haproxy/src/proto_tcp.c
Baptiste Assmann 39a5f22c36 BUILD: make proto_tcp.c compatible with musl library
musl library expose tcp_info structure only when _GNU_SOURCE is defined.
This is required to build HAProxy on OSes relying musl such as Alpine
Linux.
2016-08-08 14:20:23 +02:00

2745 lines
81 KiB
C

/*
* AF_INET/AF_INET6 SOCK_STREAM protocol layer (tcp)
*
* Copyright 2000-2013 Willy Tarreau <w@1wt.eu>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
/* this is to have tcp_info defined on systems using musl
* library, such as Alpine Linux
*/
#define _GNU_SOURCE
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <sys/param.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/un.h>
#include <netinet/tcp.h>
#include <netinet/in.h>
#include <netinet/ip.h>
#include <common/cfgparse.h>
#include <common/compat.h>
#include <common/config.h>
#include <common/debug.h>
#include <common/errors.h>
#include <common/mini-clist.h>
#include <common/standard.h>
#include <common/namespace.h>
#include <types/global.h>
#include <types/capture.h>
#include <types/connection.h>
#include <proto/acl.h>
#include <proto/action.h>
#include <proto/arg.h>
#include <proto/channel.h>
#include <proto/connection.h>
#include <proto/fd.h>
#include <proto/listener.h>
#include <proto/log.h>
#include <proto/port_range.h>
#include <proto/protocol.h>
#include <proto/proto_http.h>
#include <proto/proto_tcp.h>
#include <proto/proxy.h>
#include <proto/sample.h>
#include <proto/server.h>
#include <proto/stream.h>
#include <proto/stick_table.h>
#include <proto/stream_interface.h>
#include <proto/task.h>
static int tcp_bind_listeners(struct protocol *proto, char *errmsg, int errlen);
static int tcp_bind_listener(struct listener *listener, char *errmsg, int errlen);
/* List head of all known action keywords for "tcp-request connection" */
struct list tcp_req_conn_keywords = LIST_HEAD_INIT(tcp_req_conn_keywords);
struct list tcp_req_cont_keywords = LIST_HEAD_INIT(tcp_req_cont_keywords);
struct list tcp_res_cont_keywords = LIST_HEAD_INIT(tcp_res_cont_keywords);
/* Note: must not be declared <const> as its list will be overwritten */
static struct protocol proto_tcpv4 = {
.name = "tcpv4",
.sock_domain = AF_INET,
.sock_type = SOCK_STREAM,
.sock_prot = IPPROTO_TCP,
.sock_family = AF_INET,
.sock_addrlen = sizeof(struct sockaddr_in),
.l3_addrlen = 32/8,
.accept = &listener_accept,
.connect = tcp_connect_server,
.bind = tcp_bind_listener,
.bind_all = tcp_bind_listeners,
.unbind_all = unbind_all_listeners,
.enable_all = enable_all_listeners,
.get_src = tcp_get_src,
.get_dst = tcp_get_dst,
.drain = tcp_drain,
.pause = tcp_pause_listener,
.listeners = LIST_HEAD_INIT(proto_tcpv4.listeners),
.nb_listeners = 0,
};
/* Note: must not be declared <const> as its list will be overwritten */
static struct protocol proto_tcpv6 = {
.name = "tcpv6",
.sock_domain = AF_INET6,
.sock_type = SOCK_STREAM,
.sock_prot = IPPROTO_TCP,
.sock_family = AF_INET6,
.sock_addrlen = sizeof(struct sockaddr_in6),
.l3_addrlen = 128/8,
.accept = &listener_accept,
.connect = tcp_connect_server,
.bind = tcp_bind_listener,
.bind_all = tcp_bind_listeners,
.unbind_all = unbind_all_listeners,
.enable_all = enable_all_listeners,
.get_src = tcp_get_src,
.get_dst = tcp_get_dst,
.drain = tcp_drain,
.pause = tcp_pause_listener,
.listeners = LIST_HEAD_INIT(proto_tcpv6.listeners),
.nb_listeners = 0,
};
/*
* Register keywords.
*/
void tcp_req_conn_keywords_register(struct action_kw_list *kw_list)
{
LIST_ADDQ(&tcp_req_conn_keywords, &kw_list->list);
}
void tcp_req_cont_keywords_register(struct action_kw_list *kw_list)
{
LIST_ADDQ(&tcp_req_cont_keywords, &kw_list->list);
}
void tcp_res_cont_keywords_register(struct action_kw_list *kw_list)
{
LIST_ADDQ(&tcp_res_cont_keywords, &kw_list->list);
}
/*
* Return the struct http_req_action_kw associated to a keyword.
*/
static struct action_kw *tcp_req_conn_action(const char *kw)
{
return action_lookup(&tcp_req_conn_keywords, kw);
}
static struct action_kw *tcp_req_cont_action(const char *kw)
{
return action_lookup(&tcp_req_cont_keywords, kw);
}
static struct action_kw *tcp_res_cont_action(const char *kw)
{
return action_lookup(&tcp_res_cont_keywords, kw);
}
/* Binds ipv4/ipv6 address <local> to socket <fd>, unless <flags> is set, in which
* case we try to bind <remote>. <flags> is a 2-bit field consisting of :
* - 0 : ignore remote address (may even be a NULL pointer)
* - 1 : use provided address
* - 2 : use provided port
* - 3 : use both
*
* The function supports multiple foreign binding methods :
* - linux_tproxy: we directly bind to the foreign address
* The second one can be used as a fallback for the first one.
* This function returns 0 when everything's OK, 1 if it could not bind, to the
* local address, 2 if it could not bind to the foreign address.
*/
int tcp_bind_socket(int fd, int flags, struct sockaddr_storage *local, struct sockaddr_storage *remote)
{
struct sockaddr_storage bind_addr;
int foreign_ok = 0;
int ret;
static int ip_transp_working = 1;
static int ip6_transp_working = 1;
switch (local->ss_family) {
case AF_INET:
if (flags && ip_transp_working) {
/* This deserves some explanation. Some platforms will support
* multiple combinations of certain methods, so we try the
* supported ones until one succeeds.
*/
if (0
#if defined(IP_TRANSPARENT)
|| (setsockopt(fd, SOL_IP, IP_TRANSPARENT, &one, sizeof(one)) == 0)
#endif
#if defined(IP_FREEBIND)
|| (setsockopt(fd, SOL_IP, IP_FREEBIND, &one, sizeof(one)) == 0)
#endif
#if defined(IP_BINDANY)
|| (setsockopt(fd, IPPROTO_IP, IP_BINDANY, &one, sizeof(one)) == 0)
#endif
#if defined(SO_BINDANY)
|| (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == 0)
#endif
)
foreign_ok = 1;
else
ip_transp_working = 0;
}
break;
case AF_INET6:
if (flags && ip6_transp_working) {
if (0
#if defined(IPV6_TRANSPARENT)
|| (setsockopt(fd, SOL_IPV6, IPV6_TRANSPARENT, &one, sizeof(one)) == 0)
#endif
#if defined(IP_FREEBIND)
|| (setsockopt(fd, SOL_IP, IP_FREEBIND, &one, sizeof(one)) == 0)
#endif
#if defined(IPV6_BINDANY)
|| (setsockopt(fd, IPPROTO_IPV6, IPV6_BINDANY, &one, sizeof(one)) == 0)
#endif
#if defined(SO_BINDANY)
|| (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == 0)
#endif
)
foreign_ok = 1;
else
ip6_transp_working = 0;
}
break;
}
if (flags) {
memset(&bind_addr, 0, sizeof(bind_addr));
bind_addr.ss_family = remote->ss_family;
switch (remote->ss_family) {
case AF_INET:
if (flags & 1)
((struct sockaddr_in *)&bind_addr)->sin_addr = ((struct sockaddr_in *)remote)->sin_addr;
if (flags & 2)
((struct sockaddr_in *)&bind_addr)->sin_port = ((struct sockaddr_in *)remote)->sin_port;
break;
case AF_INET6:
if (flags & 1)
((struct sockaddr_in6 *)&bind_addr)->sin6_addr = ((struct sockaddr_in6 *)remote)->sin6_addr;
if (flags & 2)
((struct sockaddr_in6 *)&bind_addr)->sin6_port = ((struct sockaddr_in6 *)remote)->sin6_port;
break;
default:
/* we don't want to try to bind to an unknown address family */
foreign_ok = 0;
}
}
setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one));
if (foreign_ok) {
if (is_inet_addr(&bind_addr)) {
ret = bind(fd, (struct sockaddr *)&bind_addr, get_addr_len(&bind_addr));
if (ret < 0)
return 2;
}
}
else {
if (is_inet_addr(local)) {
ret = bind(fd, (struct sockaddr *)local, get_addr_len(local));
if (ret < 0)
return 1;
}
}
if (!flags)
return 0;
if (!foreign_ok)
/* we could not bind to a foreign address */
return 2;
return 0;
}
static int create_server_socket(struct connection *conn)
{
const struct netns_entry *ns = NULL;
#ifdef CONFIG_HAP_NS
if (objt_server(conn->target)) {
if (__objt_server(conn->target)->flags & SRV_F_USE_NS_FROM_PP)
ns = conn->proxy_netns;
else
ns = __objt_server(conn->target)->netns;
}
#endif
return my_socketat(ns, conn->addr.to.ss_family, SOCK_STREAM, IPPROTO_TCP);
}
/*
* This function initiates a TCP connection establishment to the target assigned
* to connection <conn> using (si->{target,addr.to}). A source address may be
* pointed to by conn->addr.from in case of transparent proxying. Normal source
* bind addresses are still determined locally (due to the possible need of a
* source port). conn->target may point either to a valid server or to a backend,
* depending on conn->target. Only OBJ_TYPE_PROXY and OBJ_TYPE_SERVER are
* supported. The <data> parameter is a boolean indicating whether there are data
* waiting for being sent or not, in order to adjust data write polling and on
* some platforms, the ability to avoid an empty initial ACK. The <delack> argument
* allows the caller to force using a delayed ACK when establishing the connection :
* - 0 = no delayed ACK unless data are advertised and backend has tcp-smart-connect
* - 1 = delayed ACK if backend has tcp-smart-connect, regardless of data
* - 2 = delayed ACK regardless of backend options
*
* Note that a pending send_proxy message accounts for data.
*
* It can return one of :
* - SF_ERR_NONE if everything's OK
* - SF_ERR_SRVTO if there are no more servers
* - SF_ERR_SRVCL if the connection was refused by the server
* - SF_ERR_PRXCOND if the connection has been limited by the proxy (maxconn)
* - SF_ERR_RESOURCE if a system resource is lacking (eg: fd limits, ports, ...)
* - SF_ERR_INTERNAL for any other purely internal errors
* Additionnally, in the case of SF_ERR_RESOURCE, an emergency log will be emitted.
*
* The connection's fd is inserted only when SF_ERR_NONE is returned, otherwise
* it's invalid and the caller has nothing to do.
*/
int tcp_connect_server(struct connection *conn, int data, int delack)
{
int fd;
struct server *srv;
struct proxy *be;
struct conn_src *src;
conn->flags = CO_FL_WAIT_L4_CONN; /* connection in progress */
switch (obj_type(conn->target)) {
case OBJ_TYPE_PROXY:
be = objt_proxy(conn->target);
srv = NULL;
break;
case OBJ_TYPE_SERVER:
srv = objt_server(conn->target);
be = srv->proxy;
break;
default:
conn->flags |= CO_FL_ERROR;
return SF_ERR_INTERNAL;
}
fd = conn->t.sock.fd = create_server_socket(conn);
if (fd == -1) {
qfprintf(stderr, "Cannot get a server socket.\n");
if (errno == ENFILE) {
conn->err_code = CO_ER_SYS_FDLIM;
send_log(be, LOG_EMERG,
"Proxy %s reached system FD limit at %d. Please check system tunables.\n",
be->id, maxfd);
}
else if (errno == EMFILE) {
conn->err_code = CO_ER_PROC_FDLIM;
send_log(be, LOG_EMERG,
"Proxy %s reached process FD limit at %d. Please check 'ulimit-n' and restart.\n",
be->id, maxfd);
}
else if (errno == ENOBUFS || errno == ENOMEM) {
conn->err_code = CO_ER_SYS_MEMLIM;
send_log(be, LOG_EMERG,
"Proxy %s reached system memory limit at %d sockets. Please check system tunables.\n",
be->id, maxfd);
}
else if (errno == EAFNOSUPPORT || errno == EPROTONOSUPPORT) {
conn->err_code = CO_ER_NOPROTO;
}
else
conn->err_code = CO_ER_SOCK_ERR;
/* this is a resource error */
conn->flags |= CO_FL_ERROR;
return SF_ERR_RESOURCE;
}
if (fd >= global.maxsock) {
/* do not log anything there, it's a normal condition when this option
* is used to serialize connections to a server !
*/
Alert("socket(): not enough free sockets. Raise -n argument. Giving up.\n");
close(fd);
conn->err_code = CO_ER_CONF_FDLIM;
conn->flags |= CO_FL_ERROR;
return SF_ERR_PRXCOND; /* it is a configuration limit */
}
if ((fcntl(fd, F_SETFL, O_NONBLOCK)==-1) ||
(setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, &one, sizeof(one)) == -1)) {
qfprintf(stderr,"Cannot set client socket to non blocking mode.\n");
close(fd);
conn->err_code = CO_ER_SOCK_ERR;
conn->flags |= CO_FL_ERROR;
return SF_ERR_INTERNAL;
}
if (be->options & PR_O_TCP_SRV_KA)
setsockopt(fd, SOL_SOCKET, SO_KEEPALIVE, &one, sizeof(one));
/* allow specific binding :
* - server-specific at first
* - proxy-specific next
*/
if (srv && srv->conn_src.opts & CO_SRC_BIND)
src = &srv->conn_src;
else if (be->conn_src.opts & CO_SRC_BIND)
src = &be->conn_src;
else
src = NULL;
if (src) {
int ret, flags = 0;
if (is_inet_addr(&conn->addr.from)) {
switch (src->opts & CO_SRC_TPROXY_MASK) {
case CO_SRC_TPROXY_CLI:
conn->flags |= CO_FL_PRIVATE;
/* fall through */
case CO_SRC_TPROXY_ADDR:
flags = 3;
break;
case CO_SRC_TPROXY_CIP:
case CO_SRC_TPROXY_DYN:
conn->flags |= CO_FL_PRIVATE;
flags = 1;
break;
}
}
#ifdef SO_BINDTODEVICE
/* Note: this might fail if not CAP_NET_RAW */
if (src->iface_name)
setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE, src->iface_name, src->iface_len + 1);
#endif
if (src->sport_range) {
int attempts = 10; /* should be more than enough to find a spare port */
struct sockaddr_storage sa;
ret = 1;
memcpy(&sa, &src->source_addr, sizeof(sa));
do {
/* note: in case of retry, we may have to release a previously
* allocated port, hence this loop's construct.
*/
port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port);
fdinfo[fd].port_range = NULL;
if (!attempts)
break;
attempts--;
fdinfo[fd].local_port = port_range_alloc_port(src->sport_range);
if (!fdinfo[fd].local_port) {
conn->err_code = CO_ER_PORT_RANGE;
break;
}
fdinfo[fd].port_range = src->sport_range;
set_host_port(&sa, fdinfo[fd].local_port);
ret = tcp_bind_socket(fd, flags, &sa, &conn->addr.from);
if (ret != 0)
conn->err_code = CO_ER_CANT_BIND;
} while (ret != 0); /* binding NOK */
}
else {
ret = tcp_bind_socket(fd, flags, &src->source_addr, &conn->addr.from);
if (ret != 0)
conn->err_code = CO_ER_CANT_BIND;
}
if (unlikely(ret != 0)) {
port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port);
fdinfo[fd].port_range = NULL;
close(fd);
if (ret == 1) {
Alert("Cannot bind to source address before connect() for backend %s. Aborting.\n",
be->id);
send_log(be, LOG_EMERG,
"Cannot bind to source address before connect() for backend %s.\n",
be->id);
} else {
Alert("Cannot bind to tproxy source address before connect() for backend %s. Aborting.\n",
be->id);
send_log(be, LOG_EMERG,
"Cannot bind to tproxy source address before connect() for backend %s.\n",
be->id);
}
conn->flags |= CO_FL_ERROR;
return SF_ERR_RESOURCE;
}
}
#if defined(TCP_QUICKACK)
/* disabling tcp quick ack now allows the first request to leave the
* machine with the first ACK. We only do this if there are pending
* data in the buffer.
*/
if (delack == 2 || ((delack || data || conn->send_proxy_ofs) && (be->options2 & PR_O2_SMARTCON)))
setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &zero, sizeof(zero));
#endif
#ifdef TCP_USER_TIMEOUT
/* there is not much more we can do here when it fails, it's still minor */
if (srv && srv->tcp_ut)
setsockopt(fd, IPPROTO_TCP, TCP_USER_TIMEOUT, &srv->tcp_ut, sizeof(srv->tcp_ut));
#endif
if (global.tune.server_sndbuf)
setsockopt(fd, SOL_SOCKET, SO_SNDBUF, &global.tune.server_sndbuf, sizeof(global.tune.server_sndbuf));
if (global.tune.server_rcvbuf)
setsockopt(fd, SOL_SOCKET, SO_RCVBUF, &global.tune.server_rcvbuf, sizeof(global.tune.server_rcvbuf));
if ((connect(fd, (struct sockaddr *)&conn->addr.to, get_addr_len(&conn->addr.to)) == -1) &&
(errno != EINPROGRESS) && (errno != EALREADY) && (errno != EISCONN)) {
if (errno == EAGAIN || errno == EADDRINUSE || errno == EADDRNOTAVAIL) {
char *msg;
if (errno == EAGAIN || errno == EADDRNOTAVAIL) {
msg = "no free ports";
conn->err_code = CO_ER_FREE_PORTS;
}
else {
msg = "local address already in use";
conn->err_code = CO_ER_ADDR_INUSE;
}
qfprintf(stderr,"Connect() failed for backend %s: %s.\n", be->id, msg);
port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port);
fdinfo[fd].port_range = NULL;
close(fd);
send_log(be, LOG_ERR, "Connect() failed for backend %s: %s.\n", be->id, msg);
conn->flags |= CO_FL_ERROR;
return SF_ERR_RESOURCE;
} else if (errno == ETIMEDOUT) {
//qfprintf(stderr,"Connect(): ETIMEDOUT");
port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port);
fdinfo[fd].port_range = NULL;
close(fd);
conn->err_code = CO_ER_SOCK_ERR;
conn->flags |= CO_FL_ERROR;
return SF_ERR_SRVTO;
} else {
// (errno == ECONNREFUSED || errno == ENETUNREACH || errno == EACCES || errno == EPERM)
//qfprintf(stderr,"Connect(): %d", errno);
port_range_release_port(fdinfo[fd].port_range, fdinfo[fd].local_port);
fdinfo[fd].port_range = NULL;
close(fd);
conn->err_code = CO_ER_SOCK_ERR;
conn->flags |= CO_FL_ERROR;
return SF_ERR_SRVCL;
}
}
conn->flags |= CO_FL_ADDR_TO_SET;
/* Prepare to send a few handshakes related to the on-wire protocol. */
if (conn->send_proxy_ofs)
conn->flags |= CO_FL_SEND_PROXY;
conn_ctrl_init(conn); /* registers the FD */
fdtab[fd].linger_risk = 1; /* close hard if needed */
conn_sock_want_send(conn); /* for connect status */
if (conn_xprt_init(conn) < 0) {
conn_force_close(conn);
conn->flags |= CO_FL_ERROR;
return SF_ERR_RESOURCE;
}
if (data)
conn_data_want_send(conn); /* prepare to send data if any */
return SF_ERR_NONE; /* connection is OK */
}
/*
* Retrieves the source address for the socket <fd>, with <dir> indicating
* if we're a listener (=0) or an initiator (!=0). It returns 0 in case of
* success, -1 in case of error. The socket's source address is stored in
* <sa> for <salen> bytes.
*/
int tcp_get_src(int fd, struct sockaddr *sa, socklen_t salen, int dir)
{
if (dir)
return getsockname(fd, sa, &salen);
else
return getpeername(fd, sa, &salen);
}
/*
* Retrieves the original destination address for the socket <fd>, with <dir>
* indicating if we're a listener (=0) or an initiator (!=0). In the case of a
* listener, if the original destination address was translated, the original
* address is retrieved. It returns 0 in case of success, -1 in case of error.
* The socket's source address is stored in <sa> for <salen> bytes.
*/
int tcp_get_dst(int fd, struct sockaddr *sa, socklen_t salen, int dir)
{
if (dir)
return getpeername(fd, sa, &salen);
else {
int ret = getsockname(fd, sa, &salen);
if (ret < 0)
return ret;
#if defined(TPROXY) && defined(SO_ORIGINAL_DST)
/* For TPROXY and Netfilter's NAT, we can retrieve the original
* IPv4 address before DNAT/REDIRECT. We must not do that with
* other families because v6-mapped IPv4 addresses are still
* reported as v4.
*/
if (((struct sockaddr_storage *)sa)->ss_family == AF_INET
&& getsockopt(fd, SOL_IP, SO_ORIGINAL_DST, sa, &salen) == 0)
return 0;
#endif
return ret;
}
}
/* Tries to drain any pending incoming data from the socket to reach the
* receive shutdown. Returns positive if the shutdown was found, negative
* if EAGAIN was hit, otherwise zero. This is useful to decide whether we
* can close a connection cleanly are we must kill it hard.
*/
int tcp_drain(int fd)
{
int turns = 2;
int len;
while (turns) {
#ifdef MSG_TRUNC_CLEARS_INPUT
len = recv(fd, NULL, INT_MAX, MSG_DONTWAIT | MSG_NOSIGNAL | MSG_TRUNC);
if (len == -1 && errno == EFAULT)
#endif
len = recv(fd, trash.str, trash.size, MSG_DONTWAIT | MSG_NOSIGNAL);
if (len == 0) {
/* cool, shutdown received */
fdtab[fd].linger_risk = 0;
return 1;
}
if (len < 0) {
if (errno == EAGAIN) {
/* connection not closed yet */
fd_cant_recv(fd);
return -1;
}
if (errno == EINTR) /* oops, try again */
continue;
/* other errors indicate a dead connection, fine. */
fdtab[fd].linger_risk = 0;
return 1;
}
/* OK we read some data, let's try again once */
turns--;
}
/* some data are still present, give up */
return 0;
}
/* This is the callback which is set when a connection establishment is pending
* and we have nothing to send. It updates the FD polling status. It returns 0
* if it fails in a fatal way or needs to poll to go further, otherwise it
* returns non-zero and removes the CO_FL_WAIT_L4_CONN flag from the connection's
* flags. In case of error, it sets CO_FL_ERROR and leaves the error code in
* errno. The error checking is done in two passes in order to limit the number
* of syscalls in the normal case :
* - if POLL_ERR was reported by the poller, we check for a pending error on
* the socket before proceeding. If found, it's assigned to errno so that
* upper layers can see it.
* - otherwise connect() is used to check the connection state again, since
* the getsockopt return cannot reliably be used to know if the connection
* is still pending or ready. This one may often return an error as well,
* since we don't always have POLL_ERR (eg: OSX or cached events).
*/
int tcp_connect_probe(struct connection *conn)
{
int fd = conn->t.sock.fd;
socklen_t lskerr;
int skerr;
if (conn->flags & CO_FL_ERROR)
return 0;
if (!conn_ctrl_ready(conn))
return 0;
if (!(conn->flags & CO_FL_WAIT_L4_CONN))
return 1; /* strange we were called while ready */
if (!fd_send_ready(fd))
return 0;
/* we might be the first witness of FD_POLL_ERR. Note that FD_POLL_HUP
* without FD_POLL_IN also indicates a hangup without input data meaning
* there was no connection.
*/
if (fdtab[fd].ev & FD_POLL_ERR ||
(fdtab[fd].ev & (FD_POLL_IN|FD_POLL_HUP)) == FD_POLL_HUP) {
skerr = 0;
lskerr = sizeof(skerr);
getsockopt(fd, SOL_SOCKET, SO_ERROR, &skerr, &lskerr);
errno = skerr;
if (errno == EAGAIN)
errno = 0;
if (errno)
goto out_error;
}
/* Use connect() to check the state of the socket. This has the
* advantage of giving us the following info :
* - error
* - connecting (EALREADY, EINPROGRESS)
* - connected (EISCONN, 0)
*/
if (connect(fd, (struct sockaddr *)&conn->addr.to, get_addr_len(&conn->addr.to)) < 0) {
if (errno == EALREADY || errno == EINPROGRESS) {
__conn_sock_stop_recv(conn);
fd_cant_send(fd);
return 0;
}
if (errno && errno != EISCONN)
goto out_error;
/* otherwise we're connected */
}
/* The FD is ready now, we'll mark the connection as complete and
* forward the event to the transport layer which will notify the
* data layer.
*/
conn->flags &= ~CO_FL_WAIT_L4_CONN;
return 1;
out_error:
/* Write error on the file descriptor. Report it to the connection
* and disable polling on this FD.
*/
fdtab[fd].linger_risk = 0;
conn->flags |= CO_FL_ERROR | CO_FL_SOCK_RD_SH | CO_FL_SOCK_WR_SH;
__conn_sock_stop_both(conn);
return 0;
}
/* This function tries to bind a TCPv4/v6 listener. It may return a warning or
* an error message in <errmsg> if the message is at most <errlen> bytes long
* (including '\0'). Note that <errmsg> may be NULL if <errlen> is also zero.
* The return value is composed from ERR_ABORT, ERR_WARN,
* ERR_ALERT, ERR_RETRYABLE and ERR_FATAL. ERR_NONE indicates that everything
* was alright and that no message was returned. ERR_RETRYABLE means that an
* error occurred but that it may vanish after a retry (eg: port in use), and
* ERR_FATAL indicates a non-fixable error. ERR_WARN and ERR_ALERT do not alter
* the meaning of the error, but just indicate that a message is present which
* should be displayed with the respective level. Last, ERR_ABORT indicates
* that it's pointless to try to start other listeners. No error message is
* returned if errlen is NULL.
*/
int tcp_bind_listener(struct listener *listener, char *errmsg, int errlen)
{
__label__ tcp_return, tcp_close_return;
int fd, err;
int ext, ready;
socklen_t ready_len;
const char *msg = NULL;
/* ensure we never return garbage */
if (errlen)
*errmsg = 0;
if (listener->state != LI_ASSIGNED)
return ERR_NONE; /* already bound */
err = ERR_NONE;
/* if the listener already has an fd assigned, then we were offered the
* fd by an external process (most likely the parent), and we don't want
* to create a new socket. However we still want to set a few flags on
* the socket.
*/
fd = listener->fd;
ext = (fd >= 0);
if (!ext) {
fd = my_socketat(listener->netns, listener->addr.ss_family, SOCK_STREAM, IPPROTO_TCP);
if (fd == -1) {
err |= ERR_RETRYABLE | ERR_ALERT;
msg = "cannot create listening socket";
goto tcp_return;
}
}
if (fd >= global.maxsock) {
err |= ERR_FATAL | ERR_ABORT | ERR_ALERT;
msg = "not enough free sockets (raise '-n' parameter)";
goto tcp_close_return;
}
if (fcntl(fd, F_SETFL, O_NONBLOCK) == -1) {
err |= ERR_FATAL | ERR_ALERT;
msg = "cannot make socket non-blocking";
goto tcp_close_return;
}
if (!ext && setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) == -1) {
/* not fatal but should be reported */
msg = "cannot do so_reuseaddr";
err |= ERR_ALERT;
}
if (listener->options & LI_O_NOLINGER)
setsockopt(fd, SOL_SOCKET, SO_LINGER, &nolinger, sizeof(struct linger));
#ifdef SO_REUSEPORT
/* OpenBSD supports this. As it's present in old libc versions of Linux,
* it might return an error that we will silently ignore.
*/
if (!ext)
setsockopt(fd, SOL_SOCKET, SO_REUSEPORT, &one, sizeof(one));
#endif
if (!ext && (listener->options & LI_O_FOREIGN)) {
switch (listener->addr.ss_family) {
case AF_INET:
if (1
#if defined(IP_TRANSPARENT)
&& (setsockopt(fd, SOL_IP, IP_TRANSPARENT, &one, sizeof(one)) == -1)
#endif
#if defined(IP_FREEBIND)
&& (setsockopt(fd, SOL_IP, IP_FREEBIND, &one, sizeof(one)) == -1)
#endif
#if defined(IP_BINDANY)
&& (setsockopt(fd, IPPROTO_IP, IP_BINDANY, &one, sizeof(one)) == -1)
#endif
#if defined(SO_BINDANY)
&& (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == -1)
#endif
) {
msg = "cannot make listening socket transparent";
err |= ERR_ALERT;
}
break;
case AF_INET6:
if (1
#if defined(IPV6_TRANSPARENT)
&& (setsockopt(fd, SOL_IPV6, IPV6_TRANSPARENT, &one, sizeof(one)) == -1)
#endif
#if defined(IP_FREEBIND)
&& (setsockopt(fd, SOL_IP, IP_FREEBIND, &one, sizeof(one)) == -1)
#endif
#if defined(IPV6_BINDANY)
&& (setsockopt(fd, IPPROTO_IPV6, IPV6_BINDANY, &one, sizeof(one)) == -1)
#endif
#if defined(SO_BINDANY)
&& (setsockopt(fd, SOL_SOCKET, SO_BINDANY, &one, sizeof(one)) == -1)
#endif
) {
msg = "cannot make listening socket transparent";
err |= ERR_ALERT;
}
break;
}
}
#ifdef SO_BINDTODEVICE
/* Note: this might fail if not CAP_NET_RAW */
if (!ext && listener->interface) {
if (setsockopt(fd, SOL_SOCKET, SO_BINDTODEVICE,
listener->interface, strlen(listener->interface) + 1) == -1) {
msg = "cannot bind listener to device";
err |= ERR_WARN;
}
}
#endif
#if defined(TCP_MAXSEG)
if (listener->maxseg > 0) {
if (setsockopt(fd, IPPROTO_TCP, TCP_MAXSEG,
&listener->maxseg, sizeof(listener->maxseg)) == -1) {
msg = "cannot set MSS";
err |= ERR_WARN;
}
}
#endif
#if defined(TCP_USER_TIMEOUT)
if (listener->tcp_ut) {
if (setsockopt(fd, IPPROTO_TCP, TCP_USER_TIMEOUT,
&listener->tcp_ut, sizeof(listener->tcp_ut)) == -1) {
msg = "cannot set TCP User Timeout";
err |= ERR_WARN;
}
}
#endif
#if defined(TCP_DEFER_ACCEPT)
if (listener->options & LI_O_DEF_ACCEPT) {
/* defer accept by up to one second */
int accept_delay = 1;
if (setsockopt(fd, IPPROTO_TCP, TCP_DEFER_ACCEPT, &accept_delay, sizeof(accept_delay)) == -1) {
msg = "cannot enable DEFER_ACCEPT";
err |= ERR_WARN;
}
}
#endif
#if defined(TCP_FASTOPEN)
if (listener->options & LI_O_TCP_FO) {
/* TFO needs a queue length, let's use the configured backlog */
int qlen = listener->backlog ? listener->backlog : listener->maxconn;
if (setsockopt(fd, IPPROTO_TCP, TCP_FASTOPEN, &qlen, sizeof(qlen)) == -1) {
msg = "cannot enable TCP_FASTOPEN";
err |= ERR_WARN;
}
}
#endif
#if defined(IPV6_V6ONLY)
if (listener->options & LI_O_V6ONLY)
setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &one, sizeof(one));
else if (listener->options & LI_O_V4V6)
setsockopt(fd, IPPROTO_IPV6, IPV6_V6ONLY, &zero, sizeof(zero));
#endif
if (!ext && bind(fd, (struct sockaddr *)&listener->addr, listener->proto->sock_addrlen) == -1) {
err |= ERR_RETRYABLE | ERR_ALERT;
msg = "cannot bind socket";
goto tcp_close_return;
}
ready = 0;
ready_len = sizeof(ready);
if (getsockopt(fd, SOL_SOCKET, SO_ACCEPTCONN, &ready, &ready_len) == -1)
ready = 0;
if (!(ext && ready) && /* only listen if not already done by external process */
listen(fd, listener->backlog ? listener->backlog : listener->maxconn) == -1) {
err |= ERR_RETRYABLE | ERR_ALERT;
msg = "cannot listen to socket";
goto tcp_close_return;
}
#if defined(TCP_QUICKACK)
if (listener->options & LI_O_NOQUICKACK)
setsockopt(fd, IPPROTO_TCP, TCP_QUICKACK, &zero, sizeof(zero));
#endif
/* the socket is ready */
listener->fd = fd;
listener->state = LI_LISTEN;
fdtab[fd].owner = listener; /* reference the listener instead of a task */
fdtab[fd].iocb = listener->proto->accept;
fd_insert(fd);
tcp_return:
if (msg && errlen) {
char pn[INET6_ADDRSTRLEN];
addr_to_str(&listener->addr, pn, sizeof(pn));
snprintf(errmsg, errlen, "%s [%s:%d]", msg, pn, get_host_port(&listener->addr));
}
return err;
tcp_close_return:
close(fd);
goto tcp_return;
}
/* This function creates all TCP sockets bound to the protocol entry <proto>.
* It is intended to be used as the protocol's bind_all() function.
* The sockets will be registered but not added to any fd_set, in order not to
* loose them across the fork(). A call to enable_all_listeners() is needed
* to complete initialization. The return value is composed from ERR_*.
*/
static int tcp_bind_listeners(struct protocol *proto, char *errmsg, int errlen)
{
struct listener *listener;
int err = ERR_NONE;
list_for_each_entry(listener, &proto->listeners, proto_list) {
err |= tcp_bind_listener(listener, errmsg, errlen);
if (err & ERR_ABORT)
break;
}
return err;
}
/* Add listener to the list of tcpv4 listeners. The listener's state
* is automatically updated from LI_INIT to LI_ASSIGNED. The number of
* listeners is updated. This is the function to use to add a new listener.
*/
void tcpv4_add_listener(struct listener *listener)
{
if (listener->state != LI_INIT)
return;
listener->state = LI_ASSIGNED;
listener->proto = &proto_tcpv4;
LIST_ADDQ(&proto_tcpv4.listeners, &listener->proto_list);
proto_tcpv4.nb_listeners++;
}
/* Add listener to the list of tcpv4 listeners. The listener's state
* is automatically updated from LI_INIT to LI_ASSIGNED. The number of
* listeners is updated. This is the function to use to add a new listener.
*/
void tcpv6_add_listener(struct listener *listener)
{
if (listener->state != LI_INIT)
return;
listener->state = LI_ASSIGNED;
listener->proto = &proto_tcpv6;
LIST_ADDQ(&proto_tcpv6.listeners, &listener->proto_list);
proto_tcpv6.nb_listeners++;
}
/* Pause a listener. Returns < 0 in case of failure, 0 if the listener
* was totally stopped, or > 0 if correctly paused.
*/
int tcp_pause_listener(struct listener *l)
{
if (shutdown(l->fd, SHUT_WR) != 0)
return -1; /* Solaris dies here */
if (listen(l->fd, l->backlog ? l->backlog : l->maxconn) != 0)
return -1; /* OpenBSD dies here */
if (shutdown(l->fd, SHUT_RD) != 0)
return -1; /* should always be OK */
return 1;
}
/* This function performs the TCP request analysis on the current request. It
* returns 1 if the processing can continue on next analysers, or zero if it
* needs more data, encounters an error, or wants to immediately abort the
* request. It relies on buffers flags, and updates s->req->analysers. The
* function may be called for frontend rules and backend rules. It only relies
* on the backend pointer so this works for both cases.
*/
int tcp_inspect_request(struct stream *s, struct channel *req, int an_bit)
{
struct session *sess = s->sess;
struct act_rule *rule;
struct stksess *ts;
struct stktable *t;
int partial;
int act_flags = 0;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
req,
req->rex, req->wex,
req->flags,
req->buf->i,
req->analysers);
/* We don't know whether we have enough data, so must proceed
* this way :
* - iterate through all rules in their declaration order
* - if one rule returns MISS, it means the inspect delay is
* not over yet, then return immediately, otherwise consider
* it as a non-match.
* - if one rule returns OK, then return OK
* - if one rule returns KO, then return KO
*/
if ((req->flags & CF_SHUTR) || buffer_full(req->buf, global.tune.maxrewrite) ||
!s->be->tcp_req.inspect_delay || tick_is_expired(req->analyse_exp, now_ms))
partial = SMP_OPT_FINAL;
else
partial = 0;
/* If "the current_rule_list" match the executed rule list, we are in
* resume condition. If a resume is needed it is always in the action
* and never in the ACL or converters. In this case, we initialise the
* current rule, and go to the action execution point.
*/
if (s->current_rule) {
rule = s->current_rule;
s->current_rule = NULL;
if (s->current_rule_list == &s->be->tcp_req.inspect_rules)
goto resume_execution;
}
s->current_rule_list = &s->be->tcp_req.inspect_rules;
list_for_each_entry(rule, &s->be->tcp_req.inspect_rules, list) {
enum acl_test_res ret = ACL_TEST_PASS;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_REQ | partial);
if (ret == ACL_TEST_MISS)
goto missing_data;
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
act_flags |= ACT_FLAG_FIRST;
resume_execution:
/* we have a matching rule. */
if (rule->action == ACT_ACTION_ALLOW) {
break;
}
else if (rule->action == ACT_ACTION_DENY) {
channel_abort(req);
channel_abort(&s->res);
req->analysers = 0;
s->be->be_counters.denied_req++;
sess->fe->fe_counters.denied_req++;
if (sess->listener->counters)
sess->listener->counters->denied_req++;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_R;
return 0;
}
else if (rule->action >= ACT_ACTION_TRK_SC0 && rule->action <= ACT_ACTION_TRK_SCMAX) {
/* Note: only the first valid tracking parameter of each
* applies.
*/
struct stktable_key *key;
struct sample smp;
if (stkctr_entry(&s->stkctr[tcp_trk_idx(rule->action)]))
continue;
t = rule->arg.trk_ctr.table.t;
key = stktable_fetch_key(t, s->be, sess, s, SMP_OPT_DIR_REQ | partial, rule->arg.trk_ctr.expr, &smp);
if ((smp.flags & SMP_F_MAY_CHANGE) && !(partial & SMP_OPT_FINAL))
goto missing_data; /* key might appear later */
if (key && (ts = stktable_get_entry(t, key))) {
stream_track_stkctr(&s->stkctr[tcp_trk_idx(rule->action)], t, ts);
stkctr_set_flags(&s->stkctr[tcp_trk_idx(rule->action)], STKCTR_TRACK_CONTENT);
if (sess->fe != s->be)
stkctr_set_flags(&s->stkctr[tcp_trk_idx(rule->action)], STKCTR_TRACK_BACKEND);
}
}
else if (rule->action == ACT_TCP_CAPTURE) {
struct sample *key;
struct cap_hdr *h = rule->arg.cap.hdr;
char **cap = s->req_cap;
int len;
key = sample_fetch_as_type(s->be, sess, s, SMP_OPT_DIR_REQ | partial, rule->arg.cap.expr, SMP_T_STR);
if (!key)
continue;
if (key->flags & SMP_F_MAY_CHANGE)
goto missing_data;
if (cap[h->index] == NULL)
cap[h->index] = pool_alloc2(h->pool);
if (cap[h->index] == NULL) /* no more capture memory */
continue;
len = key->data.u.str.len;
if (len > h->len)
len = h->len;
memcpy(cap[h->index], key->data.u.str.str, len);
cap[h->index][len] = 0;
}
else {
/* Custom keywords. */
if (!rule->action_ptr)
continue;
if (partial & SMP_OPT_FINAL)
act_flags |= ACT_FLAG_FINAL;
switch (rule->action_ptr(rule, s->be, s->sess, s, act_flags)) {
case ACT_RET_ERR:
case ACT_RET_CONT:
continue;
case ACT_RET_STOP:
break;
case ACT_RET_YIELD:
s->current_rule = rule;
goto missing_data;
}
break; /* ACT_RET_STOP */
}
}
}
/* if we get there, it means we have no rule which matches, or
* we have an explicit accept, so we apply the default accept.
*/
req->analysers &= ~an_bit;
req->analyse_exp = TICK_ETERNITY;
return 1;
missing_data:
channel_dont_connect(req);
/* just set the request timeout once at the beginning of the request */
if (!tick_isset(req->analyse_exp) && s->be->tcp_req.inspect_delay)
req->analyse_exp = tick_add(now_ms, s->be->tcp_req.inspect_delay);
return 0;
}
/* This function performs the TCP response analysis on the current response. It
* returns 1 if the processing can continue on next analysers, or zero if it
* needs more data, encounters an error, or wants to immediately abort the
* response. It relies on buffers flags, and updates s->rep->analysers. The
* function may be called for backend rules.
*/
int tcp_inspect_response(struct stream *s, struct channel *rep, int an_bit)
{
struct session *sess = s->sess;
struct act_rule *rule;
int partial;
int act_flags = 0;
DPRINTF(stderr,"[%u] %s: stream=%p b=%p, exp(r,w)=%u,%u bf=%08x bh=%d analysers=%02x\n",
now_ms, __FUNCTION__,
s,
rep,
rep->rex, rep->wex,
rep->flags,
rep->buf->i,
rep->analysers);
/* We don't know whether we have enough data, so must proceed
* this way :
* - iterate through all rules in their declaration order
* - if one rule returns MISS, it means the inspect delay is
* not over yet, then return immediately, otherwise consider
* it as a non-match.
* - if one rule returns OK, then return OK
* - if one rule returns KO, then return KO
*/
if (rep->flags & CF_SHUTR || tick_is_expired(rep->analyse_exp, now_ms))
partial = SMP_OPT_FINAL;
else
partial = 0;
/* If "the current_rule_list" match the executed rule list, we are in
* resume condition. If a resume is needed it is always in the action
* and never in the ACL or converters. In this case, we initialise the
* current rule, and go to the action execution point.
*/
if (s->current_rule) {
rule = s->current_rule;
s->current_rule = NULL;
if (s->current_rule_list == &s->be->tcp_rep.inspect_rules)
goto resume_execution;
}
s->current_rule_list = &s->be->tcp_rep.inspect_rules;
list_for_each_entry(rule, &s->be->tcp_rep.inspect_rules, list) {
enum acl_test_res ret = ACL_TEST_PASS;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, s->be, sess, s, SMP_OPT_DIR_RES | partial);
if (ret == ACL_TEST_MISS) {
/* just set the analyser timeout once at the beginning of the response */
if (!tick_isset(rep->analyse_exp) && s->be->tcp_rep.inspect_delay)
rep->analyse_exp = tick_add(now_ms, s->be->tcp_rep.inspect_delay);
return 0;
}
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
act_flags |= ACT_FLAG_FIRST;
resume_execution:
/* we have a matching rule. */
if (rule->action == ACT_ACTION_ALLOW) {
break;
}
else if (rule->action == ACT_ACTION_DENY) {
channel_abort(rep);
channel_abort(&s->req);
rep->analysers = 0;
s->be->be_counters.denied_resp++;
sess->fe->fe_counters.denied_resp++;
if (sess->listener->counters)
sess->listener->counters->denied_resp++;
if (!(s->flags & SF_ERR_MASK))
s->flags |= SF_ERR_PRXCOND;
if (!(s->flags & SF_FINST_MASK))
s->flags |= SF_FINST_D;
return 0;
}
else if (rule->action == ACT_TCP_CLOSE) {
chn_prod(rep)->flags |= SI_FL_NOLINGER | SI_FL_NOHALF;
si_shutr(chn_prod(rep));
si_shutw(chn_prod(rep));
break;
}
else {
/* Custom keywords. */
if (!rule->action_ptr)
continue;
if (partial & SMP_OPT_FINAL)
act_flags |= ACT_FLAG_FINAL;
switch (rule->action_ptr(rule, s->be, s->sess, s, act_flags)) {
case ACT_RET_ERR:
case ACT_RET_CONT:
continue;
case ACT_RET_STOP:
break;
case ACT_RET_YIELD:
channel_dont_close(rep);
s->current_rule = rule;
return 0;
}
break; /* ACT_RET_STOP */
}
}
}
/* if we get there, it means we have no rule which matches, or
* we have an explicit accept, so we apply the default accept.
*/
rep->analysers &= ~an_bit;
rep->analyse_exp = TICK_ETERNITY;
return 1;
}
/* This function performs the TCP layer4 analysis on the current request. It
* returns 0 if a reject rule matches, otherwise 1 if either an accept rule
* matches or if no more rule matches. It can only use rules which don't need
* any data. This only works on connection-based client-facing stream interfaces.
*/
int tcp_exec_req_rules(struct session *sess)
{
struct act_rule *rule;
struct stksess *ts;
struct stktable *t = NULL;
struct connection *conn = objt_conn(sess->origin);
int result = 1;
enum acl_test_res ret;
if (!conn)
return result;
list_for_each_entry(rule, &sess->fe->tcp_req.l4_rules, list) {
ret = ACL_TEST_PASS;
if (rule->cond) {
ret = acl_exec_cond(rule->cond, sess->fe, sess, NULL, SMP_OPT_DIR_REQ|SMP_OPT_FINAL);
ret = acl_pass(ret);
if (rule->cond->pol == ACL_COND_UNLESS)
ret = !ret;
}
if (ret) {
/* we have a matching rule. */
if (rule->action == ACT_ACTION_ALLOW) {
break;
}
else if (rule->action == ACT_ACTION_DENY) {
sess->fe->fe_counters.denied_conn++;
if (sess->listener->counters)
sess->listener->counters->denied_conn++;
result = 0;
break;
}
else if (rule->action >= ACT_ACTION_TRK_SC0 && rule->action <= ACT_ACTION_TRK_SCMAX) {
/* Note: only the first valid tracking parameter of each
* applies.
*/
struct stktable_key *key;
if (stkctr_entry(&sess->stkctr[tcp_trk_idx(rule->action)]))
continue;
t = rule->arg.trk_ctr.table.t;
key = stktable_fetch_key(t, sess->fe, sess, NULL, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.trk_ctr.expr, NULL);
if (key && (ts = stktable_get_entry(t, key)))
stream_track_stkctr(&sess->stkctr[tcp_trk_idx(rule->action)], t, ts);
}
else if (rule->action == ACT_TCP_EXPECT_PX) {
conn->flags |= CO_FL_ACCEPT_PROXY;
conn_sock_want_recv(conn);
}
else if (rule->action == ACT_TCP_EXPECT_CIP) {
conn->flags |= CO_FL_ACCEPT_CIP;
conn_sock_want_recv(conn);
}
else {
/* Custom keywords. */
if (!rule->action_ptr)
break;
switch (rule->action_ptr(rule, sess->fe, sess, NULL, ACT_FLAG_FINAL | ACT_FLAG_FIRST)) {
case ACT_RET_YIELD:
/* yield is not allowed at this point. If this return code is
* used it is a bug, so I prefer to abort the process.
*/
send_log(sess->fe, LOG_WARNING,
"Internal error: yield not allowed with tcp-request connection actions.");
case ACT_RET_STOP:
break;
case ACT_RET_CONT:
continue;
case ACT_RET_ERR:
result = 0;
break;
}
break; /* ACT_RET_STOP */
}
}
}
return result;
}
/*
* Execute the "set-src" action. May be called from {tcp,http}request
*/
enum act_return tcp_action_req_set_src(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct connection *cli_conn;
if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn)) {
struct sample *smp;
smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_ADDR);
if (smp) {
if (smp->data.type == SMP_T_IPV4) {
((struct sockaddr_in *)&cli_conn->addr.from)->sin_family = AF_INET;
((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr.s_addr = smp->data.u.ipv4.s_addr;
((struct sockaddr_in *)&cli_conn->addr.from)->sin_port = 0;
} else if (smp->data.type == SMP_T_IPV6) {
((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_family = AF_INET6;
memcpy(&((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr, &smp->data.u.ipv6, sizeof(struct in6_addr));
((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_port = 0;
}
}
cli_conn->flags |= CO_FL_ADDR_FROM_SET;
}
return ACT_RET_CONT;
}
/*
* Execute the "set-dst" action. May be called from {tcp,http}request
*/
enum act_return tcp_action_req_set_dst(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct connection *cli_conn;
if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn)) {
struct sample *smp;
smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_ADDR);
if (smp) {
if (smp->data.type == SMP_T_IPV4) {
((struct sockaddr_in *)&cli_conn->addr.to)->sin_family = AF_INET;
((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr.s_addr = smp->data.u.ipv4.s_addr;
} else if (smp->data.type == SMP_T_IPV6) {
((struct sockaddr_in6 *)&cli_conn->addr.to)->sin6_family = AF_INET6;
memcpy(&((struct sockaddr_in6 *)&cli_conn->addr.to)->sin6_addr, &smp->data.u.ipv6, sizeof(struct in6_addr));
((struct sockaddr_in6 *)&cli_conn->addr.to)->sin6_port = 0;
}
cli_conn->flags |= CO_FL_ADDR_TO_SET;
}
}
return ACT_RET_CONT;
}
/*
* Execute the "set-src-port" action. May be called from {tcp,http}request
* We must test the sin_family before setting the port
*/
enum act_return tcp_action_req_set_src_port(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct connection *cli_conn;
if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn)) {
struct sample *smp;
conn_get_from_addr(cli_conn);
smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_SINT);
if (smp) {
if (((struct sockaddr_storage *)&cli_conn->addr.from)->ss_family == AF_INET) {
((struct sockaddr_in *)&cli_conn->addr.from)->sin_port = htons(smp->data.u.sint);
} else if (((struct sockaddr_storage *)&cli_conn->addr.from)->ss_family == AF_INET6) {
((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_port = htons(smp->data.u.sint);
}
}
}
return ACT_RET_CONT;
}
/*
* Execute the "set-dst-port" action. May be called from {tcp,http}request
* We must test the sin_family before setting the port
*/
enum act_return tcp_action_req_set_dst_port(struct act_rule *rule, struct proxy *px,
struct session *sess, struct stream *s, int flags)
{
struct connection *cli_conn;
if ((cli_conn = objt_conn(sess->origin)) && conn_ctrl_ready(cli_conn)) {
struct sample *smp;
conn_get_to_addr(cli_conn);
smp = sample_fetch_as_type(px, sess, s, SMP_OPT_DIR_REQ|SMP_OPT_FINAL, rule->arg.expr, SMP_T_SINT);
if (smp) {
if (((struct sockaddr_storage *)&cli_conn->addr.to)->ss_family == AF_INET) {
((struct sockaddr_in *)&cli_conn->addr.to)->sin_port = htons(smp->data.u.sint);
} else if (((struct sockaddr_storage *)&cli_conn->addr.to)->ss_family == AF_INET6) {
((struct sockaddr_in6 *)&cli_conn->addr.to)->sin6_port = htons(smp->data.u.sint);
}
}
}
return ACT_RET_CONT;
}
/* Executes the "silent-drop" action. May be called from {tcp,http}{request,response} */
static enum act_return tcp_exec_action_silent_drop(struct act_rule *rule, struct proxy *px, struct session *sess, struct stream *strm, int flags)
{
struct connection *conn = objt_conn(sess->origin);
if (!conn)
goto out;
if (!conn_ctrl_ready(conn))
goto out;
#ifdef TCP_QUICKACK
/* drain is needed only to send the quick ACK */
conn_sock_drain(conn);
/* re-enable quickack if it was disabled to ack all data and avoid
* retransmits from the client that might trigger a real reset.
*/
setsockopt(conn->t.sock.fd, SOL_TCP, TCP_QUICKACK, &one, sizeof(one));
#endif
/* lingering must absolutely be disabled so that we don't send a
* shutdown(), this is critical to the TCP_REPAIR trick. When no stream
* is present, returning with ERR will cause lingering to be disabled.
*/
if (strm)
strm->si[0].flags |= SI_FL_NOLINGER;
/* We're on the client-facing side, we must force to disable lingering to
* ensure we will use an RST exclusively and kill any pending data.
*/
fdtab[conn->t.sock.fd].linger_risk = 1;
#ifdef TCP_REPAIR
if (setsockopt(conn->t.sock.fd, SOL_TCP, TCP_REPAIR, &one, sizeof(one)) == 0) {
/* socket will be quiet now */
goto out;
}
#endif
/* either TCP_REPAIR is not defined or it failed (eg: permissions).
* Let's fall back on the TTL trick, though it only works for routed
* network and has no effect on local net.
*/
#ifdef IP_TTL
setsockopt(conn->t.sock.fd, SOL_IP, IP_TTL, &one, sizeof(one));
#endif
out:
/* kill the stream if any */
if (strm) {
channel_abort(&strm->req);
channel_abort(&strm->res);
strm->req.analysers = 0;
strm->res.analysers = 0;
strm->be->be_counters.denied_req++;
if (!(strm->flags & SF_ERR_MASK))
strm->flags |= SF_ERR_PRXCOND;
if (!(strm->flags & SF_FINST_MASK))
strm->flags |= SF_FINST_R;
}
sess->fe->fe_counters.denied_req++;
if (sess->listener->counters)
sess->listener->counters->denied_req++;
return ACT_RET_STOP;
}
/* Parse a tcp-response rule. Return a negative value in case of failure */
static int tcp_parse_response_rule(char **args, int arg, int section_type,
struct proxy *curpx, struct proxy *defpx,
struct act_rule *rule, char **err,
unsigned int where,
const char *file, int line)
{
if (curpx == defpx || !(curpx->cap & PR_CAP_BE)) {
memprintf(err, "%s %s is only allowed in 'backend' sections",
args[0], args[1]);
return -1;
}
if (strcmp(args[arg], "accept") == 0) {
arg++;
rule->action = ACT_ACTION_ALLOW;
}
else if (strcmp(args[arg], "reject") == 0) {
arg++;
rule->action = ACT_ACTION_DENY;
}
else if (strcmp(args[arg], "close") == 0) {
arg++;
rule->action = ACT_TCP_CLOSE;
}
else {
struct action_kw *kw;
kw = tcp_res_cont_action(args[arg]);
if (kw) {
arg++;
rule->from = ACT_F_TCP_RES_CNT;
rule->kw = kw;
if (kw->parse((const char **)args, &arg, curpx, rule, err) == ACT_RET_PRS_ERR)
return -1;
} else {
action_build_list(&tcp_res_cont_keywords, &trash);
memprintf(err,
"'%s %s' expects 'accept', 'close', 'reject', %s in %s '%s' (got '%s')",
args[0], args[1], trash.str, proxy_type_str(curpx), curpx->id, args[arg]);
return -1;
}
}
if (strcmp(args[arg], "if") == 0 || strcmp(args[arg], "unless") == 0) {
if ((rule->cond = build_acl_cond(file, line, curpx, (const char **)args+arg, err)) == NULL) {
memprintf(err,
"'%s %s %s' : error detected in %s '%s' while parsing '%s' condition : %s",
args[0], args[1], args[2], proxy_type_str(curpx), curpx->id, args[arg], *err);
return -1;
}
}
else if (*args[arg]) {
memprintf(err,
"'%s %s %s' only accepts 'if' or 'unless', in %s '%s' (got '%s')",
args[0], args[1], args[2], proxy_type_str(curpx), curpx->id, args[arg]);
return -1;
}
return 0;
}
/* Parse a tcp-request rule. Return a negative value in case of failure */
static int tcp_parse_request_rule(char **args, int arg, int section_type,
struct proxy *curpx, struct proxy *defpx,
struct act_rule *rule, char **err,
unsigned int where, const char *file, int line)
{
if (curpx == defpx) {
memprintf(err, "%s %s is not allowed in 'defaults' sections",
args[0], args[1]);
return -1;
}
if (!strcmp(args[arg], "accept")) {
arg++;
rule->action = ACT_ACTION_ALLOW;
}
else if (!strcmp(args[arg], "reject")) {
arg++;
rule->action = ACT_ACTION_DENY;
}
else if (strcmp(args[arg], "capture") == 0) {
struct sample_expr *expr;
struct cap_hdr *hdr;
int kw = arg;
int len = 0;
if (!(curpx->cap & PR_CAP_FE)) {
memprintf(err,
"'%s %s %s' : proxy '%s' has no frontend capability",
args[0], args[1], args[kw], curpx->id);
return -1;
}
if (!(where & SMP_VAL_FE_REQ_CNT)) {
memprintf(err,
"'%s %s' is not allowed in '%s %s' rules in %s '%s'",
args[arg], args[arg+1], args[0], args[1], proxy_type_str(curpx), curpx->id);
return -1;
}
arg++;
curpx->conf.args.ctx = ARGC_CAP;
expr = sample_parse_expr(args, &arg, file, line, err, &curpx->conf.args);
if (!expr) {
memprintf(err,
"'%s %s %s' : %s",
args[0], args[1], args[kw], *err);
return -1;
}
if (!(expr->fetch->val & where)) {
memprintf(err,
"'%s %s %s' : fetch method '%s' extracts information from '%s', none of which is available here",
args[0], args[1], args[kw], args[arg-1], sample_src_names(expr->fetch->use));
free(expr);
return -1;
}
if (strcmp(args[arg], "len") == 0) {
arg++;
if (!args[arg]) {
memprintf(err,
"'%s %s %s' : missing length value",
args[0], args[1], args[kw]);
free(expr);
return -1;
}
/* we copy the table name for now, it will be resolved later */
len = atoi(args[arg]);
if (len <= 0) {
memprintf(err,
"'%s %s %s' : length must be > 0",
args[0], args[1], args[kw]);
free(expr);
return -1;
}
arg++;
}
if (!len) {
memprintf(err,
"'%s %s %s' : a positive 'len' argument is mandatory",
args[0], args[1], args[kw]);
free(expr);
return -1;
}
hdr = calloc(1, sizeof(*hdr));
hdr->next = curpx->req_cap;
hdr->name = NULL; /* not a header capture */
hdr->namelen = 0;
hdr->len = len;
hdr->pool = create_pool("caphdr", hdr->len + 1, MEM_F_SHARED);
hdr->index = curpx->nb_req_cap++;
curpx->req_cap = hdr;
curpx->to_log |= LW_REQHDR;
/* check if we need to allocate an hdr_idx struct for HTTP parsing */
curpx->http_needed |= !!(expr->fetch->use & SMP_USE_HTTP_ANY);
rule->arg.cap.expr = expr;
rule->arg.cap.hdr = hdr;
rule->action = ACT_TCP_CAPTURE;
}
else if (strncmp(args[arg], "track-sc", 8) == 0 &&
args[arg][9] == '\0' && args[arg][8] >= '0' &&
args[arg][8] < '0' + MAX_SESS_STKCTR) { /* track-sc 0..9 */
struct sample_expr *expr;
int kw = arg;
arg++;
curpx->conf.args.ctx = ARGC_TRK;
expr = sample_parse_expr(args, &arg, file, line, err, &curpx->conf.args);
if (!expr) {
memprintf(err,
"'%s %s %s' : %s",
args[0], args[1], args[kw], *err);
return -1;
}
if (!(expr->fetch->val & where)) {
memprintf(err,
"'%s %s %s' : fetch method '%s' extracts information from '%s', none of which is available here",
args[0], args[1], args[kw], args[arg-1], sample_src_names(expr->fetch->use));
free(expr);
return -1;
}
/* check if we need to allocate an hdr_idx struct for HTTP parsing */
curpx->http_needed |= !!(expr->fetch->use & SMP_USE_HTTP_ANY);
if (strcmp(args[arg], "table") == 0) {
arg++;
if (!args[arg]) {
memprintf(err,
"'%s %s %s' : missing table name",
args[0], args[1], args[kw]);
free(expr);
return -1;
}
/* we copy the table name for now, it will be resolved later */
rule->arg.trk_ctr.table.n = strdup(args[arg]);
arg++;
}
rule->arg.trk_ctr.expr = expr;
rule->action = ACT_ACTION_TRK_SC0 + args[kw][8] - '0';
}
else if (strcmp(args[arg], "expect-proxy") == 0) {
if (strcmp(args[arg+1], "layer4") != 0) {
memprintf(err,
"'%s %s %s' only supports 'layer4' in %s '%s' (got '%s')",
args[0], args[1], args[arg], proxy_type_str(curpx), curpx->id, args[arg+1]);
return -1;
}
if (!(where & SMP_VAL_FE_CON_ACC)) {
memprintf(err,
"'%s %s' is not allowed in '%s %s' rules in %s '%s'",
args[arg], args[arg+1], args[0], args[1], proxy_type_str(curpx), curpx->id);
return -1;
}
arg += 2;
rule->action = ACT_TCP_EXPECT_PX;
}
else if (strcmp(args[arg], "expect-netscaler-cip") == 0) {
if (strcmp(args[arg+1], "layer4") != 0) {
memprintf(err,
"'%s %s %s' only supports 'layer4' in %s '%s' (got '%s')",
args[0], args[1], args[arg], proxy_type_str(curpx), curpx->id, args[arg+1]);
return -1;
}
if (!(where & SMP_VAL_FE_CON_ACC)) {
memprintf(err,
"'%s %s' is not allowed in '%s %s' rules in %s '%s'",
args[arg], args[arg+1], args[0], args[1], proxy_type_str(curpx), curpx->id);
return -1;
}
arg += 2;
rule->action = ACT_TCP_EXPECT_CIP;
}
else {
struct action_kw *kw;
if (where & SMP_VAL_FE_CON_ACC) {
kw = tcp_req_conn_action(args[arg]);
rule->kw = kw;
rule->from = ACT_F_TCP_REQ_CON;
} else {
kw = tcp_req_cont_action(args[arg]);
rule->kw = kw;
rule->from = ACT_F_TCP_REQ_CNT;
}
if (kw) {
arg++;
if (kw->parse((const char **)args, &arg, curpx, rule, err) == ACT_RET_PRS_ERR)
return -1;
} else {
if (where & SMP_VAL_FE_CON_ACC)
action_build_list(&tcp_req_conn_keywords, &trash);
else
action_build_list(&tcp_req_cont_keywords, &trash);
memprintf(err,
"'%s %s' expects 'accept', 'reject', 'track-sc0' ... 'track-sc%d', %s "
"in %s '%s' (got '%s').\n",
args[0], args[1], MAX_SESS_STKCTR-1, trash.str, proxy_type_str(curpx),
curpx->id, args[arg]);
return -1;
}
}
if (strcmp(args[arg], "if") == 0 || strcmp(args[arg], "unless") == 0) {
if ((rule->cond = build_acl_cond(file, line, curpx, (const char **)args+arg, err)) == NULL) {
memprintf(err,
"'%s %s %s' : error detected in %s '%s' while parsing '%s' condition : %s",
args[0], args[1], args[2], proxy_type_str(curpx), curpx->id, args[arg], *err);
return -1;
}
}
else if (*args[arg]) {
memprintf(err,
"'%s %s %s' only accepts 'if' or 'unless', in %s '%s' (got '%s')",
args[0], args[1], args[2], proxy_type_str(curpx), curpx->id, args[arg]);
return -1;
}
return 0;
}
/* This function should be called to parse a line starting with the "tcp-response"
* keyword.
*/
static int tcp_parse_tcp_rep(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
const char *ptr = NULL;
unsigned int val;
int warn = 0;
int arg;
struct act_rule *rule;
unsigned int where;
const struct acl *acl;
const char *kw;
if (!*args[1]) {
memprintf(err, "missing argument for '%s' in %s '%s'",
args[0], proxy_type_str(curpx), curpx->id);
return -1;
}
if (strcmp(args[1], "inspect-delay") == 0) {
if (curpx == defpx || !(curpx->cap & PR_CAP_BE)) {
memprintf(err, "%s %s is only allowed in 'backend' sections",
args[0], args[1]);
return -1;
}
if (!*args[2] || (ptr = parse_time_err(args[2], &val, TIME_UNIT_MS))) {
memprintf(err,
"'%s %s' expects a positive delay in milliseconds, in %s '%s'",
args[0], args[1], proxy_type_str(curpx), curpx->id);
if (ptr)
memprintf(err, "%s (unexpected character '%c')", *err, *ptr);
return -1;
}
if (curpx->tcp_rep.inspect_delay) {
memprintf(err, "ignoring %s %s (was already defined) in %s '%s'",
args[0], args[1], proxy_type_str(curpx), curpx->id);
return 1;
}
curpx->tcp_rep.inspect_delay = val;
return 0;
}
rule = calloc(1, sizeof(*rule));
LIST_INIT(&rule->list);
arg = 1;
where = 0;
if (strcmp(args[1], "content") == 0) {
arg++;
if (curpx->cap & PR_CAP_FE)
where |= SMP_VAL_FE_RES_CNT;
if (curpx->cap & PR_CAP_BE)
where |= SMP_VAL_BE_RES_CNT;
if (tcp_parse_response_rule(args, arg, section_type, curpx, defpx, rule, err, where, file, line) < 0)
goto error;
acl = rule->cond ? acl_cond_conflicts(rule->cond, where) : NULL;
if (acl) {
if (acl->name && *acl->name)
memprintf(err,
"acl '%s' will never match in '%s %s' because it only involves keywords that are incompatible with '%s'",
acl->name, args[0], args[1], sample_ckp_names(where));
else
memprintf(err,
"anonymous acl will never match in '%s %s' because it uses keyword '%s' which is incompatible with '%s'",
args[0], args[1],
LIST_ELEM(acl->expr.n, struct acl_expr *, list)->kw,
sample_ckp_names(where));
warn++;
}
else if (rule->cond && acl_cond_kw_conflicts(rule->cond, where, &acl, &kw)) {
if (acl->name && *acl->name)
memprintf(err,
"acl '%s' involves keyword '%s' which is incompatible with '%s'",
acl->name, kw, sample_ckp_names(where));
else
memprintf(err,
"anonymous acl involves keyword '%s' which is incompatible with '%s'",
kw, sample_ckp_names(where));
warn++;
}
LIST_ADDQ(&curpx->tcp_rep.inspect_rules, &rule->list);
}
else {
memprintf(err,
"'%s' expects 'inspect-delay' or 'content' in %s '%s' (got '%s')",
args[0], proxy_type_str(curpx), curpx->id, args[1]);
goto error;
}
return warn;
error:
free(rule);
return -1;
}
/* This function should be called to parse a line starting with the "tcp-request"
* keyword.
*/
static int tcp_parse_tcp_req(char **args, int section_type, struct proxy *curpx,
struct proxy *defpx, const char *file, int line,
char **err)
{
const char *ptr = NULL;
unsigned int val;
int warn = 0;
int arg;
struct act_rule *rule;
unsigned int where;
const struct acl *acl;
const char *kw;
if (!*args[1]) {
if (curpx == defpx)
memprintf(err, "missing argument for '%s' in defaults section", args[0]);
else
memprintf(err, "missing argument for '%s' in %s '%s'",
args[0], proxy_type_str(curpx), curpx->id);
return -1;
}
if (!strcmp(args[1], "inspect-delay")) {
if (curpx == defpx) {
memprintf(err, "%s %s is not allowed in 'defaults' sections",
args[0], args[1]);
return -1;
}
if (!*args[2] || (ptr = parse_time_err(args[2], &val, TIME_UNIT_MS))) {
memprintf(err,
"'%s %s' expects a positive delay in milliseconds, in %s '%s'",
args[0], args[1], proxy_type_str(curpx), curpx->id);
if (ptr)
memprintf(err, "%s (unexpected character '%c')", *err, *ptr);
return -1;
}
if (curpx->tcp_req.inspect_delay) {
memprintf(err, "ignoring %s %s (was already defined) in %s '%s'",
args[0], args[1], proxy_type_str(curpx), curpx->id);
return 1;
}
curpx->tcp_req.inspect_delay = val;
return 0;
}
rule = calloc(1, sizeof(*rule));
LIST_INIT(&rule->list);
arg = 1;
where = 0;
if (strcmp(args[1], "content") == 0) {
arg++;
if (curpx->cap & PR_CAP_FE)
where |= SMP_VAL_FE_REQ_CNT;
if (curpx->cap & PR_CAP_BE)
where |= SMP_VAL_BE_REQ_CNT;
if (tcp_parse_request_rule(args, arg, section_type, curpx, defpx, rule, err, where, file, line) < 0)
goto error;
acl = rule->cond ? acl_cond_conflicts(rule->cond, where) : NULL;
if (acl) {
if (acl->name && *acl->name)
memprintf(err,
"acl '%s' will never match in '%s %s' because it only involves keywords that are incompatible with '%s'",
acl->name, args[0], args[1], sample_ckp_names(where));
else
memprintf(err,
"anonymous acl will never match in '%s %s' because it uses keyword '%s' which is incompatible with '%s'",
args[0], args[1],
LIST_ELEM(acl->expr.n, struct acl_expr *, list)->kw,
sample_ckp_names(where));
warn++;
}
else if (rule->cond && acl_cond_kw_conflicts(rule->cond, where, &acl, &kw)) {
if (acl->name && *acl->name)
memprintf(err,
"acl '%s' involves keyword '%s' which is incompatible with '%s'",
acl->name, kw, sample_ckp_names(where));
else
memprintf(err,
"anonymous acl involves keyword '%s' which is incompatible with '%s'",
kw, sample_ckp_names(where));
warn++;
}
/* the following function directly emits the warning */
warnif_misplaced_tcp_cont(curpx, file, line, args[0]);
LIST_ADDQ(&curpx->tcp_req.inspect_rules, &rule->list);
}
else if (strcmp(args[1], "connection") == 0) {
arg++;
if (!(curpx->cap & PR_CAP_FE)) {
memprintf(err, "%s %s is not allowed because %s %s is not a frontend",
args[0], args[1], proxy_type_str(curpx), curpx->id);
goto error;
}
where |= SMP_VAL_FE_CON_ACC;
if (tcp_parse_request_rule(args, arg, section_type, curpx, defpx, rule, err, where, file, line) < 0)
goto error;
acl = rule->cond ? acl_cond_conflicts(rule->cond, where) : NULL;
if (acl) {
if (acl->name && *acl->name)
memprintf(err,
"acl '%s' will never match in '%s %s' because it only involves keywords that are incompatible with '%s'",
acl->name, args[0], args[1], sample_ckp_names(where));
else
memprintf(err,
"anonymous acl will never match in '%s %s' because it uses keyword '%s' which is incompatible with '%s'",
args[0], args[1],
LIST_ELEM(acl->expr.n, struct acl_expr *, list)->kw,
sample_ckp_names(where));
warn++;
}
else if (rule->cond && acl_cond_kw_conflicts(rule->cond, where, &acl, &kw)) {
if (acl->name && *acl->name)
memprintf(err,
"acl '%s' involves keyword '%s' which is incompatible with '%s'",
acl->name, kw, sample_ckp_names(where));
else
memprintf(err,
"anonymous acl involves keyword '%s' which is incompatible with '%s'",
kw, sample_ckp_names(where));
warn++;
}
/* the following function directly emits the warning */
warnif_misplaced_tcp_conn(curpx, file, line, args[0]);
LIST_ADDQ(&curpx->tcp_req.l4_rules, &rule->list);
}
else {
if (curpx == defpx)
memprintf(err,
"'%s' expects 'inspect-delay', 'connection', or 'content' in defaults section (got '%s')",
args[0], args[1]);
else
memprintf(err,
"'%s' expects 'inspect-delay', 'connection', or 'content' in %s '%s' (got '%s')",
args[0], proxy_type_str(curpx), curpx->id, args[1]);
goto error;
}
return warn;
error:
free(rule);
return -1;
}
/* parse "set-{src,dst}[-port]" action */
enum act_parse_ret tcp_parse_set_src_dst(const char **args, int *orig_arg, struct proxy *px, struct act_rule *rule, char **err)
{
int cur_arg;
struct sample_expr *expr;
unsigned int where;
cur_arg = *orig_arg;
expr = sample_parse_expr((char **)args, &cur_arg, px->conf.args.file, px->conf.args.line, err, &px->conf.args);
if (!expr)
return ACT_RET_PRS_ERR;
where = 0;
if (proxy->cap & PR_CAP_FE)
where |= SMP_VAL_FE_HRQ_HDR;
if (proxy->cap & PR_CAP_BE)
where |= SMP_VAL_BE_HRQ_HDR;
if (!(expr->fetch->val & where)) {
memprintf(err,
"fetch method '%s' extracts information from '%s', none of which is available here",
args[cur_arg-1], sample_src_names(expr->fetch->use));
free(expr);
return ACT_RET_PRS_ERR;
}
rule->arg.expr = expr;
rule->action = ACT_CUSTOM;
if (!strcmp(args[*orig_arg-1], "set-src")) {
rule->action_ptr = tcp_action_req_set_src;
} else if (!strcmp(args[*orig_arg-1], "set-src-port")) {
rule->action_ptr = tcp_action_req_set_src_port;
} else if (!strcmp(args[*orig_arg-1], "set-dst")) {
rule->action_ptr = tcp_action_req_set_dst;
} else if (!strcmp(args[*orig_arg-1], "set-dst-port")) {
rule->action_ptr = tcp_action_req_set_dst_port;
} else {
return ACT_RET_PRS_ERR;
}
(*orig_arg)++;
return ACT_RET_PRS_OK;
}
/* Parse a "silent-drop" action. It takes no argument. It returns ACT_RET_PRS_OK on
* success, ACT_RET_PRS_ERR on error.
*/
static enum act_parse_ret tcp_parse_silent_drop(const char **args, int *orig_arg, struct proxy *px,
struct act_rule *rule, char **err)
{
rule->action = ACT_CUSTOM;
rule->action_ptr = tcp_exec_action_silent_drop;
return ACT_RET_PRS_OK;
}
/************************************************************************/
/* All supported sample fetch functions must be declared here */
/************************************************************************/
/* fetch the connection's source IPv4/IPv6 address */
int smp_fetch_src(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *cli_conn = objt_conn(smp->sess->origin);
if (!cli_conn)
return 0;
switch (cli_conn->addr.from.ss_family) {
case AF_INET:
smp->data.u.ipv4 = ((struct sockaddr_in *)&cli_conn->addr.from)->sin_addr;
smp->data.type = SMP_T_IPV4;
break;
case AF_INET6:
smp->data.u.ipv6 = ((struct sockaddr_in6 *)&cli_conn->addr.from)->sin6_addr;
smp->data.type = SMP_T_IPV6;
break;
default:
return 0;
}
smp->flags = 0;
return 1;
}
/* set temp integer to the connection's source port */
static int
smp_fetch_sport(const struct arg *args, struct sample *smp, const char *k, void *private)
{
struct connection *cli_conn = objt_conn(smp->sess->origin);
if (!cli_conn)
return 0;
smp->data.type = SMP_T_SINT;
if (!(smp->data.u.sint = get_host_port(&cli_conn->addr.from)))
return 0;
smp->flags = 0;
return 1;
}
/* fetch the connection's destination IPv4/IPv6 address */
static int
smp_fetch_dst(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *cli_conn = objt_conn(smp->sess->origin);
if (!cli_conn)
return 0;
conn_get_to_addr(cli_conn);
switch (cli_conn->addr.to.ss_family) {
case AF_INET:
smp->data.u.ipv4 = ((struct sockaddr_in *)&cli_conn->addr.to)->sin_addr;
smp->data.type = SMP_T_IPV4;
break;
case AF_INET6:
smp->data.u.ipv6 = ((struct sockaddr_in6 *)&cli_conn->addr.to)->sin6_addr;
smp->data.type = SMP_T_IPV6;
break;
default:
return 0;
}
smp->flags = 0;
return 1;
}
/* set temp integer to the frontend connexion's destination port */
static int
smp_fetch_dport(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
struct connection *cli_conn = objt_conn(smp->sess->origin);
if (!cli_conn)
return 0;
conn_get_to_addr(cli_conn);
smp->data.type = SMP_T_SINT;
if (!(smp->data.u.sint = get_host_port(&cli_conn->addr.to)))
return 0;
smp->flags = 0;
return 1;
}
#ifdef TCP_INFO
/* Returns some tcp_info data is its avalaible. "dir" must be set to 0 if
* the client connection is require, otherwise it is set to 1. "val" represents
* the required value. Use 0 for rtt and 1 for rttavg. "unit" is the expected unit
* by default, the rtt is in us. Id "unit" is set to 0, the unit is us, if it is
* set to 1, the untis are milliseconds.
* If the function fails it returns 0, otherwise it returns 1 and "result" is filled.
*/
static inline int get_tcp_info(const struct arg *args, struct sample *smp,
int dir, int val)
{
struct connection *conn;
struct tcp_info info;
socklen_t optlen;
/* strm can be null. */
if (!smp->strm)
return 0;
/* get the object associated with the stream interface.The
* object can be other thing than a connection. For example,
* it be a appctx. */
conn = objt_conn(smp->strm->si[dir].end);
if (!conn)
return 0;
/* The fd may not be avalaible for the tcp_info struct, and the
syscal can fail. */
optlen = sizeof(info);
if (getsockopt(conn->t.sock.fd, SOL_TCP, TCP_INFO, &info, &optlen) == -1)
return 0;
/* extract the value. */
smp->data.type = SMP_T_SINT;
switch (val) {
case 0: smp->data.u.sint = info.tcpi_rtt; break;
case 1: smp->data.u.sint = info.tcpi_rttvar; break;
default: return 0;
}
/* Convert the value as expected. */
if (args) {
if (args[0].type == ARGT_STR) {
if (strcmp(args[0].data.str.str, "us") == 0) {
/* Do nothing. */
} else if (strcmp(args[0].data.str.str, "ms") == 0) {
smp->data.u.sint = (smp->data.u.sint + 500) / 1000;
} else
return 0;
} else if (args[0].type == ARGT_STOP) {
smp->data.u.sint = (smp->data.u.sint + 500) / 1000;
} else
return 0;
}
return 1;
}
/* get the mean rtt of a client connexion */
static int
smp_fetch_fc_rtt(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!get_tcp_info(args, smp, 0, 0))
return 0;
return 1;
}
/* get the variance of the mean rtt of a client connexion */
static int
smp_fetch_fc_rttvar(const struct arg *args, struct sample *smp, const char *kw, void *private)
{
if (!get_tcp_info(args, smp, 0, 1))
return 0;
return 1;
}
#endif
#ifdef IPV6_V6ONLY
/* parse the "v4v6" bind keyword */
static int bind_parse_v4v6(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
list_for_each_entry(l, &conf->listeners, by_bind) {
if (l->addr.ss_family == AF_INET6)
l->options |= LI_O_V4V6;
}
return 0;
}
/* parse the "v6only" bind keyword */
static int bind_parse_v6only(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
list_for_each_entry(l, &conf->listeners, by_bind) {
if (l->addr.ss_family == AF_INET6)
l->options |= LI_O_V6ONLY;
}
return 0;
}
#endif
#ifdef CONFIG_HAP_TRANSPARENT
/* parse the "transparent" bind keyword */
static int bind_parse_transparent(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
list_for_each_entry(l, &conf->listeners, by_bind) {
if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6)
l->options |= LI_O_FOREIGN;
}
return 0;
}
#endif
#ifdef TCP_DEFER_ACCEPT
/* parse the "defer-accept" bind keyword */
static int bind_parse_defer_accept(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
list_for_each_entry(l, &conf->listeners, by_bind) {
if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6)
l->options |= LI_O_DEF_ACCEPT;
}
return 0;
}
#endif
#ifdef TCP_FASTOPEN
/* parse the "tfo" bind keyword */
static int bind_parse_tfo(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
list_for_each_entry(l, &conf->listeners, by_bind) {
if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6)
l->options |= LI_O_TCP_FO;
}
return 0;
}
#endif
#ifdef TCP_MAXSEG
/* parse the "mss" bind keyword */
static int bind_parse_mss(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
int mss;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing MSS value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
mss = atoi(args[cur_arg + 1]);
if (!mss || abs(mss) > 65535) {
memprintf(err, "'%s' : expects an MSS with and absolute value between 1 and 65535", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind) {
if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6)
l->maxseg = mss;
}
return 0;
}
#endif
#ifdef TCP_USER_TIMEOUT
/* parse the "tcp-ut" bind keyword */
static int bind_parse_tcp_ut(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
const char *ptr = NULL;
struct listener *l;
unsigned int timeout;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing TCP User Timeout value", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
ptr = parse_time_err(args[cur_arg + 1], &timeout, TIME_UNIT_MS);
if (ptr) {
memprintf(err, "'%s' : expects a positive delay in milliseconds", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind) {
if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6)
l->tcp_ut = timeout;
}
return 0;
}
#endif
#ifdef SO_BINDTODEVICE
/* parse the "interface" bind keyword */
static int bind_parse_interface(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing interface name", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
list_for_each_entry(l, &conf->listeners, by_bind) {
if (l->addr.ss_family == AF_INET || l->addr.ss_family == AF_INET6)
l->interface = strdup(args[cur_arg + 1]);
}
global.last_checks |= LSTCHK_NETADM;
return 0;
}
#endif
#ifdef CONFIG_HAP_NS
/* parse the "namespace" bind keyword */
static int bind_parse_namespace(char **args, int cur_arg, struct proxy *px, struct bind_conf *conf, char **err)
{
struct listener *l;
char *namespace = NULL;
if (!*args[cur_arg + 1]) {
memprintf(err, "'%s' : missing namespace id", args[cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
namespace = args[cur_arg + 1];
list_for_each_entry(l, &conf->listeners, by_bind) {
l->netns = netns_store_lookup(namespace, strlen(namespace));
if (l->netns == NULL)
l->netns = netns_store_insert(namespace);
if (l->netns == NULL) {
Alert("Cannot open namespace '%s'.\n", args[cur_arg + 1]);
return ERR_ALERT | ERR_FATAL;
}
}
return 0;
}
#endif
#ifdef TCP_USER_TIMEOUT
/* parse the "tcp-ut" server keyword */
static int srv_parse_tcp_ut(char **args, int *cur_arg, struct proxy *px, struct server *newsrv, char **err)
{
const char *ptr = NULL;
unsigned int timeout;
if (!*args[*cur_arg + 1]) {
memprintf(err, "'%s' : missing TCP User Timeout value", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
ptr = parse_time_err(args[*cur_arg + 1], &timeout, TIME_UNIT_MS);
if (ptr) {
memprintf(err, "'%s' : expects a positive delay in milliseconds", args[*cur_arg]);
return ERR_ALERT | ERR_FATAL;
}
if (newsrv->addr.ss_family == AF_INET || newsrv->addr.ss_family == AF_INET6)
newsrv->tcp_ut = timeout;
return 0;
}
#endif
static struct cfg_kw_list cfg_kws = {ILH, {
{ CFG_LISTEN, "tcp-request", tcp_parse_tcp_req },
{ CFG_LISTEN, "tcp-response", tcp_parse_tcp_rep },
{ 0, NULL, NULL },
}};
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted.
*/
static struct acl_kw_list acl_kws = {ILH, {
{ /* END */ },
}};
/* Note: must not be declared <const> as its list will be overwritten.
* Note: fetches that may return multiple types must be declared as the lowest
* common denominator, the type that can be casted into all other ones. For
* instance v4/v6 must be declared v4.
*/
static struct sample_fetch_kw_list sample_fetch_keywords = {ILH, {
{ "dst", smp_fetch_dst, 0, NULL, SMP_T_IPV4, SMP_USE_L4CLI },
{ "dst_port", smp_fetch_dport, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI },
{ "src", smp_fetch_src, 0, NULL, SMP_T_IPV4, SMP_USE_L4CLI },
{ "src_port", smp_fetch_sport, 0, NULL, SMP_T_SINT, SMP_USE_L4CLI },
#ifdef TCP_INFO
{ "fc_rtt", smp_fetch_fc_rtt, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_L4CLI },
{ "fc_rttvar", smp_fetch_fc_rttvar, ARG1(0,STR), NULL, SMP_T_SINT, SMP_USE_L4CLI },
#endif
{ /* END */ },
}};
/************************************************************************/
/* All supported bind keywords must be declared here. */
/************************************************************************/
/* Note: must not be declared <const> as its list will be overwritten.
* Please take care of keeping this list alphabetically sorted, doing so helps
* all code contributors.
* Optional keywords are also declared with a NULL ->parse() function so that
* the config parser can report an appropriate error when a known keyword was
* not enabled.
*/
static struct bind_kw_list bind_kws = { "TCP", { }, {
#ifdef TCP_DEFER_ACCEPT
{ "defer-accept", bind_parse_defer_accept, 0 }, /* wait for some data for 1 second max before doing accept */
#endif
#ifdef SO_BINDTODEVICE
{ "interface", bind_parse_interface, 1 }, /* specifically bind to this interface */
#endif
#ifdef TCP_MAXSEG
{ "mss", bind_parse_mss, 1 }, /* set MSS of listening socket */
#endif
#ifdef TCP_USER_TIMEOUT
{ "tcp-ut", bind_parse_tcp_ut, 1 }, /* set User Timeout on listening socket */
#endif
#ifdef TCP_FASTOPEN
{ "tfo", bind_parse_tfo, 0 }, /* enable TCP_FASTOPEN of listening socket */
#endif
#ifdef CONFIG_HAP_TRANSPARENT
{ "transparent", bind_parse_transparent, 0 }, /* transparently bind to the specified addresses */
#endif
#ifdef IPV6_V6ONLY
{ "v4v6", bind_parse_v4v6, 0 }, /* force socket to bind to IPv4+IPv6 */
{ "v6only", bind_parse_v6only, 0 }, /* force socket to bind to IPv6 only */
#endif
#ifdef CONFIG_HAP_NS
{ "namespace", bind_parse_namespace, 1 },
#endif
/* the versions with the NULL parse function*/
{ "defer-accept", NULL, 0 },
{ "interface", NULL, 1 },
{ "mss", NULL, 1 },
{ "transparent", NULL, 0 },
{ "v4v6", NULL, 0 },
{ "v6only", NULL, 0 },
{ NULL, NULL, 0 },
}};
static struct srv_kw_list srv_kws = { "TCP", { }, {
#ifdef TCP_USER_TIMEOUT
{ "tcp-ut", srv_parse_tcp_ut, 1, 0 }, /* set TCP user timeout on server */
#endif
{ NULL, NULL, 0 },
}};
static struct action_kw_list tcp_req_conn_actions = {ILH, {
{ "silent-drop", tcp_parse_silent_drop },
{ "set-src", tcp_parse_set_src_dst },
{ "set-src-port", tcp_parse_set_src_dst },
{ "set-dst" , tcp_parse_set_src_dst },
{ "set-dst-port", tcp_parse_set_src_dst },
{ /* END */ }
}};
static struct action_kw_list tcp_req_cont_actions = {ILH, {
{ "silent-drop", tcp_parse_silent_drop },
{ /* END */ }
}};
static struct action_kw_list tcp_res_cont_actions = {ILH, {
{ "silent-drop", tcp_parse_silent_drop },
{ /* END */ }
}};
static struct action_kw_list http_req_actions = {ILH, {
{ "silent-drop", tcp_parse_silent_drop },
{ "set-src", tcp_parse_set_src_dst },
{ "set-src-port", tcp_parse_set_src_dst },
{ "set-dst", tcp_parse_set_src_dst },
{ "set-dst-port", tcp_parse_set_src_dst },
{ /* END */ }
}};
static struct action_kw_list http_res_actions = {ILH, {
{ "silent-drop", tcp_parse_silent_drop },
{ /* END */ }
}};
__attribute__((constructor))
static void __tcp_protocol_init(void)
{
protocol_register(&proto_tcpv4);
protocol_register(&proto_tcpv6);
sample_register_fetches(&sample_fetch_keywords);
cfg_register_keywords(&cfg_kws);
acl_register_keywords(&acl_kws);
bind_register_keywords(&bind_kws);
srv_register_keywords(&srv_kws);
tcp_req_conn_keywords_register(&tcp_req_conn_actions);
tcp_req_cont_keywords_register(&tcp_req_cont_actions);
tcp_res_cont_keywords_register(&tcp_res_cont_actions);
http_req_keywords_register(&http_req_actions);
http_res_keywords_register(&http_res_actions);
}
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/