IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
'crt-store' is a new section useful to define the struct ckch_store.
The "load" keyword in the "crt-store" section allows to define which
files you want to load for a specific certificate definition.
Ex:
crt-store
load crt "site1.crt" key "site1.key"
load crt "site2.crt" key "site2.key"
frontend in
bind *:443 ssl crt "site1.crt" crt "site2.crt"
This is part of the certificate loading which was discussed in #785.
This option has been set by default for a very long time and also
complicates the manipulation of the DEBUG variable. Let's make it
the official default and permit to unset it by setting it to zero.
The other pool-related DEBUG options were adjusted to also explicitly
check for the zero value for consistency.
We continue to carry it in the makefile, which adds to the difficulty
of passing new options. Let's make DEBUG_STRICT=1 the default so that
one has to explicitly pass DEBUG_STRICT=0 to disable it. This allows us
to remove the option from the default DEBUG variable in the makefile.
Setting DEBUG_STRICT=0 only validates the defined(DEBUG_STRICT) test
regarding DEBUG_STRICT_ACTION, which is equivalent to DEBUG_STRICT>=0.
Let's make sure the test checks for >0 so that DEBUG_STRICT=0 properly
disables DEBUG_STRICT.
Recent commit 4c1480f13b ("MINOR: stick-tables: mark the seen stksess
with a flag "seen"") introduced a build regression on older versions of
gcc before 4.7. This is in the old __sync_ API, the HA_ATOMIC_LOAD()
implementation uses an intermediary return value called "ret" that is
of the same name as the variable passed in argument to the macro in the
aforementioned commit. As such, the compiler complains with a cryptic
error:
src/peers.c: In function 'peer_teach_process_stksess_lookup':
src/peers.c:1502: error: invalid type argument of '->' (have 'int')
The solution is to avoid referencing the argument in the expression and
using an intermediary variable for the pointer as done elsewhere in the
code. It seems there's no other place affected with this. It probably
does not need to be backported since this code is antique and very rarely
used nowadays.
William rightfully reported that not supporting =0 to disable a USE_xxx
option is sometimes painful (e.g. a script might do USE_xxx=$(command)).
It's not that difficult to handle actually, we just need to consider the
value 0 as empty at the few places that test for an empty string in
options.mk, and in each "ifneq" test in the main Makefile, so let's do
that. We even take care of preserving the original value in the build
options string so that building with USE_OPENSSL=0 will be reported
as-is in haproxy -vv, and with "-OPENSSL" in the feature list.
William suggested that it would be nice to warn about unknown USE_*
variables to more easily catch misspelled ones. The valid ones are
present in use_opts, so by appending "=%" to each of them, we can
build a series of patterns to exclude from MAKEOVERRIDES and emit
a warning for the ones that stand out.
Example:
$ make TARGET=linux-glibc USE_QUIC_COMPAT_OPENSSL=1
Makefile:338: Warning: ignoring unknown build option: USE_QUIC_COMPAT_OPENSSL=1
CC src/slz.o
These values are obviously wrong. There is an extra zero at the end for both
defines. By chance, it is harmless. But it is better to fix it.
This patch should be backported as far as 2.6.
qc_send() was systematically called by quic_conn IO handlers with all
instantiated quic_enc_level. Change this to only register quic_enc_level
for send if needed. Do not call at all qc_send() if no qel registered.
A new function qel_need_sending() is defined to detect if sending is
required. First, it checks if quic_enc_level has prepared frames or
probing is set. It can also returns true if ACK required either on
quic_enc_level itself or because of quic_conn ack timer fired. Finally,
a CONNECTION_CLOSE emission for quic_conn is also a valid case.
This should reduce the number of invocations of qc_send(). This could
improve slightly performance, as well as simplify traces debugging.
A series of previous patches have clean up sending function for
handshake case. Their new exposed API is now flexible enough to convert
app case to use the same functions.
As such, qc_send_hdshk_pkts() is renamed qc_send() and become the single
entry point for QUIC emission. It is used during application packets
emission in quic_conn_app_io_cb(), qc_send_mux(). Also the internal
function qc_prep_hpkts() is renamed qc_prep_pkts().
Remove the new unneeded qc_send_app_pkts() and qc_prep_app_pkts().
Also removed qc_send_app_probing(). It was a simple wrapper over other
application send functions. Now, default qc_send() can be reuse for such
cases with <old_data> argument set to true.
An adjustment was needed when converting qc_send_hdshk_pkts() to the
general qc_send() version. Previously, only a single packets
encoding/emission cycle was performed. This was enough as handshake
packets are always smaller than Tx buffer. However, it may be possible
to emit more application data. As such, a loop is necessary to perform
multiple encoding/emission cycles, as this was already the case in
qc_send_app_pkts().
No functional difference should happen with this commit. However, as
these are critcal functions with a lot of changes, this patch is
labelled as medium.
quic_conn_io_cb() manually implements emission by using lower level
functions qc_prep_pkts() and qc_send_ppkts(). Replace this by using the
higher level function qc_send_hdshk_pkts() which notably handle buffer
allocation and purging.
This allows to clean up send API by flagging qc_prep_pkts() and
qc_send_ppkts() as static. They are now used in a single location inside
qc_send_hdshk_pkts().
qc_send_hdshk_pkts() is a wrapper for qc_prep_hpkts() used on
retransmission. It was restricted to use two quic_enc_level pointers as
distinct arguments. Adapt it to directly use the same list of
quic_enc_level which is passed then to qc_prep_hpkts().
Now for retransmission quic_enc_level send list is built directly into
qc_dgrams_retransmit() which calls qc_send_hdshk_pkts().
Along this change, a new utility function qel_register_send() is
defined. It is an helper to build the quic_enc_level send list. It
enfores that each quic_enc_level instance is only registered in a single
list to prevent memory issues. It is both used in qc_dgrams_retransmit()
and quic_conn_io_cb().
Emission of packets during handshakes was implemented via an API which
uses two alternative ways to specify the list of frames.
The first one uses a NULL list of quic_enc_level as argument for
qc_prep_hpkts(). This was an implicit method to iterate on all qels
stored in quic_conn instance, with frames already inserted in their
corresponding quic_pktns.
The second method was used for retransmission. It uses a custom local
quic_enc_level list specified by the caller as input to qc_prep_hpkts().
Frames were accessible through <retransmit> list pointers of each
quic_enc_level used in an implicit mechanism.
This commit clarifies the API by using a single common method. Now
quic_enc_level list must always be specified by the caller. As for
frames list, each qels must set its new field <send_frms> pointer to the
list of frames to send. Callers of qc_prep_hpkts() are responsible to
always clear qels send list. This prevent a single instance of
quic_enc_level to be inserted while being attached to another list.
This allows notably to clean up some unnecessary code. First,
<retransmit> list of quic_enc_level is removed as it is replaced by new
<send_frms>. Also, it's now possible to use proper list_for_each_entry()
inside qc_prep_hpkts() to loop over each qels. Internal functions for
quic_enc_level selection is now removed.
encode_{chunk,string}() is often found to be used this way:
ret = encode_{chunk,string}(start, stop...)
if (ret == NULL || *ret != '\0') {
//error
}
//success
Indeed, encode_{chunk,string} will always try to add terminating NULL byte
to the output string, unless no space is available for even 1 byte.
However, it means that for the caller to be able to spot an error, then it
must provide a buffer (here: start) which is already initialized.
But this is wrong: not only this is very tricky to use, but since those
functions don't return NULL on failure, then if the output buffer was not
properly initialized prior to calling the function, the caller will
perform invalid reads when checking for failure this way. Moreover, even
if the buffer is initialized, we cannot reliably tell if the function
actually failed this way because if the buffer was previously initialized
with NULL byte, then the caller might think that the call actually
succeeded (since the function didn't return NULL and didn't update the
buffer).
Also, sess_build_logline() relies lf_encode_{chunk,string}() functions
which are in fact wrappers for encode_{chunk,string}() functions and thus
exhibit the same error handling mechanism. It turns out that
sess_build_logline() makes unsafe use of those functions because it uses
the error-checking logic mentionned above while buffer (tmplog) is not
guaranteed to be initialized when entering the function. This may
ultimately cause malfunctions or invalid reads if the output buffer is
lacking space.
To fix the issue once and for all and prevent similar bugs from being
introduced, we make it so encode_{string, chunk} and escape_string()
(based on encode_string()) now explicitly return NULL on failure
(when the function failed to write at least the ending NULL byte)
lf_encode_{string,chunk}() helpers had to be patched as well due to code
duplication.
This should be backported to all stable versions.
[ada: for 2.4 and 2.6 the patch won't apply as-is, it might be helpful to
backport ae1e14d65 ("CLEANUP: tools: removing escape_chunk() function")
first, considering it's not very relevant to maintain a dead function]
Since the Linux capabilities support add-on (see the commit bd84387beb
("MEDIUM: capabilities: enable support for Linux capabilities")), we can also
check haproxy process effective and permitted capabilities sets, when it
starts and runs as non-root.
Like this, if needed network capabilities are presented only in the process
permitted set, we can get this information with capget and put them in the
process effective set via capset. To do this properly, let's introduce
prepare_caps_from_permitted_set().
First, it checks if binary effective set has CAP_NET_ADMIN or CAP_NET_RAW. If
there is a match, LSTCHK_NETADM is removed from global.last_checks list to
avoid warning, because in the initialization sequence some last configuration
checks are based on LSTCHK_NETADM flag and haproxy process euid may stay
unpriviledged.
If there are no CAP_NET_ADMIN and CAP_NET_RAW in the effective set, permitted
set will be checked and only capabilities given in 'setcap' keyword will be
promoted in the process effective set. LSTCHK_NETADM will be also removed in
this case by the same reason. In order to be transparent, we promote from
permitted set only capabilities given by user in 'setcap' keyword. So, if
caplist doesn't include CAP_NET_ADMIN or CAP_NET_RAW, LSTCHK_NETADM would not
be unset and warning about missing priviledges will be emitted at
initialization.
Need to call it before protocol_bind_all() to allow binding to priviledged
ports under non-root and 'setcap cap_net_bind_service' must be set in the
global section in this case.
This commit is similar with the two previous ones. Its purpose is to add
GUID support on listeners. Due to bind_conf and listeners configuration,
some specifities were required.
Its possible to define several listeners on a single bind line, for
example by specifying multiple addresses. As such, it's impossible to
support a "guid" keyword on a bind line. The problem is exacerbated by
the cloning of listeners when sharding is used.
To resolve this, a new keyword "guid-prefix" is defined for bind lines.
It allows to specify a string which will be used as a prefix for
automatically generated GUID for each listeners attached to a bind_conf.
Automatic GUID listeners generation is implemented via a new function
bind_generate_guid(). It is called on post-parsing, after
bind_complete_thread_setup(). For each listeners on a bind_conf, a new
GUID is generated with bind_conf prefix and the index of the listener
relative to other listeners in the bind_conf. This last value is stored
in a new bind_conf field named <guid_idx>. If a GUID cannot be inserted,
for example due to a non-unique value, an error is returned, startup is
interrupted with configuration rejected.
This commit is similar to previous one, except that it implements GUID
support for server instances. A guid_node field is inserted into server
structure. A new "guid" server keyword is defined.
Implement proxy identiciation through GUID. As such, a guid_node member
is inserted into proxy structure. A proxy keyword "guid" is defined to
allow user to fix its value.
GUID format is unspecified to allow users to choose the naming scheme.
Some restrictions however are added by this patch, mainly to ensure
coherence and memory usage.
The first restriction is on the length of GUID. No more than 127
characters can be used to prevent memory over consumption.
The second restriction is on the character set allowed in GUID. Utility
function invalid_char() is used for this : it allows alphanumeric
values and '-', '_', '.' and ':'.
Define a new module guid. Its purpose is to be able to attach a global
identifier for various objects such as proxies, servers and listeners.
A new type guid_node is defined. It will be stored in the objects which
can be referenced by such GUID. Several functions are implemented to
properly initialized, insert, remove and lookup GUID in a global tree.
Modification operations should only be conducted under thread isolation.
Currently, the way proxy-oriented logformat directives are handled is way
too complicated. Indeed, "log-format", "log-format-error", "log-format-sd"
and "unique-id-format" all rely on preparsing hints stored inside
proxy->conf member struct. Those preparsing hints include the original
string that should be compiled once the proxy parameters are known plus
the config file and line number where the string was found to generate
precise error messages in case of failure during the compiling process
that happens within check_config_validity().
Now that lf_expr API permits to compile a lf_expr struct that was
previously prepared (with original string and config hints), let's
leverage lf_expr_compile() from check_config_validity() and instead
of relying on individual proxy->conf hints for each logformat expression,
store string and config hints in the lf_expr struct directly and use
lf_expr helpers funcs to handle them when relevant (ie: original
logformat string freeing is now done at a central place inside
lf_expr_deinit(), which allows for some simplifications)
Doing so allows us to greatly simplify the preparsing logic for those 4
proxy directives, and to finally save some space in the proxy struct.
Also, since httpclient proxy has its "logformat" automatically compiled
in check_config_validity(), we now use the file hint from the logformat
expression struct to set an explicit name that will be reported in case
of error ("parsing [httpclient:0] : ...") and remove the extraneous check
in httpclient_precheck() (logformat was parsed twice previously..)
split parse_logformat_string() into two functions:
parse_logformat_string() sticks to the same behavior, but now becomes an
helper for lf_expr_compile() which uses explicit arguments so that it
becomes possible to use lf_expr_compile() without a proxy, but also
compile an expression which was previously prepared for compiling (set
string and config hints within the logformat expression to avoid manually
storing string and config context if the compiling step happens later).
lf_expr_dup() may be used to duplicate an expression before it is
compiled, lf_expr_xfer() now makes sure that the input logformat is
already compiled.
This is some prerequisite works for log-profiles implementation, no
functional change should be expected.
This patch tries to address a design flaw with how logformat expressions
are parsed from config. Indeed, some parse_logformat_string() calls are
performed during config parsing when the proxy mode is not yet known.
Here's a config example that illustrates the issue:
defaults
mode tcp
listen test
bind :8888
http-response set-header custom-hdr "%trl" # needs http
mode http
The above config should work, because the effective proxy mode is http,
yet haproxy fails with this error:
[ALERT] (99051) : config : parsing [repro.conf:6] : error detected in proxy 'test' while parsing 'http-response set-header' rule : format tag 'trl' is reserved for HTTP mode.
To fix the issue once and for all, let's implement smart postparsing for
logformat expressions encountered during config parsing:
- split parse_logformat_string() (and subfonctions) in order to create a
new lf_expr_postcheck() function that must be called to finish
preparing and checking the logformat expression once the proxy type is
known.
- save some config hints info during parse_logformat_string() to
generate more precise error messages during lf_expr_postcheck(), if
needed, we rely on curpx->conf.args.{file,line} hints for that because
parse_logformat_string() doesn't know about current file and line
number.
- lf_expr_postcheck() uses PR_FL_CHECKED proxy flag to know if the
function may try to make the proxy compatible with the expression, or
if it should simply fail as soon as an incompatibility is detected.
- if parse_logformat_string() is called from an unchecked proxy, then
schedule the expression for postparsing, else (ie: during runtime),
run the postcheck right away.
This change will also allow for some logformat expression error handling
simplifications in the future.
PR_FL_CHECKED is set on proxy once the proxy configuration was fully
checked (including postparsing checks).
This information may be useful to functions that need to know if some
config-related proxy properties are likely to change or not due to parsing
or postparsing/check logics. Also, during runtime, except for some rare cases
config-related proxy properties are not supposed to be changed.
log format expressions are broadly used within the code: once they are
parsed from input string, they are converted to a linked list of
logformat nodes.
We're starting to face some limitations because we're simply storing the
converted expression as a generic logformat_node list.
The first issue we're facing is that storing logformat expressions that
way doesn't allow us to add metadata alongside the list, which is part
of the prerequites for implementing log-profiles.
Another issue with storing logformat expressions as generic lists of
logformat_node elements is that it's starting to become really hard to
tell when we rely on logformat expressions or not in the code given that
there isn't always a comment near the list declaration or manipulation
to indicate that it's relying on logformat expressions under the hood,
so this adds some complexity for code maintenance.
This patch looks quite impressive due to changes in a lot of header and
source files (since logformat expressions are broadly used), but it does
a simple thing: it defines the lf_expr structure which itself holds a
generic list of logformat nodes, and then declares some helpers to
manipulate lf_expr elements and fixes the code so that we now exclusively
manipulate logformat_node lists as lf_expr elements outside of log.c.
For now, lf_expr struct only contains the list of logformat nodes (no
additional metadata), but now that we have dedicated type and helpers,
doing so in the future won't be problematic at all and won't require
extensive code changes.
This is a pretty simple patch despite requiring to make some visible
changes in the code:
When parsing a logformat string, log tags (ie: '%tag', AKA log tags) are
turned into logformat nodes with their type set to the type of the
corresponding logformat_tag element which was matched by name. Thus, when
"compiling" a logformat tag, we only keep a reference to the tag type
from the original logformat_tag.
For example, for "%B" log tag, we have the following logformat_tag
element:
{
.name = "B",
.type = LOG_FMT_BYTES,
.mode = PR_MODE_TCP,
.lw = LW_BYTES,
.config_callback = NULL
}
When parsing "%B" string, we search for a matching logformat tag
inside logformat_tags[] array using the provided name, once we find a
matching element, we craft a logformat node whose type will be
LOG_FMT_BYTES, but from the node itself, we no longer have access to
other informations that are set in the logformat_tag struct element.
Thus from a logformat_node resulting from a log tag, with current
implementation, we cannot easily get back to matching logformat_tag
struct element as it would require us to scan the whole logformat_tags
array at runtime using node->type to find the matching element.
Let's take a simpler path and consider all tag-specific LOG_FMT_*
subtypes as being part of the same logformat node type: LOG_FMT_TAG.
Thanks to that, we're now able to distinguish logformat nodes made
from logformat tag from other logformat nodes, and link them to
their corresponding logformat_tag element from logformat_tags[] array. All
it costs is a simple indirection and an extra pointer in logformat_node
struct.
While at it, all LOG_FMT_* types related to logformat tags were moved
inside log.c as they have no use outside of it since they are simply
lookup indexes for sess_build_logline() and could even be replaced by
function pointers some day...
rename logformat_type internal struct to logformat_tag to to make it less
confusing, then expose logformat_tag struct through header file so that it
can be referenced in other structs.
also rename logformat_keywords[] to logformat_tags[] for better
consistency.
What we use to call logformat variable in the code is referred as
log-format tag in the documentation. Having both 'var' and 'tag' labels
referring to the same thing is really confusing. Let's make the code
comply with the documentation by replacing all logformat var/variable/VAR
occurences with either tag or TAG.
No functional change should be expected, the only visible side-effect from
user point of view is that "variable" was replaced by "tag" in some error
messages.
In order to reduce the contention on the table when keys expire quickly,
we're spreading the load over multiple trees. That counts for keys and
expiration dates. The shard number is calculated from the key value
itself, both when looking up and when setting it.
The "show table" dump on the CLI iterates over all shards so that the
output is not fully sorted, it's only sorted within each shard. The Lua
table dump just does the same. It was verified with a Lua program to
count stick-table entries that it works as intended (the test case is
reproduced here as it's clearly not easy to automate as a vtc):
function dump_stk()
local dmp = core.proxies['tbl'].stktable:dump({});
local count = 0
for _, __ in pairs(dmp) do
count = count + 1
end
core.Info('Total entries: ' .. count)
end
core.register_action("dump_stk", {'tcp-req', 'http-req'}, dump_stk, 0);
##
global
tune.lua.log.stderr on
lua-load-per-thread lua-cnttbl.lua
listen front
bind :8001
http-request lua.dump_stk if { path_beg /stk }
http-request track-sc1 rand(),upper,hex table tbl
http-request redirect location /
backend tbl
stick-table size 100k type string len 12 store http_req_cnt
##
$ h2load -c 16 -n 10000 0:8001/
$ curl 0:8001/stk
## A count close to 100k appears on haproxy's stderr
## On the CLI, "show table tbl" | wc will show the same.
Some large parts were reindented only to add a top-level loop to iterate
over shards (e.g. process_table_expire()). Better check the diff using
git show -b.
The number of shards is decided just like for the pools, at build time
based on the max number of threads, so that we can keep a constant. Maybe
this should be done differently. For now CONFIG_HAP_TBL_BUCKETS is used,
and defaults to CONFIG_HAP_POOL_BUCKETS to keep the benefits of all the
measurements made for the pools. It turns out that this value seems to
be the most reasonable one without inflating the struct stktable too
much. By default for 1024 threads the value is 32 and delivers 980k RPS
in a test involving 80 threads, while adding 1kB to the struct stktable
(roughly doubling it). The same test at 64 gives 1008 kRPS and at 128
it gives 1040 kRPS for 8 times the initial size. 16 would be too low
however, with 675k RPS.
The stksess already have a shard number, it's the one used to decide which
peer connection to send the entry. Maybe we should also store the one
associated with the entry itself instead of recalculating it, though it
does not happen that often. The operation is done by hashing the key using
XXH32().
The peers also take and release the table's lock but the way it's used
it not very clear yet, so at this point it's sure this will not work.
At this point, this allowed to completely unlock the performance on a
80-thread setup:
before: 5.4 Gbps, 150k RPS, 80 cores
52.71% haproxy [.] stktable_lookup_key
36.90% haproxy [.] stktable_get_entry.part.0
0.86% haproxy [.] ebmb_lookup
0.18% haproxy [.] process_stream
0.12% haproxy [.] process_table_expire
0.11% haproxy [.] fwrr_get_next_server
0.10% haproxy [.] eb32_insert
0.10% haproxy [.] run_tasks_from_lists
after: 36 Gbps, 980k RPS, 80 cores
44.92% haproxy [.] stktable_get_entry
5.47% haproxy [.] ebmb_lookup
2.50% haproxy [.] fwrr_get_next_server
0.97% haproxy [.] eb32_insert
0.92% haproxy [.] process_stream
0.52% haproxy [.] run_tasks_from_lists
0.45% haproxy [.] conn_backend_get
0.44% haproxy [.] __pool_alloc
0.35% haproxy [.] process_table_expire
0.35% haproxy [.] connect_server
0.35% haproxy [.] h1_headers_to_hdr_list
0.34% haproxy [.] eb_delete
0.31% haproxy [.] srv_add_to_idle_list
0.30% haproxy [.] h1_snd_buf
WIP: uint64_t -> long
WIP: ulong -> uint
code is much smaller
Right now we're taking the stick-tables update lock for reads just for
the sake of checking if the update index is past it or not. That's
costly because even taking the read lock is sufficient to provoke a
cache line write, while when under load or attack it's frequent that
the update has not yet been propagated and wouldn't require anything.
This commit brings a new field to the stksess, "seen", which is zeroed
when the entry is updated, and set to one as soon as at least one peer
starts to consult it. This way it will reflect that the entry must be
updated again so that this peer can see it. Otherwise no update will
be necessary. For now the flag is only set/reset but not exploited.
A great care is taken to avoid writes whenever possible.
Given the xz drama which allowed liblzma to be linked to openssh, lets remove
libsystemd to get rid of useless dependencies.
The sd_notify API seems to be stable and is now documented. This patch replaces
the sd_notify() and sd_notifyf() function by a reimplementation inspired by the
systemd documentation.
This should not change anything functionnally. The function will be built when
haproxy is built using USE_SYSTEMD=1.
References:
https://github.com/systemd/systemd/issues/32028https://www.freedesktop.org/software/systemd/man/devel/sd_notify.html#Notes
Before:
wla@kikyo:~% ldd /usr/sbin/haproxy
linux-vdso.so.1 (0x00007ffcfaf65000)
libcrypt.so.1 => /lib/x86_64-linux-gnu/libcrypt.so.1 (0x000074637fef4000)
libssl.so.3 => /lib/x86_64-linux-gnu/libssl.so.3 (0x000074637fe4f000)
libcrypto.so.3 => /lib/x86_64-linux-gnu/libcrypto.so.3 (0x000074637f400000)
liblua5.4.so.0 => /lib/x86_64-linux-gnu/liblua5.4.so.0 (0x000074637fe0d000)
libsystemd.so.0 => /lib/x86_64-linux-gnu/libsystemd.so.0 (0x000074637f92a000)
libpcre2-8.so.0 => /lib/x86_64-linux-gnu/libpcre2-8.so.0 (0x000074637f365000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x000074637f000000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x000074637f27a000)
libcap.so.2 => /lib/x86_64-linux-gnu/libcap.so.2 (0x000074637fdff000)
libgcrypt.so.20 => /lib/x86_64-linux-gnu/libgcrypt.so.20 (0x000074637eeb8000)
liblzma.so.5 => /lib/x86_64-linux-gnu/liblzma.so.5 (0x000074637fdcd000)
libzstd.so.1 => /lib/x86_64-linux-gnu/libzstd.so.1 (0x000074637ee01000)
liblz4.so.1 => /lib/x86_64-linux-gnu/liblz4.so.1 (0x000074637fda8000)
/lib64/ld-linux-x86-64.so.2 (0x000074637ff5d000)
libgpg-error.so.0 => /lib/x86_64-linux-gnu/libgpg-error.so.0 (0x000074637f904000)
After:
wla@kikyo:~% ldd /usr/sbin/haproxy
linux-vdso.so.1 (0x00007ffd51901000)
libcrypt.so.1 => /lib/x86_64-linux-gnu/libcrypt.so.1 (0x00007f758d6c0000)
libssl.so.3 => /lib/x86_64-linux-gnu/libssl.so.3 (0x00007f758d61b000)
libcrypto.so.3 => /lib/x86_64-linux-gnu/libcrypto.so.3 (0x00007f758ca00000)
liblua5.4.so.0 => /lib/x86_64-linux-gnu/liblua5.4.so.0 (0x00007f758d5d9000)
libpcre2-8.so.0 => /lib/x86_64-linux-gnu/libpcre2-8.so.0 (0x00007f758d365000)
libz.so.1 => /lib/x86_64-linux-gnu/libz.so.1 (0x00007f758d5ba000)
libc.so.6 => /lib/x86_64-linux-gnu/libc.so.6 (0x00007f758c600000)
libm.so.6 => /lib/x86_64-linux-gnu/libm.so.6 (0x00007f758c915000)
/lib64/ld-linux-x86-64.so.2 (0x00007f758d729000)
A backport to all stable versions could be considered at some point.
This is a simple algorithm to replace the classic slow start phase of the
congestion control algorithms. It should reduce the high packet loss during
this step.
Implemented only for Cubic.
Motivation: When services are discovered through DNS resolution, the order in
which DNS records get resolved and assigned to servers is arbitrary. Therefore,
even though two HAProxy instances using chash balancing might agree that a
particular request should go to server3, it is likely the case that they have
assigned different IPs and ports to the server in that slot.
This patch adds a server option, "hash-key <key>" which can be set to "id" (the
existing behaviour, default), "addr", or "addr-port". By deriving the keys for
the chash tree nodes from a server's address and port we ensure that independent
HAProxy instances will agree on routing decisions. If an address is not known
then the key is derived from the server's puid as it was previously.
When adjusting a server's weight, we now check whether the server's hash has
changed. If it has, we have to remove all its nodes first, since the node keys
will also have to change.
log load-balancing implementation was not seamlessly integrated within
lbprm API. The consequence is that it could become harder to maintain
over time since it added some specific cases just for the log backend.
Moreover, it resulted in some code duplication since balance algorithms
that are common to logs and regular (tcp, http) backends were specifically
rewritten for log backends.
Thanks to the previous commit, we now have all the prerequisites to make
log load-balancing fully leverage lbprm logic. Thus in this patch we make
__do_send_log_backend() use existing lbprm algorithms, and we no longer
require log-specific lbprm initialization in cfgparse.c and in
postcheck_log_backend().
As a bonus, for log backends this allows weighed algorithms to properly
support weights (ie: roundrobin, random and log-hash) since we now
leverage the same lb algorithms that we use for tcp/http backends
(doc was updated).
As previously mentioned in cd352c0db ("MINOR: log/balance: rename
"log-sticky" to "sticky""), let's define a sticky algorithm that may be
used from any protocol. Sticky algorithm sticks on the same server as
long as it remains available.
The documentation was updated accordingly.
The CLI applet is now using its own snd_buf callback function. Instead of
copying as most output data as possible, only one command is copied at a
time.
To do so, a new state CLI_ST_PARSEREQ is added for the CLI applet. In this
state, the CLI I/O handle knows a full command was copied into its input
buffer and it must parse this command to evaluate it.
This flag can be use by endpoints to know the data to send, via .snd_buf
callback function are the last ones. It is useful to know a shutdown is
pending but it cannot be delivered while sedning data are not consumed.
applet_putchk() and other similar functions are now testing the applet's
type to use the applet's outbuf instead of the channel's buffer. This will
ease applets convertion because most of them relies on these functions.
These functions are very similar to co_getline() and co_getdelim(). The
first one retrieves the longest part of the buffer that is composed
exclusively of characters not in the a delimiter set. The second one stops
on LF only and thus returns a line.
sc_sync_recv() and sc_sync_send() were added to use connection or applet
versions, depending on the endpoint type. For now these functions are not
used. But this will be used by process_stream() to replace the connection
version.
This option can be used to set a default ocsp-update mode for all
certificates of a given conf file. It allows to activate ocsp-update on
certificates without the need to create separate crt-lists. It can still
be superseded by the crt-list 'ocsp-update' option. It takes either "on"
or "off" as value and defaults to "off".
Since setting this new parameter to "on" would mean that we try to
enable ocsp-update on any certificate, and also certificates that don't
have an OCSP URI, the checks performed in ssl_sock_load_ocsp were
softened. We don't systematically raise an error when trying to enable
ocsp-update on a certificate that does not have an OCSP URI, be it via
the global option or the crt-list one. We will still raise an error when
a user tries to load a certificate that does have an OCSP URI but a
missing issuer certificate (if ocsp-update is enabled).
Now the rings have one wait queue per group. This should limit the
contention on systems such as EPYC CPUs where the performance drops
dramatically when using more than one CCX.
Tests were run with different numbers and it was showed that value
6 outperforms all other ones at 12, 24, 48, 64 and 80 threads on an
EPYC, a Xeon and an Ampere CPU. Value 7 sometimes comes close and
anything around these values degrades quickly. The value has been
left tunable in the global section.
This commit only introduces everything needed to set up the queue count
so that it's easier to adjust it in the forthcoming patches, but it was
initially added after the series, making it harder to compare.
It was also shown that trying to group the threads in queues by their
thread groups is counter-productive and that it was more efficient to
do that by applying a modulo on the thread number. As surprising as it
seems, it does have the benefit of well balancing any number of threads.
It's inefficient and counter-productive that each ring writer iterates
over all readers to wake them up. Let's just have one in charge of this,
it strongly limits contention. The only thing is that since the thread
is iterating over a list, we want to be sure that if the first readers
have already completed their job, they will be woken up again. For this
we keep a counter of messages delivered after the wakeup started, and
the waking thread will check it before going back to sleep. In order to
avoid looping forever, it will also drop its waking flag soon enough to
possibly let another one take it.
There used to be a few cases of watchdogs before this on a 24-core AMD
EPYC platform on the list iteration those never appeared anymore.
The perf has dropped a bit on 3C6T on the EPYC, from 6.61 to 6.0M but
remains unchanged at 24C48T.
It was only used to protect the list which is now an mt_list so it
doesn't provide any required protection anymore. It obviously also
used to provide strict ordering between the writer and the reader
when the writer started to update the messages, but that's now
covered by the oredered tail updates and updates to the readers
count to protect the area.
The message rate on small thread counts (up to 12) saw a boost of
roughly 5% while on large counts while for large counts it lost
about 2% due to some contention now becoming visible elsewhere.
Typical measures are 6.13M -> 6.61M at 3C6T, and 1.88 -> 1.92M at
24C48T on the EPYC.
Rings are keeping a lock only for the list, which apparently doesn't
need anything more than an mt_list, so let's first turn it into that
before dropping the lock. There should be no visible effect.
We're now locking the tail while looking for some room in the ring. In
fact it's still while writing to it, but the goal definitely is to get
rid of the lock ASAP. For this we reserve the topmost bit of the tail
as a lock, which may have as a possible visible effect that buffers will
be limited to 2GB instead of 4GB on 32-bit machines (though in practise,
good luck for allocating more than 2GB contiguous on 32-bit), but in
practice since the size is read with atol() and some operating systems
limit it to LONG_MAX unless passing negative numbers, the limit is
already there.
For now the impact on x86_64 is significant (drop from 2.35 to 1.4M/s
on 48 threads on EPYC 24 cores) but this situation is only temporary
so that changes can be reviewable and bisectable.
Other approaches were attempted, such as using XCHG instead, which is
slightly faster on x86 with low thread counts (but causes more write
contention), and forces readers to stall under heavy traffic because
they can't access a valid value for the queue anymore. A CAS requires
preloading the value and is les good on ARMv8.1. XADD could also be
considered with 12-13 upper bits of the offset dedicated to locking,
but that looks overkill.
We really want to let the readers and writers act on different areas, so
we want to have the tail and the head on separate cache lines, themselves
separate from the rest of the ring. Doing so improves the performance from
2.15 to 2.35M msg/s at 48 threads on a 24-core EPYC.
This increases the header space from 32 to 192 bytes when threads are
enabled. But since we already have the header size available in the file,
haring remains able to detect the aligned vs unaligned formats and call
dump_v2a() when aligned is detected.
The purpose is to store a head and a tail that are independent so that
we can further improve the API to update them independently from each
other.
The struct was arranged like the original one so that as long as a ring
has its head set to zero (i.e. no recycling) it will continue to work.
The new format is already detectable thanks to the "rsvd" field which
indicates the number of reserved bytes at the beginning. It's located
where the buffer's area pointer previously was, so that older versions
of haring can continue to open the ring in repair mode, and newer ones
can use the fact that the upper bits of that variable are zero to guess
that it's working with the new format instead of the old one. Also let's
keep in mind that the layout will further change to place some alignment
constraints.
The haring tool will thus updated based on this and it detects that the
rsvd field is smaller than a page and that the sum of it with the size
equals the mapped size, in which case it uses the new dump_v2() function
instead of dump_v1(). The new function also creates a buffer from the
ring's area, size, head and tail and calls the generic one so that no
other code had to be adapted.