IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Change si_alloc_conn() to call si_release_endpoint() instead of
open-coding the connection releasing code when reuse is disabled.
This fuses the code with the one already dealing with applets, makes
it shorter and helps centralizing the connection freeing logic at a
single place.
Currently we have a problem. There are some cases where a sleeping applet
is not woken up (eg: show sess during an injection). The reason is that
the applet is marked WAIT_DATA and is not woken up when WAIT_ROOM leaves,
because we wait for both flags to be cleared in order to call it.
And if we wait for either flag, then we have the opposite situation, which
is that we're not waiting for room in the output buffer so we're spinning
calling the applet to do nothing.
What is missing is an indication of what the applet needs. Since it only
manipulates the WAIT_ROOM/WAIT_DATA which are overwritten later, that cannot
work. In the case of connections, the problem doesn't happen because the
connection maintains these extra states. Ideally we'd need to have similar
states for each appctx and to store those information there. But it would
be overcomplicated given that an applet doesn't exist alone without a
stream-int, so we can safely put these information into the stream int and
make the code simpler.
With this patch we introduce two new flags in the stream interface :
- SI_FL_WANT_PUT : the applet wants to put something into the buffer
- SI_FL_WANT_GET : the applet wants to get something from the buffer
We also have the new functions si_applet_{stop|want|cant}_{get|put}
to make the code look similar to the connection code.
For now these flags are not used yet.
This is the equivalent of si_conn_wake() but for applets. It will be
called after changes to the stream interface are brought by the applet
I/O handler. Ultimately it will release buffers and may be even wake
the stream's task up if some important changes are detected.
It would be nice to be able to merge it with the connection's wake
function since it mostly manipulates the stream interface, but there
are minor differences (such as how to enable/disable polling on a fd
vs applet) and some specificities to applets (eg: don't wake the
applet up until the output is empty) which would require abstract
functions which would slow down everything.
Now that applet's functions only take an appctx in argument, not a
stream interface. This slightly simplifies the code and will be needed
to take the appctx out of the stream interface.
It happened after changing the stream interface deinitialization
sequence that we got random crashes with si_shutw() being called
on NULL si->end. The reason was that si->ops was not reset after
a call to si_release_endpoint() which is sometimes called directly.
Thus we now move the resetting of si->ops just after any si->end
assignment. It happens that si_detach() is now just the same as
si_release_endpoint() and stream_int_unregister_handler(). Some
cleanup will have to be performed there.
It's not sure whether this problem can impact 1.5 since in 1.5
applets are part of the default embedded stream handler. The only
way it could cause some trouble is if it's used with a connection,
which doesn't seem possible at first glance.
With HTTP/2, we'll have to support multiplexed streams. A stream is in
fact the largest part of what we currently call a session, it has buffers,
logs, etc.
In order to catch any error, this commit removes any reference to the
struct session and tries to rename most "session" occurrences in function
names to "stream" and "sess" to "strm" when that's related to a session.
The files stream.{c,h} were added and session.{c,h} removed.
The session will be reintroduced later and a few parts of the stream
will progressively be moved overthere. It will more or less contain
only what we need in an embryonic session.
Sample fetch functions and converters will have to change a bit so
that they'll use an L5 (session) instead of what's currently called
"L4" which is in fact L6 for now.
Once all changes are completed, we should see approximately this :
L7 - http_txn
L6 - stream
L5 - session
L4 - connection | applet
There will be at most one http_txn per stream, and a same session will
possibly be referenced by multiple streams. A connection will point to
a session and to a stream. The session will hold all the information
we need to keep even when we don't yet have a stream.
Some more cleanup is needed because some code was already far from
being clean. The server queue management still refers to sessions at
many places while comments talk about connections. This will have to
be cleaned up once we have a server-side connection pool manager.
Stream flags "SN_*" still need to be renamed, it doesn't seem like
any of them will need to move to the session.
At a few places we need to find one stream interface from the other one.
Instead of passing via the channel, we simply use the session as an
intermediary, which simply results in applying an offset to the pointer.
We go back to the session to get the owner. Here again it's very easy
and is just a matter of relative offsets. Since the owner always exists
and always points to the session's task, we can remove some unneeded
tests.
In order to plan removal of si->ib / si->ob, we now check the side of the
stream interface and find the session, then the requested channel. In
practice it's just an offset applied to the pointer based on the flag.
This new flag "SI_FL_ISBACK" is set only on the back SI and is cleared
on the front SI. That way it's possible only by looking at the SI to
know what side it is.
We'll soon remove direct references to the channels from the stream
interface since everything belongs to the same session, so let's
first not dereference si->ib / si->ob anymore and use macros instead.
si_connect() used to only return SI_ST_CON. But it already detect the
connection reuse and is the function which avoids calling connect().
So it already knows the connection is valid and reuse. Thus we make it
return SI_ST_EST when a connection is reused. This means that
connect_server() can return this state and sess_update_stream_int()
as well.
Thanks to this change, we don't need to leave process_session() in
SI_ST_CON state to immediately enter it again to switch to SI_ST_EST.
Implementing this removes one call to process_session() per request
in keep-alive mode. We're now at 2 calls per request, which is the
minimum (one for the request and another one for the response). The
number of calls to http_wait_for_response() has also dropped from 2
to one.
Tests indicate a performance gain of about 2.6% in request rate in
keep-alive mode. There should be no gain in http-server-close() since
we don't use this faster path.
Idle connections are not monitored right now. So if a server closes after
a response without advertising it, it won't be detected until a next
request wants to use the connection. This is a bit problematic because
it unnecessarily maintains file descriptors and sockets in an idle
state.
This patch implements a very simple idle connection manager for the stream
interface. It presents itself as an I/O callback. The HTTP engine enables
it when it recycles a connection. If a close or an error is detected on the
underlying socket, it tries to drain as much data as possible from the socket,
detect the close and responds with a close as well, then detaches from the
stream interface.
This is the best place to reuse a connection. We centralize all
connection requests and we're at the best place to know exactly
what the current state of the underlying connection is. If the
connection is reused, we just enable polling for send() in order
to be able to emit the request.
When allocating a new connection, only the caller knows whether it's
acceptable to reuse the previous one or not. Let's pass this information
to si_alloc_conn() which will do the cleanup if the connection is not
acceptable.
conn_xprt_ready() reports if the transport layer is ready.
conn_ctrl_ready() reports if the control layer is ready.
The stream interface uses si_conn_ready() to report that the
underlying connection is ready. This will be used for connection
reuse in keep-alive mode.
From now on, a call to stream_int_register_handler() causes a call
to si_alloc_appctx() and returns an initialized appctx for the
current stream interface. If one was previously allocated, it is
released. If the stream interface was attached to a connection, it
is released as well.
The appctx are allocated from the same pools as the connections, because
they're substantially smaller in size, and we can't have both a connection
and an appctx on an interface at any moment.
In case of memory shortage, the call may return NULL, which is already
handled by all consumers of stream_int_register_handler().
The field appctx was removed from the stream interface since we only
rely on the endpoint now. On 32-bit, the stream_interface size went down
from 108 to 44 bytes. On 64-bit, it went down from 144 to 64 bytes. This
represents a memory saving of 160 bytes per session.
It seems that a later improvement could be to move the call to
stream_int_register_handler() to session.c for most cases.
The task returned by stream_int_register_handler() is never used, however we
always need to access the appctx afterwards. So make it return the appctx
instead. We already plan for it to fail, which is the reason for the addition
of a few tests and the possibility for the HTTP analyser to return a status
code 500.
We're about to remove si->appctx, so first let's replace all occurrences
of its usage with a dynamic extract from si->end. A lot of code was changed
by search-n-replace, but the behaviour was intentionally not altered.
The code surrounding calls to stream_int_register_handler() was slightly
changed since we can only use si->end *after* the registration.
Till now the send_proxy_ofs field remained in the stream interface,
but since the dynamic allocation of the connection, it makes a lot
of sense to move that into the connection instead of the stream
interface, since it will not be statically allocated for each
session.
Also, it turns out that moving it to the connection fils an alignment
hole on 64 bit architectures so it does not consume more memory, and
removing it from the stream interface was an opportunity to correctly
reorder fields and reduce the stream interface's size from 160 to 144
bytes (-10%). This is 32 bytes saved per session.
The outgoing connection is now allocated dynamically upon the first attempt
to touch the connection's source or destination address. If this allocation
fails, we fail on SN_ERR_RESOURCE.
As we didn't use si->conn anymore, it was removed. The endpoints are released
upon session_free(), on the error path, and upon a new transaction. That way
we are able to carry the existing server's address across retries.
The stream interfaces are not initialized anymore before session_complete(),
so we could even think about allocating them dynamically as well, though
that would not provide much savings.
The session initialization now makes use of conn_new()/conn_free(). This
slightly simplifies the code and makes it more logical. The connection
initialization code is now shorter by about 120 bytes because it's done
at once, allowing the compiler to remove all redundant initializations.
The si_attach_applet() function now takes care of first detaching the
existing endpoint, and it is called from stream_int_register_handler(),
so we can safely remove the calls to si_release_endpoint() in the
application code around this call.
A call to si_detach() was made upon stream_int_unregister_handler() to
ensure we always free the allocated connection if one was allocated in
parallel to setting an applet (eg: detect HTTP proxy while proceeding
with stats maybe).
si_prepare_conn() is not appropriate in our case as it both initializes and
attaches the connection to the stream interface. Due to the asymmetry between
accept() and connect(), it causes some fields such as the control and transport
layers to be reinitialized.
Now that we can separately initialize these fields using conn_prepare(), let's
break this function to only attach the connection to the stream interface.
Also, by analogy, si_prepare_none() was renamed si_detach(), and
si_prepare_applet() was renamed si_attach_applet().
We don't want to assign the control nor transport layers anymore
at the same time as the data layer, because it prevents one from
keeping existing settings when reattaching a connection to an
existing stream interface.
Let's have conn_attach() replace conn_assign() for this purpose.
Thus, conn_prepare() + conn_attach() do exactly the same as the
previous conn_assign().
The first function is used to (re)initialize a stream interface and
the second to force it into a known state. These are intended for
cleaning up the stream interface initialization code in session.c
and peers.c and avoiding future issues with missing initializations.
Everywhere conn_prepare() is used, the call to conn_init() has already
been done. We can now safely replace all instances of conn_prepare()
with conn_assign() which does not reset the transport layer, and remove
conn_prepare().
The connection will only remain there as a pre-allocated entity whose
goal is to be placed in ->end when establishing an outgoing connection.
All connection initialization can be made on this connection, but all
information retrieved should be applied to the end point only.
This change is huge because there were many users of si->conn. Now the
only users are those who initialize the new connection. The difficulty
appears in a few places such as backend.c, proto_http.c, peers.c where
si->conn is used to hold the connection's target address before assigning
the connection to the stream interface. This is why we have to keep
si->conn for now. A future improvement might consist in dynamically
allocating the connection when it is needed.
This function makes no sense anymore and will cause trouble to convert
the remains of connection/applet to end points. Let's replace it now
with its contents.
The long-term goal is to have a context for applets as an alternative
to the connection and not as a complement. At the moment, the context
is still stored into the stream interface, and we only put a pointer
to the applet's context in si->end, initialize the context with object
type OBJ_TYPE_APPCTX, and this allows us not to allocate an entry when
deciding to switch to an applet.
A special care is taken to never dereference si->conn anymore when
dealing with an applet. That's why it's important that si->end is
always set to the proper type :
si->end == NULL => not connected to anything
*si->end == OBJ_TYPE_APPCTX => connected to an applet
*si->end == OBJ_TYPE_CONN => real connection (server, proxy, ...)
The session management code used to check the applet from the connection's
target. Now it uses the stream interface's end point and does not touch the
connection at all. Similarly, we stop checking the connection's addresses
and file descriptors when reporting the applet's status in the stats dump.
Since last commit, we now have a pointer to the applet in the
applet context. So we don't need the si->release function pointer
anymore, it can be extracted from applet->applet.release. At many
places, the ->release function was still tested for real connections
while it is only limited to applets, so most of them were simply
removed. For the remaining valid uses, a new inline function
si_applet_release() was added to simplify the check and the call.
In preparation for a later move of all the applet context outside of the
stream interface, we'll need to have access to the applet itself from the
context. Let's have a pointer to it inside the context.
si_prepare_embedded() was used both to attach an applet and to detach
anything from a stream interface. Split it into si_prepare_none() to
detach and si_prepare_applet() to attach an applet.
si->conn->target is now assigned from within these two functions instead
of their respective callers.
This is to be more consistent with the other functions. The only
reason why these functions used to return a value was to let the
caller adjust polling by itself, but now their only callers were
the si_shutr()/si_shutw() inline functions. Now these functions
do not depend anymore on the connection.
These connection variant of these functions now call
conn_data_stop_recv()/conn_data_stop_send() before returning order
not to require a return code anymore. The applet version does not
need this at all.
These functions induce a lot of ifs everywhere because they consider two
different cases, one which is where the connection exists and has a file
descriptor, and the other one which is the default case where at most an
applet has to be notified.
Let's have them in si_ops and automatically decide which one to use.
The connection shutdown sequence has been slightly simplified, and we
now clear the flags at the end.
Also we remove SHUTR_NOW after a shutw with nolinger, as it's cleaner
not to keep it.
Commit 24db47e0 tried to improve support for delayed ACK upon connect
but it was incomplete, because checks with the proxy protocol would
always enable polling for data receive and there was no way of
distinguishing data polling and delayed ack.
So we add a distinct delack flag to the connect() function so that
the caller decides whether or not to use a delayed ack regardless
of pending data (eg: when send-proxy is in use). Doing so covers all
combinations of { (check with data), (sendproxy), (smart-connect) }.
Before connections were introduced, it was possible to connect an
external task to a stream interface. However it was left as an
exercise for the brave implementer to find how that ought to be
done.
The feature was broken since the introduction of connections and
was never fixed since due to lack of users. Better remove this dead
code now.