Refactor size module ♻

This commit is contained in:
Laurenz 2019-12-12 20:17:35 +01:00
parent e7277fec23
commit 3c0496bb61
2 changed files with 302 additions and 421 deletions

View File

@ -1,5 +1,4 @@
use smallvec::smallvec;
use crate::size::max;
use super::*;
/// The stack layouter stack boxes onto each other along the secondary layouting
@ -183,10 +182,11 @@ impl StackLayouter {
let mut size = self.space.size.generalized(axes);
let mut extra = self.space.extra.generalized(axes);
size.x += max(dimensions.x - extra.x, Size::ZERO);
size.y += max(dimensions.y - extra.y, Size::ZERO);
extra.x = max(extra.x, dimensions.x);
extra.y = max(extra.y - dimensions.y, Size::ZERO);
size.x += (dimensions.x - extra.x).max(Size::ZERO);
size.y += (dimensions.y - extra.y).max(Size::ZERO);
extra.x.max_eq(dimensions.x);
extra.y = (extra.y - dimensions.y).max(Size::ZERO);
self.space.size = size.specialized(axes);
self.space.extra = extra.specialized(axes);
@ -304,7 +304,7 @@ impl StackLayouter {
// layout uses up space from the origin to the end. Thus, it reduces
// the usable space for following layouts at it's origin by its
// extent along the secondary axis.
*bound.secondary_origin_mut(*axes)
*bound.get_mut(*axes, GenericAxisKind::Secondary, Alignment::Origin)
+= axes.secondary.factor() * layout.dimensions.secondary(*axes);
}
@ -334,7 +334,8 @@ impl StackLayouter {
// We reduce the bounding box of this layout at it's end by the
// accumulated secondary extent of all layouts we have seen so far,
// which are the layouts after this one since we iterate reversed.
*bound.secondary_end_mut(*axes) -= axes.secondary.factor() * extent.y;
*bound.get_mut(*axes, GenericAxisKind::Secondary, Alignment::End)
-= axes.secondary.factor() * extent.y;
// Then, we add this layout's secondary extent to the accumulator.
let size = layout.dimensions.generalized(*axes);

View File

@ -6,15 +6,95 @@ use std::iter::Sum;
use std::ops::*;
use std::str::FromStr;
use crate::layout::{LayoutAxes, LayoutAlignment, Axis, Alignment};
use crate::layout::{LayoutAxes, LayoutAlignment, Axis, GenericAxisKind, Alignment};
/// A general space type.
#[derive(Copy, Clone, PartialEq)]
/// A general spacing type.
#[derive(Copy, Clone, PartialEq, PartialOrd)]
pub struct Size {
/// The size in typographic points (1/72 inches).
points: f32,
}
impl Size {
/// The zeroed size.
pub const ZERO: Size = Size { points: 0.0 };
/// Create a size from an amount of points.
pub fn pt(points: f32) -> Size { Size { points } }
/// Create a size from an amount of millimeters.
pub fn mm(mm: f32) -> Size { Size { points: 2.83465 * mm } }
/// Create a size from an amount of centimeters.
pub fn cm(cm: f32) -> Size { Size { points: 28.3465 * cm } }
/// Create a size from an amount of inches.
pub fn inches(inches: f32) -> Size { Size { points: 72.0 * inches } }
/// Convert this size into points.
pub fn to_pt(self) -> f32 { self.points }
/// Convert this size into millimeters.
pub fn to_mm(self) -> f32 { self.points * 0.352778 }
/// Convert this size into centimeters.
pub fn to_cm(self) -> f32 { self.points * 0.0352778 }
/// Convert this size into inches.
pub fn to_inches(self) -> f32 { self.points * 0.0138889 }
/// The maximum of this and the other size.
pub fn max(self, other: Size) -> Size {
if self > other { self } else { other }
}
/// The minimum of this and the other size.
pub fn min(self, other: Size) -> Size {
if self <= other { self } else { other }
}
/// Set this size to the maximum of itself and the other size.
pub fn max_eq(&mut self, other: Size) { *self = self.max(other); }
/// Set this size to the minimum of itself and the other size.
pub fn min_eq(&mut self, other: Size) { *self = self.min(other); }
/// The anchor position along the given axis for an item with the given
/// alignment in a container with this size.
pub fn anchor(self, alignment: Alignment, axis: Axis) -> Size {
use Alignment::*;
match (axis.is_positive(), alignment) {
(true, Origin) | (false, End) => Size::ZERO,
(_, Center) => self / 2,
(true, End) | (false, Origin) => self,
}
}
}
impl Display for Size {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}cm", self.to_cm())
}
}
debug_display!(Size);
impl Neg for Size {
type Output = Size;
fn neg(self) -> Size {
Size { points: -self.points }
}
}
impl Sum for Size {
fn sum<I>(iter: I) -> Size
where I: Iterator<Item = Size> {
iter.fold(Size::ZERO, Add::add)
}
}
/// A position or extent in 2-dimensional space.
#[derive(Copy, Clone, PartialEq)]
pub struct Size2D {
@ -24,6 +104,115 @@ pub struct Size2D {
pub y: Size,
}
impl Size2D {
/// The zeroed 2D-size.
pub const ZERO: Size2D = Size2D { x: Size::ZERO, y: Size::ZERO };
/// Create a new 2D-size from two sizes.
pub fn new(x: Size, y: Size) -> Size2D { Size2D { x, y } }
/// Create a new 2D-size with `x` set to a value and `y` zero.
pub fn with_x(x: Size) -> Size2D { Size2D { x, y: Size::ZERO } }
/// Create a new 2D-size with `y` set to a value and `x` zero.
pub fn with_y(y: Size) -> Size2D { Size2D { x: Size::ZERO, y } }
/// Create a 2D-size with `x` and `y` set to the same value `s`.
pub fn with_all(s: Size) -> Size2D { Size2D { x: s, y: s } }
/// Access the primary size of this specialized 2D-size.
pub fn primary(self, axes: LayoutAxes) -> Size {
if axes.primary.is_horizontal() { self.x } else { self.y }
}
/// Access the primary size of this specialized 2D-size mutably.
pub fn primary_mut(&mut self, axes: LayoutAxes) -> &mut Size {
if axes.primary.is_horizontal() { &mut self.x } else { &mut self.y }
}
/// Access the secondary size of this specialized 2D-size.
pub fn secondary(self, axes: LayoutAxes) -> Size {
if axes.primary.is_horizontal() { self.y } else { self.x }
}
/// Access the secondary size of this specialized 2D-size mutably.
pub fn secondary_mut(&mut self, axes: LayoutAxes) -> &mut Size {
if axes.primary.is_horizontal() { &mut self.y } else { &mut self.x }
}
/// Returns the generalized version of a `Size2D` dependent on the layouting
/// axes, that is:
/// - `x` describes the primary axis instead of the horizontal one.
/// - `y` describes the secondary axis instead of the vertical one.
pub fn generalized(self, axes: LayoutAxes) -> Size2D {
match axes.primary.is_horizontal() {
true => self,
false => Size2D { x: self.y, y: self.x },
}
}
/// Returns the specialized version of this generalized Size2D (inverse to
/// `generalized`).
pub fn specialized(self, axes: LayoutAxes) -> Size2D {
// In fact, generalized is its own inverse. For reasons of clarity
// at the call site, we still have this second function.
self.generalized(axes)
}
/// Whether the given 2D-size fits into this one, that is, both coordinate
/// values are smaller or equal.
pub fn fits(self, other: Size2D) -> bool {
self.x >= other.x && self.y >= other.y
}
/// Return a 2D-size padded by the paddings of the given box.
pub fn padded(self, padding: SizeBox) -> Size2D {
Size2D {
x: self.x + padding.left + padding.right,
y: self.y + padding.top + padding.bottom,
}
}
/// Return a 2D-size reduced by the paddings of the given box.
pub fn unpadded(self, padding: SizeBox) -> Size2D {
Size2D {
x: self.x - padding.left - padding.right,
y: self.y - padding.top - padding.bottom,
}
}
/// The anchor position along the given axis for an item with the given
/// alignment in a container with this size.
///
/// This assumes the size to be generalized such that `x` corresponds to the
/// primary axis.
pub fn anchor(self, alignment: LayoutAlignment, axes: LayoutAxes) -> Size2D {
Size2D {
x: self.x.anchor(alignment.primary, axes.primary),
y: self.y.anchor(alignment.secondary, axes.secondary),
}
}
}
impl Display for Size2D {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "[{}, {}]", self.x, self.y)
}
}
debug_display!(Size2D);
impl Neg for Size2D {
type Output = Size2D;
fn neg(self) -> Size2D {
Size2D {
x: -self.x,
y: -self.y,
}
}
}
/// A size in four directions.
#[derive(Copy, Clone, PartialEq)]
pub struct SizeBox {
@ -37,201 +226,6 @@ pub struct SizeBox {
pub bottom: Size,
}
/// Either an absolute size or a factor of some metric.
#[derive(Copy, Clone, PartialEq)]
pub enum ScaleSize {
Absolute(Size),
Scaled(f32),
}
/// A scale size that is scaled by the font size.
pub type FSize = ScaleSize;
/// A scale size that is scaled by the size of the padded parent container.
pub type PSize = ScaleSize;
impl Size {
/// The zeroed size.
pub const ZERO: Size = Size { points: 0.0 };
/// Create a zeroed size.
pub fn zero() -> Size { Size::ZERO }
/// Create a size from an amount of points.
pub fn pt(points: f32) -> Size { Size { points } }
/// Create a size from an amount of millimeters.
pub fn mm(mm: f32) -> Size { Size { points: 2.83465 * mm } }
/// Create a size from an amount of centimeters.
pub fn cm(cm: f32) -> Size { Size { points: 28.3465 * cm } }
/// Create a size from an amount of inches.
pub fn inches(inches: f32) -> Size { Size { points: 72.0 * inches } }
/// Convert this size into points.
pub fn to_pt(&self) -> f32 { self.points }
/// Convert this size into millimeters.
pub fn to_mm(&self) -> f32 { self.points * 0.352778 }
/// Convert this size into centimeters.
pub fn to_cm(&self) -> f32 { self.points * 0.0352778 }
/// Convert this size into inches.
pub fn to_inches(&self) -> f32 { self.points * 0.0138889 }
/// Set this size to the maximum of itself and the other size.
pub fn max_eq(&mut self, other: Size) {
*self = max(*self, other);
}
/// Set this size to the minimum of itself and the other size.
pub fn min_eq(&mut self, other: Size) {
*self = min(*self, other);
}
/// The anchor position along the given axis for an item with the given
/// alignment in a container with this size.
pub fn anchor(&self, alignment: Alignment, axis: Axis) -> Size {
use Alignment::*;
match (axis.is_positive(), alignment) {
(true, Origin) | (false, End) => Size::ZERO,
(_, Center) => *self / 2,
(true, End) | (false, Origin) => *self,
}
}
}
impl Size2D {
/// The zeroed 2D-size.
pub const ZERO: Size2D = Size2D { x: Size::ZERO, y: Size::ZERO };
/// Create a new 2D-size from two sizes.
pub fn new(x: Size, y: Size) -> Size2D {
Size2D { x, y }
}
/// Create a 2D-size with both sizes set to zero.
pub fn zero() -> Size2D {
Size2D::ZERO
}
/// Create a 2D-size with `x` and `y` set to the same value `s`.
pub fn with_all(s: Size) -> Size2D {
Size2D { x: s, y: s }
}
/// Create a new 2D-size with `x` set to a value and `y` zero.
pub fn with_x(x: Size) -> Size2D {
Size2D { x, y: Size::ZERO }
}
/// Create a new 2D-size with `y` set to a value and `x` zero.
pub fn with_y(y: Size) -> Size2D {
Size2D { x: Size::ZERO, y }
}
/// Access the primary size of this 2D-size.
pub fn primary(&self, axes: LayoutAxes) -> Size {
match axes.primary.is_horizontal() {
true => self.x,
false => self.y,
}
}
/// Access the secondary size of this 2D-size.
pub fn secondary(&self, axes: LayoutAxes) -> Size {
match axes.primary.is_horizontal() {
true => self.y,
false => self.x,
}
}
/// Access the primary size of this 2D-size.
pub fn primary_mut(&mut self, axes: LayoutAxes) -> &mut Size {
match axes.primary.is_horizontal() {
true => &mut self.x,
false => &mut self.y,
}
}
/// Access the secondary size of this 2D-size.
pub fn secondary_mut(&mut self, axes: LayoutAxes) -> &mut Size {
match axes.primary.is_horizontal() {
true => &mut self.y,
false => &mut self.x,
}
}
/// Returns the generalized version of a `Size2D` dependent on
/// the layouting axes, that is:
/// - The x coordinate describes the primary axis instead of the horizontal one.
/// - The y coordinate describes the secondary axis instead of the vertical one.
pub fn generalized(&self, axes: LayoutAxes) -> Size2D {
match axes.primary.is_horizontal() {
true => *self,
false => Size2D { x: self.y, y: self.x },
}
}
/// Returns the specialized version of this generalized Size2D.
/// (Inverse to `generalized`).
pub fn specialized(&self, axes: LayoutAxes) -> Size2D {
// In fact, generalized is its own inverse. For reasons of clarity
// at the call site, we still have this second function.
self.generalized(axes)
}
/// Return a 2D-size padded by the paddings of the given box.
pub fn padded(&self, padding: SizeBox) -> Size2D {
Size2D {
x: self.x + padding.left + padding.right,
y: self.y + padding.top + padding.bottom,
}
}
/// Return a 2D-size reduced by the paddings of the given box.
pub fn unpadded(&self, padding: SizeBox) -> Size2D {
Size2D {
x: self.x - padding.left - padding.right,
y: self.y - padding.top - padding.bottom,
}
}
/// Whether the given 2D-size fits into this one, that is,
/// both coordinate values are smaller or equal.
pub fn fits(&self, other: Size2D) -> bool {
self.x >= other.x && self.y >= other.y
}
/// Set this size to the maximum of itself and the other size
/// (for both dimensions).
pub fn max_eq(&mut self, other: Size2D) {
self.x.max_eq(other.x);
self.y.max_eq(other.y);
}
/// Set this size to the minimum of itself and the other size
/// (for both dimensions).
pub fn min_eq(&mut self, other: Size2D) {
self.x.min_eq(other.x);
self.y.min_eq(other.y);
}
/// The anchor position along the given axis for an item with the given
/// alignment in a container with this size.
///
/// This assumes the size to be generalized such that `x` corresponds to the
/// primary axis.
pub fn anchor(&self, alignment: LayoutAlignment, axes: LayoutAxes) -> Size2D {
Size2D {
x: self.x.anchor(alignment.primary, axes.primary),
y: self.y.anchor(alignment.secondary, axes.secondary),
}
}
}
impl SizeBox {
/// The zeroed size box.
pub const ZERO: SizeBox = SizeBox {
@ -243,17 +237,7 @@ impl SizeBox {
/// Create a new box from four sizes.
pub fn new(left: Size, top: Size, right: Size, bottom: Size) -> SizeBox {
SizeBox {
left,
top,
right,
bottom,
}
}
/// Create a box with all values set to zero.
pub fn zero() -> SizeBox {
SizeBox::ZERO
SizeBox { left, top, right, bottom }
}
/// Create a box with all four fields set to the same value `s`.
@ -261,9 +245,20 @@ impl SizeBox {
SizeBox { left: value, top: value, right: value, bottom: value }
}
/// Access the origin direction on the secondary axis of this box.
pub fn secondary_origin_mut(&mut self, axes: LayoutAxes) -> &mut Size {
match axes.secondary {
/// Get a mutable reference to the value for the specified axis and
/// alignment. Center alignment will be treated the same as origin
/// alignment.
pub fn get_mut(&mut self,
axes: LayoutAxes,
axis: GenericAxisKind,
alignment: Alignment,
) -> &mut Size {
let mut normalized = axes.generic(axis);
if alignment == Alignment::End {
normalized = normalized.inv();
}
match normalized {
Axis::LeftToRight => &mut self.left,
Axis::RightToLeft => &mut self.right,
Axis::TopToBottom => &mut self.top,
@ -271,16 +266,6 @@ impl SizeBox {
}
}
/// Access the end direction on the secondary axis of this box.
pub fn secondary_end_mut(&mut self, axes: LayoutAxes) -> &mut Size {
match axes.secondary {
Axis::LeftToRight => &mut self.right,
Axis::RightToLeft => &mut self.left,
Axis::TopToBottom => &mut self.bottom,
Axis::BottomToTop => &mut self.top,
}
}
/// Set the `left` and `right` values.
pub fn set_all(&mut self, value: Size) {
*self = SizeBox::with_all(value);
@ -299,6 +284,28 @@ impl SizeBox {
}
}
impl Display for SizeBox {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "[left: {}, top: {}, right: {}, bottom: {}]",
self.left, self.top, self.right, self.bottom)
}
}
debug_display!(SizeBox);
/// Either an absolute size or a factor of some metric.
#[derive(Copy, Clone, PartialEq)]
pub enum ScaleSize {
Absolute(Size),
Scaled(f32),
}
/// A scale size that is scaled by the font size.
pub type FSize = ScaleSize;
/// A scale size that is scaled by the size of the padded parent container.
pub type PSize = ScaleSize;
impl ScaleSize {
/// Use the absolute value or scale the entity.
pub fn concretize(&self, entity: Size) -> Size {
@ -309,25 +316,16 @@ impl ScaleSize {
}
}
/// The maximum of two sizes.
pub fn max(a: Size, b: Size) -> Size {
if a >= b { a } else { b }
}
/// The minimum of two sizes.
pub fn min(a: Size, b: Size) -> Size {
if a <= b { a } else { b }
}
//------------------------------------------------------------------------------------------------//
impl Display for Size {
impl Display for ScaleSize {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "{}cm", self.to_cm())
match self {
ScaleSize::Absolute(size) => write!(f, "{}", size),
ScaleSize::Scaled(scale) => write!(f, "x{}", scale),
}
}
}
debug_display!(Size);
debug_display!(ScaleSize);
/// An error which can be returned when parsing a size.
pub struct ParseSizeError;
@ -359,193 +357,75 @@ impl FromStr for Size {
}
}
impl PartialOrd for Size {
fn partial_cmp(&self, other: &Size) -> Option<Ordering> {
self.points.partial_cmp(&other.points)
}
}
impl Neg for Size {
type Output = Size;
fn neg(self) -> Size {
Size { points: -self.points }
}
}
impl Sum for Size {
fn sum<I>(iter: I) -> Size
where I: Iterator<Item = Size> {
iter.fold(Size::ZERO, Add::add)
}
}
macro_rules! impl_reflexive {
($trait:ident, $func:ident, $assign_trait:ident, $assign_func:ident) => (
impl $trait for Size {
type Output = Size;
fn $func(self, other: Size) -> Size {
Size { points: $trait::$func(self.points, other.points) }
macro_rules! implement_traits {
($ty:ident, $t:ident, $o:ident
reflexive {$(
($tr:ident($tf:ident), $at:ident($af:ident), [$($f:ident),*])
)*}
numbers { $(($w:ident: $($rest:tt)*))* }
) => {
$(impl $tr for $ty {
type Output = $ty;
fn $tf($t, $o: $ty) -> $ty {
$ty { $($f: $tr::$tf($t.$f, $o.$f),)* }
}
}
impl $assign_trait for Size {
fn $assign_func(&mut self, other: Size) {
$assign_trait::$assign_func(&mut self.points, other.points);
impl $at for $ty {
fn $af(&mut $t, $o: $ty) { $($at::$af(&mut $t.$f, $o.$f);)* }
})*
$(implement_traits!(@$w i32, $ty $t $o $($rest)*);)*
$(implement_traits!(@$w f32, $ty $t $o $($rest)*);)*
};
(@front $num:ty, $ty:ident $t:ident $o:ident
$tr:ident($tf:ident),
[$($f:ident),*]
) => {
impl $tr<$ty> for $num {
type Output = $ty;
fn $tf($t, $o: $ty) -> $ty {
$ty { $($f: $tr::$tf($t as f32, $o.$f),)* }
}
}
);
}
};
macro_rules! impl_num_back {
($trait:ident, $func:ident, $assign_trait:ident, $assign_func:ident, $ty:ty) => (
impl $trait<$ty> for Size {
type Output = Size;
fn $func(self, other: $ty) -> Size {
Size { points: $trait::$func(self.points, other as f32) }
(@back $num:ty, $ty:ident $t:ident $o:ident
$tr:ident($tf:ident), $at:ident($af:ident),
[$($f:ident),*]
) => {
impl $tr<$num> for $ty {
type Output = $ty;
fn $tf($t, $o: $num) -> $ty {
$ty { $($f: $tr::$tf($t.$f, $o as f32),)* }
}
}
impl $assign_trait<$ty> for Size {
fn $assign_func(&mut self, other: $ty) {
$assign_trait::$assign_func(&mut self.points, other as f32);
impl $at<$num> for $ty {
fn $af(&mut $t, $o: $num) { $($at::$af(&mut $t.$f, $o as f32);)* }
}
};
}
macro_rules! implement_size {
($ty:ident($t:ident, $o:ident) [$($f:ident),*]) => {
implement_traits! {
$ty, $t, $o
reflexive {
(Add(add), AddAssign(add_assign), [$($f),*])
(Sub(sub), SubAssign(sub_assign), [$($f),*])
}
numbers {
(front: Mul(mul), [$($f),*])
(back: Mul(mul), MulAssign(mul_assign), [$($f),*])
(back: Div(div), DivAssign(div_assign), [$($f),*])
}
}
);
};
}
macro_rules! impl_num_both {
($trait:ident, $func:ident, $assign_trait:ident, $assign_func:ident, $ty:ty) => (
impl_num_back!($trait, $func, $assign_trait, $assign_func, $ty);
impl $trait<Size> for $ty {
type Output = Size;
fn $func(self, other: Size) -> Size {
Size { points: $trait::$func(self as f32, other.points) }
}
}
);
}
impl_reflexive!(Add, add, AddAssign, add_assign);
impl_reflexive!(Sub, sub, SubAssign, sub_assign);
impl_num_both!(Mul, mul, MulAssign, mul_assign, f32);
impl_num_both!(Mul, mul, MulAssign, mul_assign, i32);
impl_num_back!(Div, div, DivAssign, div_assign, f32);
impl_num_back!(Div, div, DivAssign, div_assign, i32);
//------------------------------------------------------------------------------------------------//
impl Display for Size2D {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "[{}, {}]", self.x, self.y)
}
}
debug_display!(Size2D);
impl Neg for Size2D {
type Output = Size2D;
fn neg(self) -> Size2D {
Size2D {
x: -self.x,
y: -self.y,
}
}
}
macro_rules! impl_reflexive2d {
($trait:ident, $func:ident, $assign_trait:ident, $assign_func:ident) => (
impl $trait for Size2D {
type Output = Size2D;
fn $func(self, other: Size2D) -> Size2D {
Size2D {
x: $trait::$func(self.x, other.x),
y: $trait::$func(self.y, other.y),
}
}
}
impl $assign_trait for Size2D {
fn $assign_func(&mut self, other: Size2D) {
$assign_trait::$assign_func(&mut self.x, other.x);
$assign_trait::$assign_func(&mut self.y, other.y);
}
}
);
}
macro_rules! impl_num_back2d {
($trait:ident, $func:ident, $assign_trait:ident, $assign_func:ident, $ty:ty) => (
impl $trait<$ty> for Size2D {
type Output = Size2D;
fn $func(self, other: $ty) -> Size2D {
Size2D {
x: $trait::$func(self.x, other as f32),
y: $trait::$func(self.y, other as f32),
}
}
}
impl $assign_trait<$ty> for Size2D {
fn $assign_func(&mut self, other: $ty) {
$assign_trait::$assign_func(&mut self.x, other as f32);
$assign_trait::$assign_func(&mut self.y, other as f32);
}
}
);
}
macro_rules! impl_num_both2d {
($trait:ident, $func:ident, $assign_trait:ident, $assign_func:ident, $ty:ty) => (
impl_num_back2d!($trait, $func, $assign_trait, $assign_func, $ty);
impl $trait<Size2D> for $ty {
type Output = Size2D;
fn $func(self, other: Size2D) -> Size2D {
Size2D {
x: $trait::$func(self as f32, other.x),
y: $trait::$func(self as f32, other.y),
}
}
}
);
}
impl_reflexive2d!(Add, add, AddAssign, add_assign);
impl_reflexive2d!(Sub, sub, SubAssign, sub_assign);
impl_num_both2d!(Mul, mul, MulAssign, mul_assign, f32);
impl_num_both2d!(Mul, mul, MulAssign, mul_assign, i32);
impl_num_back2d!(Div, div, DivAssign, div_assign, f32);
impl_num_back2d!(Div, div, DivAssign, div_assign, i32);
//------------------------------------------------------------------------------------------------//
impl Display for SizeBox {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "[left: {}, top: {}, right: {}, bottom: {}]",
self.left, self.top, self.right, self.bottom)
}
}
debug_display!(SizeBox);
//------------------------------------------------------------------------------------------------//
impl Display for ScaleSize {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
match self {
ScaleSize::Absolute(size) => write!(f, "{}", size),
ScaleSize::Scaled(scale) => write!(f, "x{}", scale),
}
}
}
debug_display!(ScaleSize);
implement_size! { Size(self, other) [points] }
implement_size! { Size2D(self, other) [x, y] }