// Copyright 2006 The Android Open Source Project // Copyright 2020 Yevhenii Reizner // // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. use crate::*; use tiny_skia_path::{PathStroker, Scalar, SCALAR_MAX}; use crate::geom::ScreenIntRect; use crate::mask::SubMaskRef; use crate::pipeline::{RasterPipelineBlitter, RasterPipelineBuilder}; use crate::pixmap::SubPixmapMut; use crate::scan; use crate::geom::IntSizeExt; #[cfg(all(not(feature = "std"), feature = "no-std-float"))] use tiny_skia_path::NoStdFloat; /// A path filling rule. #[derive(Copy, Clone, PartialEq, Debug)] pub enum FillRule { /// Specifies that "inside" is computed by a non-zero sum of signed edge crossings. Winding, /// Specifies that "inside" is computed by an odd number of edge crossings. EvenOdd, } impl Default for FillRule { fn default() -> Self { FillRule::Winding } } /// Controls how a shape should be painted. #[derive(Clone, PartialEq, Debug)] pub struct Paint<'a> { /// A paint shader. /// /// Default: black color pub shader: Shader<'a>, /// Paint blending mode. /// /// Default: SourceOver pub blend_mode: BlendMode, /// Enables anti-aliased painting. /// /// Default: true pub anti_alias: bool, /// Forces the high quality/precision rendering pipeline. /// /// `tiny-skia`, just like Skia, has two rendering pipelines: /// one uses `f32` and another one uses `u16`. `u16` one is usually way faster, /// but less precise. Which can lead to slight differences. /// /// By default, `tiny-skia` will choose the pipeline automatically, /// depending on a blending mode and other parameters. /// But you can force the high quality one using this flag. /// /// This feature is especially useful during testing. /// /// Unlike high quality pipeline, the low quality one doesn't support all /// rendering stages, therefore we cannot force it like hq one. /// /// Default: false pub force_hq_pipeline: bool, } impl Default for Paint<'_> { fn default() -> Self { Paint { shader: Shader::SolidColor(Color::BLACK), blend_mode: BlendMode::default(), anti_alias: true, force_hq_pipeline: false, } } } impl<'a> Paint<'a> { /// Sets a paint source to a solid color. pub fn set_color(&mut self, color: Color) { self.shader = Shader::SolidColor(color); } /// Sets a paint source to a solid color. /// /// `self.shader = Shader::SolidColor(Color::from_rgba8(50, 127, 150, 200));` shorthand. pub fn set_color_rgba8(&mut self, r: u8, g: u8, b: u8, a: u8) { self.set_color(Color::from_rgba8(r, g, b, a)) } /// Checks that the paint source is a solid color. pub fn is_solid_color(&self) -> bool { matches!(self.shader, Shader::SolidColor(_)) } } impl Pixmap { /// Draws a filled rectangle onto the pixmap. /// /// See [`PixmapMut::fill_rect`](struct.PixmapMut.html#method.fill_rect) for details. pub fn fill_rect( &mut self, rect: Rect, paint: &Paint, transform: Transform, mask: Option<&Mask>, ) { self.as_mut().fill_rect(rect, paint, transform, mask); } /// Draws a filled path onto the pixmap. /// /// See [`PixmapMut::fill_path`](struct.PixmapMut.html#method.fill_path) for details. pub fn fill_path( &mut self, path: &Path, paint: &Paint, fill_rule: FillRule, transform: Transform, mask: Option<&Mask>, ) { self.as_mut() .fill_path(path, paint, fill_rule, transform, mask); } /// Strokes a path. /// /// See [`PixmapMut::stroke_path`](struct.PixmapMut.html#method.stroke_path) for details. pub fn stroke_path( &mut self, path: &Path, paint: &Paint, stroke: &Stroke, transform: Transform, mask: Option<&Mask>, ) { self.as_mut() .stroke_path(path, paint, stroke, transform, mask); } /// Draws a `Pixmap` on top of the current `Pixmap`. /// /// See [`PixmapMut::draw_pixmap`](struct.PixmapMut.html#method.draw_pixmap) for details. pub fn draw_pixmap( &mut self, x: i32, y: i32, pixmap: PixmapRef, paint: &PixmapPaint, transform: Transform, mask: Option<&Mask>, ) { self.as_mut() .draw_pixmap(x, y, pixmap, paint, transform, mask); } /// Applies a masks. /// /// See [`PixmapMut::apply_mask`](struct.PixmapMut.html#method.apply_mask) for details. pub fn apply_mask(&mut self, mask: &Mask) { self.as_mut().apply_mask(mask); } } impl PixmapMut<'_> { // TODO: accept NonZeroRect? /// Draws a filled rectangle onto the pixmap. /// /// This function is usually slower than filling a rectangular path, /// but it produces better results. Mainly it doesn't suffer from weird /// clipping of horizontal/vertical edges. /// /// Used mainly to render a pixmap onto a pixmap. /// /// Returns `None` when there is nothing to fill or in case of a numeric overflow. pub fn fill_rect( &mut self, rect: Rect, paint: &Paint, transform: Transform, mask: Option<&Mask>, ) { // TODO: we probably can use tiler for rect too if transform.is_identity() && !DrawTiler::required(self.width(), self.height()) { // TODO: ignore rects outside the pixmap let clip = self.size().to_screen_int_rect(0, 0); let mask = mask.map(|mask| mask.as_submask()); let mut subpix = self.as_subpixmap(); let mut blitter = match RasterPipelineBlitter::new(paint, mask, &mut subpix) { Some(v) => v, None => return, // nothing to do, all good }; if paint.anti_alias { scan::fill_rect_aa(&rect, &clip, &mut blitter); } else { scan::fill_rect(&rect, &clip, &mut blitter); } } else { let path = PathBuilder::from_rect(rect); self.fill_path(&path, paint, FillRule::Winding, transform, mask); } } /// Draws a filled path onto the pixmap. pub fn fill_path( &mut self, path: &Path, paint: &Paint, fill_rule: FillRule, transform: Transform, mask: Option<&Mask>, ) { if transform.is_identity() { // This is sort of similar to SkDraw::drawPath // Skip empty paths and horizontal/vertical lines. let path_bounds = path.bounds(); if path_bounds.width().is_nearly_zero() || path_bounds.height().is_nearly_zero() { log::warn!("empty paths and horizontal/vertical lines cannot be filled"); return; } if is_too_big_for_math(path) { log::warn!("path coordinates are too big"); return; } // TODO: ignore paths outside the pixmap if let Some(tiler) = DrawTiler::new(self.width(), self.height()) { let mut path = path.clone(); // TODO: avoid cloning let mut paint = paint.clone(); for tile in tiler { let ts = Transform::from_translate(-(tile.x() as f32), -(tile.y() as f32)); path = match path.transform(ts) { Some(v) => v, None => { log::warn!("path transformation failed"); return; } }; paint.shader.transform(ts); let clip_rect = tile.size().to_screen_int_rect(0, 0); let mut subpix = match self.subpixmap(tile.to_int_rect()) { Some(v) => v, None => continue, // technically unreachable }; let submask = mask.and_then(|mask| mask.submask(tile.to_int_rect())); let mut blitter = match RasterPipelineBlitter::new(&paint, submask, &mut subpix) { Some(v) => v, None => continue, // nothing to do, all good }; // We're ignoring "errors" here, because `fill_path` will return `None` // when rendering a tile that doesn't have a path on it. // Which is not an error in this case. if paint.anti_alias { scan::path_aa::fill_path(&path, fill_rule, &clip_rect, &mut blitter); } else { scan::path::fill_path(&path, fill_rule, &clip_rect, &mut blitter); } let ts = Transform::from_translate(tile.x() as f32, tile.y() as f32); path = match path.transform(ts) { Some(v) => v, None => return, // technically unreachable }; paint.shader.transform(ts); } } else { let clip_rect = self.size().to_screen_int_rect(0, 0); let submask = mask.map(|mask| mask.as_submask()); let mut subpix = self.as_subpixmap(); let mut blitter = match RasterPipelineBlitter::new(paint, submask, &mut subpix) { Some(v) => v, None => return, // nothing to do, all good }; if paint.anti_alias { scan::path_aa::fill_path(path, fill_rule, &clip_rect, &mut blitter); } else { scan::path::fill_path(path, fill_rule, &clip_rect, &mut blitter); } } } else { let path = match path.clone().transform(transform) { Some(v) => v, None => { log::warn!("path transformation failed"); return; } }; let mut paint = paint.clone(); paint.shader.transform(transform); self.fill_path(&path, &paint, fill_rule, Transform::identity(), mask) } } /// Strokes a path. /// /// Stroking is implemented using two separate algorithms: /// /// 1. If a stroke width is wider than 1px (after applying the transformation), /// a path will be converted into a stroked path and then filled using `fill_path`. /// Which means that we have to allocate a separate `Path`, that can be 2-3x larger /// then the original path. /// 2. If a stroke width is thinner than 1px (after applying the transformation), /// we will use hairline stroking, which doesn't involve a separate path allocation. /// /// Also, if a `stroke` has a dash array, then path will be converted into /// a dashed path first and then stroked. Which means a yet another allocation. pub fn stroke_path( &mut self, path: &Path, paint: &Paint, stroke: &Stroke, transform: Transform, mask: Option<&Mask>, ) { if stroke.width < 0.0 { log::warn!("negative stroke width isn't allowed"); return; } let res_scale = PathStroker::compute_resolution_scale(&transform); let dash_path; let path = if let Some(ref dash) = stroke.dash { dash_path = match path.dash(dash, res_scale) { Some(v) => v, None => { log::warn!("path dashing failed"); return; } }; &dash_path } else { path }; if let Some(coverage) = treat_as_hairline(paint, stroke, transform) { let mut paint = paint.clone(); if coverage == 1.0 { // No changes to the `paint`. } else if paint.blend_mode.should_pre_scale_coverage() { // This is the old technique, which we preserve for now so // we don't change previous results (testing) // the new way seems fine, its just (a tiny bit) different. let scale = (coverage * 256.0) as i32; let new_alpha = (255 * scale) >> 8; paint.shader.apply_opacity(new_alpha as f32 / 255.0); } if let Some(tiler) = DrawTiler::new(self.width(), self.height()) { let mut path = path.clone(); // TODO: avoid cloning let mut paint = paint.clone(); if !transform.is_identity() { paint.shader.transform(transform); path = match path.transform(transform) { Some(v) => v, None => { log::warn!("path transformation failed"); return; } }; } for tile in tiler { let ts = Transform::from_translate(-(tile.x() as f32), -(tile.y() as f32)); path = match path.transform(ts) { Some(v) => v, None => { log::warn!("path transformation failed"); return; } }; paint.shader.transform(ts); let mut subpix = match self.subpixmap(tile.to_int_rect()) { Some(v) => v, None => continue, // technically unreachable }; let submask = mask.and_then(|mask| mask.submask(tile.to_int_rect())); // We're ignoring "errors" here, because `stroke_hairline` will return `None` // when rendering a tile that doesn't have a path on it. // Which is not an error in this case. Self::stroke_hairline(&path, &paint, stroke.line_cap, submask, &mut subpix); let ts = Transform::from_translate(tile.x() as f32, tile.y() as f32); path = match path.transform(ts) { Some(v) => v, None => return, }; paint.shader.transform(ts); } } else { let subpix = &mut self.as_subpixmap(); let submask = mask.map(|mask| mask.as_submask()); if !transform.is_identity() { paint.shader.transform(transform); // TODO: avoid clone let path = match path.clone().transform(transform) { Some(v) => v, None => { log::warn!("path transformation failed"); return; } }; Self::stroke_hairline(&path, &paint, stroke.line_cap, submask, subpix); } else { Self::stroke_hairline(path, &paint, stroke.line_cap, submask, subpix); } } } else { let path = match path.stroke(stroke, res_scale) { Some(v) => v, None => { log::warn!("path stroking failed"); return; } }; self.fill_path(&path, paint, FillRule::Winding, transform, mask); } } /// A stroking for paths with subpixel/hairline width. fn stroke_hairline( path: &Path, paint: &Paint, line_cap: LineCap, mask: Option, pixmap: &mut SubPixmapMut, ) { let clip = pixmap.size.to_screen_int_rect(0, 0); let mut blitter = match RasterPipelineBlitter::new(paint, mask, pixmap) { Some(v) => v, None => return, // nothing to do, all good }; if paint.anti_alias { scan::hairline_aa::stroke_path(path, line_cap, &clip, &mut blitter); } else { scan::hairline::stroke_path(path, line_cap, &clip, &mut blitter); } } /// Draws a `Pixmap` on top of the current `Pixmap`. /// /// The same as filling a rectangle with a `pixmap` pattern. pub fn draw_pixmap( &mut self, x: i32, y: i32, pixmap: PixmapRef, paint: &PixmapPaint, transform: Transform, mask: Option<&Mask>, ) { let rect = pixmap.size().to_int_rect(x, y).to_rect(); // TODO: SkSpriteBlitter // TODO: partially clipped // TODO: clipped out // Translate pattern as well as bounds. let patt_transform = Transform::from_translate(x as f32, y as f32); let paint = Paint { shader: Pattern::new( pixmap, SpreadMode::Pad, // Pad, otherwise we will get weird borders overlap. paint.quality, paint.opacity, patt_transform, ), blend_mode: paint.blend_mode, anti_alias: false, // Skia doesn't use it too. force_hq_pipeline: false, // Pattern will use hq anyway. }; self.fill_rect(rect, &paint, transform, mask); } /// Applies a masks. /// /// When a `Mask` is passed to drawing methods, it will be used to mask-out /// content we're about to draw. /// This method masks-out an already drawn content. /// It's not as fast, but can be useful when a mask is not available during drawing. /// /// This method is similar to filling the whole pixmap with an another, /// mask-like pixmap using the `DestinationOut` blend mode. /// /// `Mask` must have the same size as `Pixmap`. No transform or offset are allowed. pub fn apply_mask(&mut self, mask: &Mask) { if self.size() != mask.size() { log::warn!("Pixmap and Mask are expected to have the same size"); return; } // Just a dummy. let pixmap_src = PixmapRef::from_bytes(&[0, 0, 0, 0], 1, 1).unwrap(); let mut p = RasterPipelineBuilder::new(); p.push(pipeline::Stage::LoadMaskU8); p.push(pipeline::Stage::LoadDestination); p.push(pipeline::Stage::DestinationIn); p.push(pipeline::Stage::Store); let mut p = p.compile(); let rect = self.size().to_screen_int_rect(0, 0); p.run( &rect, pipeline::AAMaskCtx::default(), mask.as_submask().mask_ctx(), pixmap_src, &mut self.as_subpixmap(), ); } } fn treat_as_hairline(paint: &Paint, stroke: &Stroke, mut ts: Transform) -> Option { fn fast_len(p: Point) -> f32 { let mut x = p.x.abs(); let mut y = p.y.abs(); if x < y { core::mem::swap(&mut x, &mut y); } x + y.half() } debug_assert!(stroke.width >= 0.0); if stroke.width == 0.0 { return Some(1.0); } if !paint.anti_alias { return None; } // We don't care about translate. ts.tx = 0.0; ts.ty = 0.0; // We need to try to fake a thick-stroke with a modulated hairline. let mut points = [ Point::from_xy(stroke.width, 0.0), Point::from_xy(0.0, stroke.width), ]; ts.map_points(&mut points); let len0 = fast_len(points[0]); let len1 = fast_len(points[1]); if len0 <= 1.0 && len1 <= 1.0 { return Some(len0.ave(len1)); } None } /// Sometimes in the drawing pipeline, we have to perform math on path coordinates, even after /// the path is in device-coordinates. Tessellation and clipping are two examples. Usually this /// is pretty modest, but it can involve subtracting/adding coordinates, or multiplying by /// small constants (e.g. 2,3,4). To try to preflight issues where these optionations could turn /// finite path values into infinities (or NaNs), we allow the upper drawing code to reject /// the path if its bounds (in device coordinates) is too close to max float. pub(crate) fn is_too_big_for_math(path: &Path) -> bool { // This value is just a guess. smaller is safer, but we don't want to reject largish paths // that we don't have to. const SCALE_DOWN_TO_ALLOW_FOR_SMALL_MULTIPLIES: f32 = 0.25; const MAX: f32 = SCALAR_MAX * SCALE_DOWN_TO_ALLOW_FOR_SMALL_MULTIPLIES; let b = path.bounds(); // use ! expression so we return true if bounds contains NaN !(b.left() >= -MAX && b.top() >= -MAX && b.right() <= MAX && b.bottom() <= MAX) } /// Splits the target pixmap into a list of tiles. /// /// Skia/tiny-skia uses a lot of fixed-point math during path rendering. /// Probably more for precision than performance. /// And our fixed-point types are limited by 8192 and 32768. /// Which means that we cannot render a path larger than 8192 onto a pixmap. /// When pixmap is smaller than 8192, the path will be automatically clipped anyway, /// but for large pixmaps we have to render in tiles. pub(crate) struct DrawTiler { image_width: u32, image_height: u32, x_offset: u32, y_offset: u32, finished: bool, } impl DrawTiler { // 8K is 1 too big, since 8K << supersample == 32768 which is too big for Fixed. const MAX_DIMENSIONS: u32 = 8192 - 1; fn required(image_width: u32, image_height: u32) -> bool { image_width > Self::MAX_DIMENSIONS || image_height > Self::MAX_DIMENSIONS } pub(crate) fn new(image_width: u32, image_height: u32) -> Option { if Self::required(image_width, image_height) { Some(DrawTiler { image_width, image_height, x_offset: 0, y_offset: 0, finished: false, }) } else { None } } } impl Iterator for DrawTiler { type Item = ScreenIntRect; fn next(&mut self) -> Option { if self.finished { return None; } // TODO: iterate only over tiles that actually affected by the shape if self.x_offset < self.image_width && self.y_offset < self.image_height { let h = if self.y_offset < self.image_height { (self.image_height - self.y_offset).min(Self::MAX_DIMENSIONS) } else { self.image_height }; let r = ScreenIntRect::from_xywh( self.x_offset, self.y_offset, (self.image_width - self.x_offset).min(Self::MAX_DIMENSIONS), h, ); self.x_offset += Self::MAX_DIMENSIONS; if self.x_offset >= self.image_width { self.x_offset = 0; self.y_offset += Self::MAX_DIMENSIONS; } return r; } None } } #[cfg(test)] mod tests { use super::*; const MAX_DIM: u32 = DrawTiler::MAX_DIMENSIONS; #[test] fn skip() { assert!(DrawTiler::new(100, 500).is_none()); } #[test] fn horizontal() { let mut iter = DrawTiler::new(10000, 500).unwrap(); assert_eq!(iter.next(), ScreenIntRect::from_xywh(0, 0, MAX_DIM, 500)); assert_eq!( iter.next(), ScreenIntRect::from_xywh(MAX_DIM, 0, 10000 - MAX_DIM, 500) ); assert_eq!(iter.next(), None); } #[test] fn vertical() { let mut iter = DrawTiler::new(500, 10000).unwrap(); assert_eq!(iter.next(), ScreenIntRect::from_xywh(0, 0, 500, MAX_DIM)); assert_eq!( iter.next(), ScreenIntRect::from_xywh(0, MAX_DIM, 500, 10000 - MAX_DIM) ); assert_eq!(iter.next(), None); } #[test] fn rect() { let mut iter = DrawTiler::new(10000, 10000).unwrap(); // Row 1 assert_eq!( iter.next(), ScreenIntRect::from_xywh(0, 0, MAX_DIM, MAX_DIM) ); assert_eq!( iter.next(), ScreenIntRect::from_xywh(MAX_DIM, 0, 10000 - MAX_DIM, MAX_DIM) ); // Row 2 assert_eq!( iter.next(), ScreenIntRect::from_xywh(0, MAX_DIM, MAX_DIM, 10000 - MAX_DIM) ); assert_eq!( iter.next(), ScreenIntRect::from_xywh(MAX_DIM, MAX_DIM, 10000 - MAX_DIM, 10000 - MAX_DIM) ); assert_eq!(iter.next(), None); } }