_LEAVE(STRM_EV_STRM_ANA|STRM_EV_TCP_ANA, s);
|
|
return 1;
|
|
}
|
|
|
|
int be_downtime(struct proxy *px) {
|
|
if (px->lbprm.tot_weight && px->last_change < now.tv_sec) // ignore negative time
|
|
return px->down_time;
|
|
|
|
return now.tv_sec - px->last_change + px->down_time;
|
|
}
|
|
|
|
/*
|
|
* This function returns a string containing the balancing
|
|
* mode of the proxy in a format suitable for stats.
|
|
*/
|
|
|
|
const char *backend_lb_algo_str(int algo) {
|
|
|
|
if (algo == BE_LB_ALGO_RR)
|
|
return "roundrobin";
|
|
else if (algo == BE_LB_ALGO_SRR)
|
|
return "static-rr";
|
|
else if (algo == BE_LB_ALGO_FAS)
|
|
return "first";
|
|
else if (algo == BE_LB_ALGO_LC)
|
|
return "leastconn";
|
|
else if (algo == BE_LB_ALGO_SH)
|
|
return "source";
|
|
else if (algo == BE_LB_ALGO_UH)
|
|
return "uri";
|
|
else if (algo == BE_LB_ALGO_PH)
|
|
return "url_param";
|
|
else if (algo == BE_LB_ALGO_HH)
|
|
return "hdr";
|
|
else if (algo == BE_LB_ALGO_RCH)
|
|
return "rdp-cookie";
|
|
else if (algo == BE_LB_ALGO_NONE)
|
|
return "none";
|
|
else
|
|
return "unknown";
|
|
}
|
|
|
|
/* This function parses a "balance" statement in a backend section describing
|
|
* <curproxy>. It returns -1 if there is any error, otherwise zero. If it
|
|
* returns -1, it will write an error message into the <err> buffer which will
|
|
* automatically be allocated and must be passed as NULL. The trailing '\n'
|
|
* will not be written. The function must be called with <args> pointing to the
|
|
* first word after "balance".
|
|
*/
|
|
int backend_parse_balance(const char **args, char **err, struct proxy *curproxy)
|
|
{
|
|
if (!*(args[0])) {
|
|
/* if no option is set, use round-robin by default */
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_RR;
|
|
return 0;
|
|
}
|
|
|
|
if (!strcmp(args[0], "roundrobin")) {
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_RR;
|
|
}
|
|
else if (!strcmp(args[0], "static-rr")) {
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_SRR;
|
|
}
|
|
else if (!strcmp(args[0], "first")) {
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_FAS;
|
|
}
|
|
else if (!strcmp(args[0], "leastconn")) {
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_LC;
|
|
}
|
|
else if (!strncmp(args[0], "random", 6)) {
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_RND;
|
|
curproxy->lbprm.arg_opt1 = 2;
|
|
|
|
if (*(args[0] + 6) == '(' && *(args[0] + 7) != ')') { /* number of draws */
|
|
const char *beg;
|
|
char *end;
|
|
|
|
beg = args[0] + 7;
|
|
curproxy->lbprm.arg_opt1 = strtol(beg, &end, 0);
|
|
|
|
if (*end != ')') {
|
|
if (!*end)
|
|
memprintf(err, "random : missing closing parenthesis.");
|
|
else
|
|
memprintf(err, "random : unexpected character '%c' after argument.", *end);
|
|
return -1;
|
|
}
|
|
|
|
if (curproxy->lbprm.arg_opt1 < 1) {
|
|
memprintf(err, "random : number of draws must be at least 1.");
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
else if (!strcmp(args[0], "source")) {
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_SH;
|
|
}
|
|
else if (!strcmp(args[0], "uri")) {
|
|
int arg = 1;
|
|
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_UH;
|
|
curproxy->lbprm.arg_opt1 = 0; // "whole"
|
|
curproxy->lbprm.arg_opt2 = 0; // "len"
|
|
curproxy->lbprm.arg_opt3 = 0; // "depth"
|
|
|
|
while (*args[arg]) {
|
|
if (!strcmp(args[arg], "len")) {
|
|
if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) {
|
|
memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]);
|
|
return -1;
|
|
}
|
|
curproxy->lbprm.arg_opt2 = atoi(args[arg+1]);
|
|
arg += 2;
|
|
}
|
|
else if (!strcmp(args[arg], "depth")) {
|
|
if (!*args[arg+1] || (atoi(args[arg+1]) <= 0)) {
|
|
memprintf(err, "%s : '%s' expects a positive integer (got '%s').", args[0], args[arg], args[arg+1]);
|
|
return -1;
|
|
}
|
|
/* hint: we store the position of the ending '/' (depth+1) so
|
|
* that we avoid a comparison while computing the hash.
|
|
*/
|
|
curproxy->lbprm.arg_opt3 = atoi(args[arg+1]) + 1;
|
|
arg += 2;
|
|
}
|
|
else if (!strcmp(args[arg], "whole")) {
|
|
curproxy->lbprm.arg_opt1 = 1;
|
|
arg += 1;
|
|
}
|
|
else {
|
|
memprintf(err, "%s only accepts parameters 'len', 'depth', and 'whole' (got '%s').", args[0], args[arg]);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
else if (!strcmp(args[0], "url_param")) {
|
|
if (!*args[1]) {
|
|
memprintf(err, "%s requires an URL parameter name.", args[0]);
|
|
return -1;
|
|
}
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_PH;
|
|
|
|
free(curproxy->lbprm.arg_str);
|
|
curproxy->lbprm.arg_str = strdup(args[1]);
|
|
curproxy->lbprm.arg_len = strlen(args[1]);
|
|
if (*args[2]) {
|
|
if (strcmp(args[2], "check_post")) {
|
|
memprintf(err, "%s only accepts 'check_post' modifier (got '%s').", args[0], args[2]);
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
else if (!strncmp(args[0], "hdr(", 4)) {
|
|
const char *beg, *end;
|
|
|
|
beg = args[0] + 4;
|
|
end = strchr(beg, ')');
|
|
|
|
if (!end || end == beg) {
|
|
memprintf(err, "hdr requires an http header field name.");
|
|
return -1;
|
|
}
|
|
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_HH;
|
|
|
|
free(curproxy->lbprm.arg_str);
|
|
curproxy->lbprm.arg_len = end - beg;
|
|
curproxy->lbprm.arg_str = my_strndup(beg, end - beg);
|
|
curproxy->lbprm.arg_opt1 = 0;
|
|
|
|
if (*args[1]) {
|
|
if (strcmp(args[1], "use_domain_only")) {
|
|
memprintf(err, "%s only accepts 'use_domain_only' modifier (got '%s').", args[0], args[1]);
|
|
return -1;
|
|
}
|
|
curproxy->lbprm.arg_opt1 = 1;
|
|
}
|
|
}
|
|
else if (!strncmp(args[0], "rdp-cookie", 10)) {
|
|
curproxy->lbprm.algo &= ~BE_LB_ALGO;
|
|
curproxy->lbprm.algo |= BE_LB_ALGO_RCH;
|
|
|
|
if ( *(args[0] + 10 ) == '(' ) { /* cookie name */
|
|
const char *beg, *end;
|
|
|
|
beg = args[0] + 11;
|
|
end = strchr(beg, ')');
|
|
|
|
if (!end || end == beg) {
|
|
memprintf(err, "rdp-cookie : missing cookie name.");
|
|
return -1;
|
|
}
|
|
|
|
free(curproxy->lbprm.arg_str);
|
|
curproxy->lbprm.arg_str = my_strndup(beg, end - beg);
|
|
curproxy->lbprm.arg_len = end - beg;
|
|
}
|
|
else if ( *(args[0] + 10 ) == '\0' ) { /* default cookie name 'mstshash' */
|
|
free(curproxy->lbprm.arg_str);
|
|
curproxy->lbprm.arg_str = strdup("mstshash");
|
|
curproxy->lbprm.arg_len = strlen(curproxy->lbprm.arg_str);
|
|
}
|
|
else { /* syntax */
|
|
memprintf(err, "rdp-cookie : missing cookie name.");
|
|
return -1;
|
|
}
|
|
}
|
|
else {
|
|
memprintf(err, "only supports 'roundrobin', 'static-rr', 'leastconn', 'source', 'uri', 'url_param', 'hdr(name)' and 'rdp-cookie(name)' options.");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/************************************************************************/
|
|
/* All supported sample and ACL keywords must be declared here. */
|
|
/************************************************************************/
|
|
|
|
/* set temp integer to the number of enabled servers on the proxy.
|
|
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_nbsrv(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct proxy *px;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
px = args->data.prx;
|
|
|
|
smp->data.u.sint = be_usable_srv(px);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* report in smp->flags a success or failure depending on the designated
|
|
* server's state. There is no match function involved since there's no pattern.
|
|
* Accepts exactly 1 argument. Argument is a server, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_srv_is_up(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct server *srv = args->data.srv;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_BOOL;
|
|
if (!(srv->cur_admin & SRV_ADMF_MAINT) &&
|
|
(!(srv->check.state & CHK_ST_CONFIGURED) || (srv->cur_state != SRV_ST_STOPPED)))
|
|
smp->data.u.sint = 1;
|
|
else
|
|
smp->data.u.sint = 0;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of enabled servers on the proxy.
|
|
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_connslots(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct server *iterator;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
|
|
for (iterator = args->data.prx->srv; iterator; iterator = iterator->next) {
|
|
if (iterator->cur_state == SRV_ST_STOPPED)
|
|
continue;
|
|
|
|
if (iterator->maxconn == 0 || iterator->maxqueue == 0) {
|
|
/* configuration is stupid */
|
|
smp->data.u.sint = -1; /* FIXME: stupid value! */
|
|
return 1;
|
|
}
|
|
|
|
smp->data.u.sint += (iterator->maxconn - iterator->cur_sess)
|
|
+ (iterator->maxqueue - iterator->nbpend);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the id of the backend */
|
|
static int
|
|
smp_fetch_be_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct proxy *px = NULL;
|
|
|
|
if (smp->strm)
|
|
px = smp->strm->be;
|
|
else if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
|
|
px = __objt_check(smp->sess->origin)->proxy;
|
|
if (!px)
|
|
return 0;
|
|
|
|
smp->flags = SMP_F_VOL_TXN;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = px->uuid;
|
|
return 1;
|
|
}
|
|
|
|
/* set string to the name of the backend */
|
|
static int
|
|
smp_fetch_be_name(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct proxy *px = NULL;
|
|
|
|
if (smp->strm)
|
|
px = smp->strm->be;
|
|
else if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
|
|
px = __objt_check(smp->sess->origin)->proxy;
|
|
if (!px)
|
|
return 0;
|
|
|
|
smp->data.u.str.area = (char *)px->id;
|
|
if (!smp->data.u.str.area)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_STR;
|
|
smp->flags = SMP_F_CONST;
|
|
smp->data.u.str.data = strlen(smp->data.u.str.area);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the id of the server */
|
|
static int
|
|
smp_fetch_srv_id(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct server *srv = NULL;
|
|
|
|
if (smp->strm)
|
|
srv = objt_server(smp->strm->target);
|
|
else if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
|
|
srv = __objt_check(smp->sess->origin)->server;
|
|
if (!srv)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = srv->puid;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* set string to the name of the server */
|
|
static int
|
|
smp_fetch_srv_name(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct server *srv = NULL;
|
|
|
|
if (smp->strm)
|
|
srv = objt_server(smp->strm->target);
|
|
else if (obj_type(smp->sess->origin) == OBJ_TYPE_CHECK)
|
|
srv = __objt_check(smp->sess->origin)->server;
|
|
if (!srv)
|
|
return 0;
|
|
|
|
smp->data.u.str.area = srv->id;
|
|
if (!smp->data.u.str.area)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_STR;
|
|
smp->data.u.str.data = strlen(smp->data.u.str.area);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of connections per second reaching the backend.
|
|
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_be_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = read_freq_ctr(&args->data.prx->be_sess_per_sec);
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of concurrent connections on the backend.
|
|
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_be_conn(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = args->data.prx->beconn;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of available connections across available
|
|
* servers on the backend.
|
|
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_be_conn_free(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct server *iterator;
|
|
struct proxy *px;
|
|
unsigned int maxconn;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = 0;
|
|
|
|
for (iterator = args->data.prx->srv; iterator; iterator = iterator->next) {
|
|
if (iterator->cur_state == SRV_ST_STOPPED)
|
|
continue;
|
|
|
|
px = iterator->proxy;
|
|
if (!srv_currently_usable(iterator) ||
|
|
((iterator->flags & SRV_F_BACKUP) &&
|
|
(px->srv_act || (iterator != px->lbprm.fbck && !(px->options & PR_O_USE_ALL_BK)))))
|
|
continue;
|
|
|
|
if (iterator->maxconn == 0) {
|
|
/* one active server is unlimited, return -1 */
|
|
smp->data.u.sint = -1;
|
|
return 1;
|
|
}
|
|
|
|
maxconn = srv_dynamic_maxconn(iterator);
|
|
if (maxconn > iterator->cur_sess)
|
|
smp->data.u.sint += maxconn - iterator->cur_sess;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the total number of queued connections on the backend.
|
|
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = args->data.prx->totpend;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the total number of queued connections on the backend divided
|
|
* by the number of running servers and rounded up. If there is no running
|
|
* server, we return twice the total, just as if we had half a running server.
|
|
* This is more or less correct anyway, since we expect the last server to come
|
|
* back soon.
|
|
* Accepts exactly 1 argument. Argument is a backend, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_avg_queue_size(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
int nbsrv;
|
|
struct proxy *px;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
px = args->data.prx;
|
|
|
|
nbsrv = be_usable_srv(px);
|
|
|
|
if (nbsrv > 0)
|
|
smp->data.u.sint = (px->totpend + nbsrv - 1) / nbsrv;
|
|
else
|
|
smp->data.u.sint = px->totpend * 2;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of concurrent connections on the server in the backend.
|
|
* Accepts exactly 1 argument. Argument is a server, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_srv_conn(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = args->data.srv->cur_sess;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of available connections on the server in the backend.
|
|
* Accepts exactly 1 argument. Argument is a server, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_srv_conn_free(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
unsigned int maxconn;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
|
|
if (args->data.srv->maxconn == 0) {
|
|
/* one active server is unlimited, return -1 */
|
|
smp->data.u.sint = -1;
|
|
return 1;
|
|
}
|
|
|
|
maxconn = srv_dynamic_maxconn(args->data.srv);
|
|
if (maxconn > args->data.srv->cur_sess)
|
|
smp->data.u.sint = maxconn - args->data.srv->cur_sess;
|
|
else
|
|
smp->data.u.sint = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of connections pending in the server's queue.
|
|
* Accepts exactly 1 argument. Argument is a server, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_srv_queue(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = args->data.srv->nbpend;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the number of enabled servers on the proxy.
|
|
* Accepts exactly 1 argument. Argument is a server, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_srv_sess_rate(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = read_freq_ctr(&args->data.srv->sess_per_sec);
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the server weight.
|
|
* Accepts exactly 1 argument. Argument is a server, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_srv_weight(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
struct server *srv = args->data.srv;
|
|
struct proxy *px = srv->proxy;
|
|
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = (srv->cur_eweight * px->lbprm.wmult + px->lbprm.wdiv - 1) / px->lbprm.wdiv;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the server initial weight.
|
|
* Accepts exactly 1 argument. Argument is a server, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_srv_iweight(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = args->data.srv->iweight;
|
|
return 1;
|
|
}
|
|
|
|
/* set temp integer to the server user-specified weight.
|
|
* Accepts exactly 1 argument. Argument is a server, other types will lead to
|
|
* undefined behaviour.
|
|
*/
|
|
static int
|
|
smp_fetch_srv_uweight(const struct arg *args, struct sample *smp, const char *kw, void *private)
|
|
{
|
|
smp->flags = SMP_F_VOL_TEST;
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = args->data.srv->uweight;
|
|
return 1;
|
|
}
|
|
|
|
static int sample_conv_nbsrv(const struct arg *args, struct sample *smp, void *private)
|
|
{
|
|
|
|
struct proxy *px;
|
|
|
|
if (!smp_make_safe(smp))
|
|
return 0;
|
|
|
|
px = proxy_find_by_name(smp->data.u.str.area, PR_CAP_BE, 0);
|
|
if (!px)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = be_usable_srv(px);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int
|
|
sample_conv_srv_queue(const struct arg *args, struct sample *smp, void *private)
|
|
{
|
|
struct proxy *px;
|
|
struct server *srv;
|
|
char *bksep;
|
|
|
|
if (!smp_make_safe(smp))
|
|
return 0;
|
|
|
|
bksep = strchr(smp->data.u.str.area, '/');
|
|
|
|
if (bksep) {
|
|
*bksep = '\0';
|
|
px = proxy_find_by_name(smp->data.u.str.area, PR_CAP_BE, 0);
|
|
if (!px)
|
|
return 0;
|
|
smp->data.u.str.area = bksep + 1;
|
|
} else {
|
|
if (!(smp->px->cap & PR_CAP_BE))
|
|
return 0;
|
|
px = smp->px;
|
|
}
|
|
|
|
srv = server_find_by_name(px, smp->data.u.str.area);
|
|
if (!srv)
|
|
return 0;
|
|
|
|
smp->data.type = SMP_T_SINT;
|
|
smp->data.u.sint = srv->nbpend;
|
|
return 1;
|
|
}
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted.
|
|
*/
|
|
static struct sample_fetch_kw_list smp_kws = {ILH, {
|
|
{ "avg_queue", smp_fetch_avg_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "be_conn", smp_fetch_be_conn, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "be_conn_free", smp_fetch_be_conn_free, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "be_id", smp_fetch_be_id, 0, NULL, SMP_T_SINT, SMP_USE_BKEND, },
|
|
{ "be_name", smp_fetch_be_name, 0, NULL, SMP_T_STR, SMP_USE_BKEND, },
|
|
{ "be_sess_rate", smp_fetch_be_sess_rate, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "connslots", smp_fetch_connslots, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "nbsrv", smp_fetch_nbsrv, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "queue", smp_fetch_queue_size, ARG1(1,BE), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "srv_conn", smp_fetch_srv_conn, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "srv_conn_free", smp_fetch_srv_conn_free, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "srv_id", smp_fetch_srv_id, 0, NULL, SMP_T_SINT, SMP_USE_SERVR, },
|
|
{ "srv_is_up", smp_fetch_srv_is_up, ARG1(1,SRV), NULL, SMP_T_BOOL, SMP_USE_INTRN, },
|
|
{ "srv_name", smp_fetch_srv_name, 0, NULL, SMP_T_STR, SMP_USE_SERVR, },
|
|
{ "srv_queue", smp_fetch_srv_queue, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "srv_sess_rate", smp_fetch_srv_sess_rate, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "srv_weight", smp_fetch_srv_weight, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "srv_iweight", smp_fetch_srv_iweight, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ "srv_uweight", smp_fetch_srv_uweight, ARG1(1,SRV), NULL, SMP_T_SINT, SMP_USE_INTRN, },
|
|
{ /* END */ },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, sample_register_fetches, &smp_kws);
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten */
|
|
static struct sample_conv_kw_list sample_conv_kws = {ILH, {
|
|
{ "nbsrv", sample_conv_nbsrv, 0, NULL, SMP_T_STR, SMP_T_SINT },
|
|
{ "srv_queue", sample_conv_srv_queue, 0, NULL, SMP_T_STR, SMP_T_SINT },
|
|
{ /* END */ },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, sample_register_convs, &sample_conv_kws);
|
|
|
|
/* Note: must not be declared <const> as its list will be overwritten.
|
|
* Please take care of keeping this list alphabetically sorted.
|
|
*/
|
|
static struct acl_kw_list acl_kws = {ILH, {
|
|
{ /* END */ },
|
|
}};
|
|
|
|
INITCALL1(STG_REGISTER, acl_register_keywords, &acl_kws);
|
|
|
|
/*
|
|
* Local variables:
|
|
* c-indent-level: 8
|
|
* c-basic-offset: 8
|
|
* End:
|
|
*/
|