haproxy/src/stats.c
Ilia Shipitsin a65c6d3574 CLEANUP: assorted typo fixes in the code and comments
This is 42nd iteration of typo fixes
2024-05-03 09:01:36 +02:00

1316 lines
52 KiB
C

/*
* Functions dedicated to statistics output and the stats socket
*
* Copyright 2000-2012 Willy Tarreau <w@1wt.eu>
* Copyright 2007-2009 Krzysztof Piotr Oledzki <ole@ans.pl>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
*/
#include <ctype.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <pwd.h>
#include <grp.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <import/ebsttree.h>
#include <haproxy/api.h>
#include <haproxy/activity.h>
#include <haproxy/applet.h>
#include <haproxy/base64.h>
#include <haproxy/cfgparse.h>
#include <haproxy/channel.h>
#include <haproxy/check.h>
#include <haproxy/cli.h>
#include <haproxy/clock.h>
#include <haproxy/compression.h>
#include <haproxy/debug.h>
#include <haproxy/errors.h>
#include <haproxy/freq_ctr.h>
#include <haproxy/global.h>
#include <haproxy/http.h>
#include <haproxy/http_ana.h>
#include <haproxy/http_htx.h>
#include <haproxy/htx.h>
#include <haproxy/list.h>
#include <haproxy/listener.h>
#include <haproxy/log.h>
#include <haproxy/map-t.h>
#include <haproxy/pattern-t.h>
#include <haproxy/pipe.h>
#include <haproxy/pool.h>
#include <haproxy/proxy.h>
#include <haproxy/resolvers.h>
#include <haproxy/sc_strm.h>
#include <haproxy/server.h>
#include <haproxy/session.h>
#include <haproxy/stats.h>
#include <haproxy/stats-file.h>
#include <haproxy/stats-html.h>
#include <haproxy/stats-json.h>
#include <haproxy/stats-proxy.h>
#include <haproxy/stconn.h>
#include <haproxy/stream.h>
#include <haproxy/task.h>
#include <haproxy/ticks.h>
#include <haproxy/time.h>
#include <haproxy/tools.h>
#include <haproxy/uri_auth-t.h>
#include <haproxy/version.h>
/* Convert stat_col <col> to old-style <name> as name_desc. */
static void stcol2ndesc(struct name_desc *name, const struct stat_col *col)
{
name->name = col->name;
name->desc = col->desc;
}
/* status codes available for the stats admin page (strictly 4 chars length) */
const char *stat_status_codes[STAT_STATUS_SIZE] = {
[STAT_STATUS_DENY] = "DENY",
[STAT_STATUS_DONE] = "DONE",
[STAT_STATUS_ERRP] = "ERRP",
[STAT_STATUS_EXCD] = "EXCD",
[STAT_STATUS_NONE] = "NONE",
[STAT_STATUS_PART] = "PART",
[STAT_STATUS_UNKN] = "UNKN",
[STAT_STATUS_IVAL] = "IVAL",
};
/* These are the column names for each ST_I_INF_* field position. Please pay attention
* to always use the exact same name except that the strings for new names must
* be lower case or CamelCase while the enum entries must be upper case.
*/
const struct name_desc stat_cols_info[ST_I_INF_MAX] = {
[ST_I_INF_NAME] = { .name = "Name", .desc = "Product name" },
[ST_I_INF_VERSION] = { .name = "Version", .desc = "Product version" },
[ST_I_INF_RELEASE_DATE] = { .name = "Release_date", .desc = "Date of latest source code update" },
[ST_I_INF_NBTHREAD] = { .name = "Nbthread", .desc = "Number of started threads (global.nbthread)" },
[ST_I_INF_NBPROC] = { .name = "Nbproc", .desc = "Number of started worker processes (historical, always 1)" },
[ST_I_INF_PROCESS_NUM] = { .name = "Process_num", .desc = "Relative worker process number (1)" },
[ST_I_INF_PID] = { .name = "Pid", .desc = "This worker process identifier for the system" },
[ST_I_INF_UPTIME] = { .name = "Uptime", .desc = "How long ago this worker process was started (days+hours+minutes+seconds)" },
[ST_I_INF_UPTIME_SEC] = { .name = "Uptime_sec", .desc = "How long ago this worker process was started (seconds)" },
[ST_I_INF_START_TIME_SEC] = { .name = "Start_time_sec", .desc = "Start time in seconds" },
[ST_I_INF_MEMMAX_MB] = { .name = "Memmax_MB", .desc = "Worker process's hard limit on memory usage in MB (-m on command line)" },
[ST_I_INF_MEMMAX_BYTES] = { .name = "Memmax_bytes", .desc = "Worker process's hard limit on memory usage in byes (-m on command line)" },
[ST_I_INF_POOL_ALLOC_MB] = { .name = "PoolAlloc_MB", .desc = "Amount of memory allocated in pools (in MB)" },
[ST_I_INF_POOL_ALLOC_BYTES] = { .name = "PoolAlloc_bytes", .desc = "Amount of memory allocated in pools (in bytes)" },
[ST_I_INF_POOL_USED_MB] = { .name = "PoolUsed_MB", .desc = "Amount of pool memory currently used (in MB)" },
[ST_I_INF_POOL_USED_BYTES] = { .name = "PoolUsed_bytes", .desc = "Amount of pool memory currently used (in bytes)" },
[ST_I_INF_POOL_FAILED] = { .name = "PoolFailed", .desc = "Number of failed pool allocations since this worker was started" },
[ST_I_INF_ULIMIT_N] = { .name = "Ulimit-n", .desc = "Hard limit on the number of per-process file descriptors" },
[ST_I_INF_MAXSOCK] = { .name = "Maxsock", .desc = "Hard limit on the number of per-process sockets" },
[ST_I_INF_MAXCONN] = { .name = "Maxconn", .desc = "Hard limit on the number of per-process connections (configured or imposed by Ulimit-n)" },
[ST_I_INF_HARD_MAXCONN] = { .name = "Hard_maxconn", .desc = "Hard limit on the number of per-process connections (imposed by Memmax_MB or Ulimit-n)" },
[ST_I_INF_CURR_CONN] = { .name = "CurrConns", .desc = "Current number of connections on this worker process" },
[ST_I_INF_CUM_CONN] = { .name = "CumConns", .desc = "Total number of connections on this worker process since started" },
[ST_I_INF_CUM_REQ] = { .name = "CumReq", .desc = "Total number of requests on this worker process since started" },
[ST_I_INF_MAX_SSL_CONNS] = { .name = "MaxSslConns", .desc = "Hard limit on the number of per-process SSL endpoints (front+back), 0=unlimited" },
[ST_I_INF_CURR_SSL_CONNS] = { .name = "CurrSslConns", .desc = "Current number of SSL endpoints on this worker process (front+back)" },
[ST_I_INF_CUM_SSL_CONNS] = { .name = "CumSslConns", .desc = "Total number of SSL endpoints on this worker process since started (front+back)" },
[ST_I_INF_MAXPIPES] = { .name = "Maxpipes", .desc = "Hard limit on the number of pipes for splicing, 0=unlimited" },
[ST_I_INF_PIPES_USED] = { .name = "PipesUsed", .desc = "Current number of pipes in use in this worker process" },
[ST_I_INF_PIPES_FREE] = { .name = "PipesFree", .desc = "Current number of allocated and available pipes in this worker process" },
[ST_I_INF_CONN_RATE] = { .name = "ConnRate", .desc = "Number of front connections created on this worker process over the last second" },
[ST_I_INF_CONN_RATE_LIMIT] = { .name = "ConnRateLimit", .desc = "Hard limit for ConnRate (global.maxconnrate)" },
[ST_I_INF_MAX_CONN_RATE] = { .name = "MaxConnRate", .desc = "Highest ConnRate reached on this worker process since started (in connections per second)" },
[ST_I_INF_SESS_RATE] = { .name = "SessRate", .desc = "Number of sessions created on this worker process over the last second" },
[ST_I_INF_SESS_RATE_LIMIT] = { .name = "SessRateLimit", .desc = "Hard limit for SessRate (global.maxsessrate)" },
[ST_I_INF_MAX_SESS_RATE] = { .name = "MaxSessRate", .desc = "Highest SessRate reached on this worker process since started (in sessions per second)" },
[ST_I_INF_SSL_RATE] = { .name = "SslRate", .desc = "Number of SSL connections created on this worker process over the last second" },
[ST_I_INF_SSL_RATE_LIMIT] = { .name = "SslRateLimit", .desc = "Hard limit for SslRate (global.maxsslrate)" },
[ST_I_INF_MAX_SSL_RATE] = { .name = "MaxSslRate", .desc = "Highest SslRate reached on this worker process since started (in connections per second)" },
[ST_I_INF_SSL_FRONTEND_KEY_RATE] = { .name = "SslFrontendKeyRate", .desc = "Number of SSL keys created on frontends in this worker process over the last second" },
[ST_I_INF_SSL_FRONTEND_MAX_KEY_RATE] = { .name = "SslFrontendMaxKeyRate", .desc = "Highest SslFrontendKeyRate reached on this worker process since started (in SSL keys per second)" },
[ST_I_INF_SSL_FRONTEND_SESSION_REUSE_PCT] = { .name = "SslFrontendSessionReuse_pct", .desc = "Percent of frontend SSL connections which did not require a new key" },
[ST_I_INF_SSL_BACKEND_KEY_RATE] = { .name = "SslBackendKeyRate", .desc = "Number of SSL keys created on backends in this worker process over the last second" },
[ST_I_INF_SSL_BACKEND_MAX_KEY_RATE] = { .name = "SslBackendMaxKeyRate", .desc = "Highest SslBackendKeyRate reached on this worker process since started (in SSL keys per second)" },
[ST_I_INF_SSL_CACHE_LOOKUPS] = { .name = "SslCacheLookups", .desc = "Total number of SSL session ID lookups in the SSL session cache on this worker since started" },
[ST_I_INF_SSL_CACHE_MISSES] = { .name = "SslCacheMisses", .desc = "Total number of SSL session ID lookups that didn't find a session in the SSL session cache on this worker since started" },
[ST_I_INF_COMPRESS_BPS_IN] = { .name = "CompressBpsIn", .desc = "Number of bytes submitted to the HTTP compressor in this worker process over the last second" },
[ST_I_INF_COMPRESS_BPS_OUT] = { .name = "CompressBpsOut", .desc = "Number of bytes emitted by the HTTP compressor in this worker process over the last second" },
[ST_I_INF_COMPRESS_BPS_RATE_LIM] = { .name = "CompressBpsRateLim", .desc = "Limit of CompressBpsOut beyond which HTTP compression is automatically disabled" },
[ST_I_INF_ZLIB_MEM_USAGE] = { .name = "ZlibMemUsage", .desc = "Amount of memory currently used by HTTP compression on the current worker process (in bytes)" },
[ST_I_INF_MAX_ZLIB_MEM_USAGE] = { .name = "MaxZlibMemUsage", .desc = "Limit on the amount of memory used by HTTP compression above which it is automatically disabled (in bytes, see global.maxzlibmem)" },
[ST_I_INF_TASKS] = { .name = "Tasks", .desc = "Total number of tasks in the current worker process (active + sleeping)" },
[ST_I_INF_RUN_QUEUE] = { .name = "Run_queue", .desc = "Total number of active tasks+tasklets in the current worker process" },
[ST_I_INF_IDLE_PCT] = { .name = "Idle_pct", .desc = "Percentage of last second spent waiting in the current worker thread" },
[ST_I_INF_NODE] = { .name = "node", .desc = "Node name (global.node)" },
[ST_I_INF_DESCRIPTION] = { .name = "description", .desc = "Node description (global.description)" },
[ST_I_INF_STOPPING] = { .name = "Stopping", .desc = "1 if the worker process is currently stopping, otherwise zero" },
[ST_I_INF_JOBS] = { .name = "Jobs", .desc = "Current number of active jobs on the current worker process (frontend connections, master connections, listeners)" },
[ST_I_INF_UNSTOPPABLE_JOBS] = { .name = "Unstoppable Jobs", .desc = "Current number of unstoppable jobs on the current worker process (master connections)" },
[ST_I_INF_LISTENERS] = { .name = "Listeners", .desc = "Current number of active listeners on the current worker process" },
[ST_I_INF_ACTIVE_PEERS] = { .name = "ActivePeers", .desc = "Current number of verified active peers connections on the current worker process" },
[ST_I_INF_CONNECTED_PEERS] = { .name = "ConnectedPeers", .desc = "Current number of peers having passed the connection step on the current worker process" },
[ST_I_INF_DROPPED_LOGS] = { .name = "DroppedLogs", .desc = "Total number of dropped logs for current worker process since started" },
[ST_I_INF_BUSY_POLLING] = { .name = "BusyPolling", .desc = "1 if busy-polling is currently in use on the worker process, otherwise zero (config.busy-polling)" },
[ST_I_INF_FAILED_RESOLUTIONS] = { .name = "FailedResolutions", .desc = "Total number of failed DNS resolutions in current worker process since started" },
[ST_I_INF_TOTAL_BYTES_OUT] = { .name = "TotalBytesOut", .desc = "Total number of bytes emitted by current worker process since started" },
[ST_I_INF_TOTAL_SPLICED_BYTES_OUT] = { .name = "TotalSplicedBytesOut", .desc = "Total number of bytes emitted by current worker process through a kernel pipe since started" },
[ST_I_INF_BYTES_OUT_RATE] = { .name = "BytesOutRate", .desc = "Number of bytes emitted by current worker process over the last second" },
[ST_I_INF_DEBUG_COMMANDS_ISSUED] = { .name = "DebugCommandsIssued", .desc = "Number of debug commands issued on this process (anything > 0 is unsafe)" },
[ST_I_INF_CUM_LOG_MSGS] = { .name = "CumRecvLogs", .desc = "Total number of log messages received by log-forwarding listeners on this worker process since started" },
[ST_I_INF_BUILD_INFO] = { .name = "Build info", .desc = "Build info" },
[ST_I_INF_TAINTED] = { .name = "Tainted", .desc = "Experimental features used" },
[ST_I_INF_WARNINGS] = { .name = "TotalWarnings", .desc = "Total warnings issued" },
[ST_I_INF_MAXCONN_REACHED] = { .name = "MaxconnReached", .desc = "Number of times an accepted connection resulted in Maxconn being reached" },
[ST_I_INF_BOOTTIME_MS] = { .name = "BootTime_ms", .desc = "How long ago it took to parse and process the config before being ready (milliseconds)" },
[ST_I_INF_NICED_TASKS] = { .name = "Niced_tasks", .desc = "Total number of active tasks+tasklets in the current worker process (Run_queue) that are niced" },
};
/* one line of info */
THREAD_LOCAL struct field stat_line_info[ST_I_INF_MAX];
/* one line for stats */
THREAD_LOCAL struct field *stat_lines[STATS_DOMAIN_COUNT];
/* Unified storage for statistics from all module
* TODO merge info stats into it as global statistic domain.
*/
struct name_desc *stat_cols[STATS_DOMAIN_COUNT];
size_t stat_cols_len[STATS_DOMAIN_COUNT];
/* list of all registered stats module */
struct list stats_module_list[STATS_DOMAIN_COUNT] = {
LIST_HEAD_INIT(stats_module_list[STATS_DOMAIN_PROXY]),
LIST_HEAD_INIT(stats_module_list[STATS_DOMAIN_RESOLVERS]),
};
THREAD_LOCAL void *trash_counters;
/* Insert <cols> generic stat columns into <st_tree> indexed by their name. */
int generate_stat_tree(struct eb_root *st_tree, const struct stat_col cols[])
{
const struct stat_col *col;
struct stcol_node *node;
size_t len;
int i;
for (i = 0; i < ST_I_PX_MAX; ++i) {
col = &cols[i];
if (stcol_is_generic(col)) {
len = strlen(col->name);
node = malloc(sizeof(struct stcol_node) + len + 1);
if (!node)
goto err;
node->col = col;
memcpy(node->name.key, col->name, len);
node->name.key[len] = '\0';
ebst_insert(st_tree, &node->name);
}
}
return 0;
err:
return 1;
}
int stats_putchk(struct appctx *appctx, struct buffer *buf, struct htx *htx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
struct buffer *chk = &ctx->chunk;
if (htx) {
if (b_data(chk) > htx_free_data_space(htx)) {
applet_fl_set(appctx, APPCTX_FL_OUTBLK_FULL);
return 0;
}
if (!htx_add_data_atonce(htx, ist2(b_orig(chk), b_data(chk)))) {
applet_fl_set(appctx, APPCTX_FL_OUTBLK_FULL);
return 0;
}
chunk_reset(chk);
}
else if (buf) {
if (b_data(chk) > b_room(buf)) {
se_fl_set(appctx->sedesc, SE_FL_RCV_MORE | SE_FL_WANT_ROOM);
return 0;
}
b_putblk(buf, b_head(chk), b_data(chk));
chunk_reset(chk);
}
else {
if (applet_putchk(appctx, chk) == -1)
return 0;
}
return 1;
}
int stats_is_full(struct appctx *appctx, struct buffer *buf, struct htx *htx)
{
if (htx) {
if (htx_almost_full(htx)) {
applet_fl_set(appctx, APPCTX_FL_OUTBLK_FULL);
goto full;
}
}
else if (buf) {
if (buffer_almost_full(buf)) {
se_fl_set(appctx->sedesc, SE_FL_RCV_MORE | SE_FL_WANT_ROOM);
goto full;
}
}
else {
if (buffer_almost_full(&appctx->outbuf)) {
applet_fl_set(appctx, APPCTX_FL_OUTBLK_FULL);
goto full;
}
}
return 0;
full:
return 1;
}
const char *stats_scope_ptr(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
struct htx *htx = htxbuf(&appctx->inbuf);
struct htx_blk *blk;
struct ist uri;
blk = htx_get_head_blk(htx);
BUG_ON(!blk || htx_get_blk_type(blk) != HTX_BLK_REQ_SL);
ALREADY_CHECKED(blk);
uri = htx_sl_req_uri(htx_get_blk_ptr(htx, blk));
return uri.ptr + ctx->scope_str;
}
/*
* http_stats_io_handler()
* -> stats_dump_stat_to_buffer() // same as above, but used for CSV or HTML
* -> stats_dump_csv_header() // emits the CSV headers (same as above)
* -> stats_dump_json_header() // emits the JSON headers (same as above)
* -> stats_dump_html_head() // emits the HTML headers
* -> stats_dump_html_info() // emits the equivalent of "show info" at the top
* -> stats_dump_proxy_to_buffer() // same as above, valid for CSV and HTML
* -> stats_dump_html_px_hdr()
* -> stats_dump_fe_line()
* -> stats_dump_li_line()
* -> stats_dump_sv_line()
* -> stats_dump_be_line()
* -> stats_dump_html_px_end()
* -> stats_dump_html_end() // emits HTML trailer
* -> stats_dump_json_end() // emits JSON trailer
*/
/* Dumps the stats CSV header to <out> buffer. The caller is responsible for
* clearing it if needed.
*
* NOTE: Some tools happen to rely on the field position instead of its name,
* so please only append new fields at the end, never in the middle.
*/
static void stats_dump_csv_header(enum stats_domain domain, struct buffer *out)
{
int i;
chunk_appendf(out, "# ");
if (stat_cols[domain]) {
for (i = 0; i < stat_cols_len[domain]; ++i) {
chunk_appendf(out, "%s,", stat_cols[domain][i].name);
/* print special delimiter on proxy stats to mark end of
static fields */
if (domain == STATS_DOMAIN_PROXY && i + 1 == ST_I_PX_MAX)
chunk_appendf(out, "-,");
}
}
chunk_appendf(out, "\n");
}
/* Emits a stats field without any surrounding element and properly encoded to
* resist CSV output. Returns non-zero on success, 0 if the buffer is full.
*/
int stats_emit_raw_data_field(struct buffer *out, const struct field *f)
{
switch (field_format(f, 0)) {
case FF_EMPTY: return 1;
case FF_S32: return chunk_appendf(out, "%d", f->u.s32);
case FF_U32: return chunk_appendf(out, "%u", f->u.u32);
case FF_S64: return chunk_appendf(out, "%lld", (long long)f->u.s64);
case FF_U64: return chunk_appendf(out, "%llu", (unsigned long long)f->u.u64);
case FF_FLT: {
size_t prev_data = out->data;
out->data = flt_trim(out->area, prev_data, chunk_appendf(out, "%f", f->u.flt));
return out->data;
}
case FF_STR: return csv_enc_append(field_str(f, 0), 1, 2, out) != NULL;
default: return chunk_appendf(out, "[INCORRECT_FIELD_TYPE_%08x]", f->type);
}
}
/* Emits a stats field prefixed with its type. No CSV encoding is prepared, the
* output is supposed to be used on its own line. Returns non-zero on success, 0
* if the buffer is full.
*/
int stats_emit_typed_data_field(struct buffer *out, const struct field *f)
{
switch (field_format(f, 0)) {
case FF_EMPTY: return 1;
case FF_S32: return chunk_appendf(out, "s32:%d", f->u.s32);
case FF_U32: return chunk_appendf(out, "u32:%u", f->u.u32);
case FF_S64: return chunk_appendf(out, "s64:%lld", (long long)f->u.s64);
case FF_U64: return chunk_appendf(out, "u64:%llu", (unsigned long long)f->u.u64);
case FF_FLT: {
size_t prev_data = out->data;
out->data = flt_trim(out->area, prev_data, chunk_appendf(out, "flt:%f", f->u.flt));
return out->data;
}
case FF_STR: return chunk_appendf(out, "str:%s", field_str(f, 0));
default: return chunk_appendf(out, "%08x:?", f->type);
}
}
/* Emits an encoding of the field type on 3 characters followed by a delimiter.
* Returns non-zero on success, 0 if the buffer is full.
*/
int stats_emit_field_tags(struct buffer *out, const struct field *f,
char delim)
{
char origin, nature, scope;
switch (field_origin(f, 0)) {
case FO_METRIC: origin = 'M'; break;
case FO_STATUS: origin = 'S'; break;
case FO_KEY: origin = 'K'; break;
case FO_CONFIG: origin = 'C'; break;
case FO_PRODUCT: origin = 'P'; break;
default: origin = '?'; break;
}
switch (field_nature(f, 0)) {
case FN_GAUGE: nature = 'G'; break;
case FN_LIMIT: nature = 'L'; break;
case FN_MIN: nature = 'm'; break;
case FN_MAX: nature = 'M'; break;
case FN_RATE: nature = 'R'; break;
case FN_COUNTER: nature = 'C'; break;
case FN_DURATION: nature = 'D'; break;
case FN_AGE: nature = 'A'; break;
case FN_TIME: nature = 'T'; break;
case FN_NAME: nature = 'N'; break;
case FN_OUTPUT: nature = 'O'; break;
case FN_AVG: nature = 'a'; break;
default: nature = '?'; break;
}
switch (field_scope(f, 0)) {
case FS_PROCESS: scope = 'P'; break;
case FS_SERVICE: scope = 'S'; break;
case FS_SYSTEM: scope = 's'; break;
case FS_CLUSTER: scope = 'C'; break;
default: scope = '?'; break;
}
return chunk_appendf(out, "%c%c%c%c", origin, nature, scope, delim);
}
/* Dump all fields from <line> into <out> using CSV format */
static int stats_dump_fields_csv(struct buffer *out,
const struct field *line, size_t stats_count,
struct show_stat_ctx *ctx)
{
int domain = ctx->domain;
int i;
for (i = 0; i < stats_count; ++i) {
if (!stats_emit_raw_data_field(out, &line[i]))
return 0;
if (!chunk_strcat(out, ","))
return 0;
/* print special delimiter on proxy stats to mark end of
static fields */
if (domain == STATS_DOMAIN_PROXY && i + 1 == ST_I_PX_MAX) {
if (!chunk_strcat(out, "-,"))
return 0;
}
}
chunk_strcat(out, "\n");
return 1;
}
/* Dump all fields from <line> into <out> using a typed "field:desc:type:value" format */
static int stats_dump_fields_typed(struct buffer *out,
const struct field *line,
size_t stats_count,
struct show_stat_ctx * ctx)
{
int flags = ctx->flags;
int domain = ctx->domain;
int i;
for (i = 0; i < stats_count; ++i) {
if (!line[i].type)
continue;
switch (domain) {
case STATS_DOMAIN_PROXY:
chunk_appendf(out, "%c.%u.%u.%d.%s.%u:",
line[ST_I_PX_TYPE].u.u32 == STATS_TYPE_FE ? 'F' :
line[ST_I_PX_TYPE].u.u32 == STATS_TYPE_BE ? 'B' :
line[ST_I_PX_TYPE].u.u32 == STATS_TYPE_SO ? 'L' :
line[ST_I_PX_TYPE].u.u32 == STATS_TYPE_SV ? 'S' :
'?',
line[ST_I_PX_IID].u.u32, line[ST_I_PX_SID].u.u32,
i,
stat_cols[domain][i].name,
line[ST_I_PX_PID].u.u32);
break;
case STATS_DOMAIN_RESOLVERS:
chunk_appendf(out, "N.%d.%s:", i,
stat_cols[domain][i].name);
break;
default:
break;
}
if (!stats_emit_field_tags(out, &line[i], ':'))
return 0;
if (!stats_emit_typed_data_field(out, &line[i]))
return 0;
if (flags & STAT_F_SHOW_FDESC &&
!chunk_appendf(out, ":\"%s\"", stat_cols[domain][i].desc)) {
return 0;
}
if (!chunk_strcat(out, "\n"))
return 0;
}
return 1;
}
int stats_dump_one_line(const struct field *line, size_t stats_count,
struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
struct buffer *chk = &ctx->chunk;
int ret;
if (ctx->flags & STAT_F_FMT_HTML)
ret = stats_dump_fields_html(chk, line, ctx);
else if (ctx->flags & STAT_F_FMT_TYPED)
ret = stats_dump_fields_typed(chk, line, stats_count, ctx);
else if (ctx->flags & STAT_F_FMT_JSON)
ret = stats_dump_fields_json(chk, line, stats_count, ctx);
else if (ctx->flags & STAT_F_FMT_FILE)
ret = stats_dump_fields_file(chk, line, stats_count, ctx);
else
ret = stats_dump_fields_csv(chk, line, stats_count, ctx);
return ret;
}
/* This function dumps statistics onto the stream connector's read buffer in
* either CSV or HTML format. It returns 0 if it had to stop writing data and
* an I/O is needed, 1 if the dump is finished and the stream must be closed,
* or -1 in case of any error. This function is used by both the CLI and the
* HTTP handlers.
*/
int stats_dump_stat_to_buffer(struct stconn *sc, struct buffer *buf, struct htx *htx)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_stat_ctx *ctx = appctx->svcctx;
enum stats_domain domain = ctx->domain;
struct buffer *chk = &ctx->chunk;
chunk_reset(chk);
switch (ctx->state) {
case STAT_STATE_INIT:
ctx->state = STAT_STATE_HEAD; /* let's start producing data */
__fallthrough;
case STAT_STATE_HEAD:
if (ctx->flags & STAT_F_FMT_HTML)
stats_dump_html_head(appctx);
else if (ctx->flags & STAT_F_JSON_SCHM)
stats_dump_json_schema(chk);
else if (ctx->flags & STAT_F_FMT_JSON)
stats_dump_json_header(chk);
else if (ctx->flags & STAT_F_FMT_FILE)
stats_dump_file_header(ctx->type, chk);
else if (!(ctx->flags & STAT_F_FMT_TYPED))
stats_dump_csv_header(ctx->domain, chk);
if (!stats_putchk(appctx, buf, htx))
goto full;
if (ctx->flags & STAT_F_JSON_SCHM) {
ctx->state = STAT_STATE_FIN;
return 1;
}
ctx->state = STAT_STATE_INFO;
__fallthrough;
case STAT_STATE_INFO:
if (ctx->flags & STAT_F_FMT_HTML) {
stats_dump_html_info(sc);
if (!stats_putchk(appctx, buf, htx))
goto full;
}
if (domain == STATS_DOMAIN_PROXY)
ctx->obj1 = proxies_list;
ctx->px_st = STAT_PX_ST_INIT;
ctx->field = 0;
ctx->state = STAT_STATE_LIST;
__fallthrough;
case STAT_STATE_LIST:
switch (domain) {
case STATS_DOMAIN_RESOLVERS:
if (!stats_dump_resolvers(sc, stat_lines[domain],
stat_cols_len[domain],
&stats_module_list[domain])) {
return 0;
}
break;
case STATS_DOMAIN_PROXY:
default:
/* dump proxies */
if (!stats_dump_proxies(sc, buf, htx))
return 0;
break;
}
ctx->state = STAT_STATE_END;
__fallthrough;
case STAT_STATE_END:
if (ctx->flags & (STAT_F_FMT_HTML|STAT_F_FMT_JSON)) {
if (ctx->flags & STAT_F_FMT_HTML)
stats_dump_html_end(chk);
else
stats_dump_json_end(chk);
if (!stats_putchk(appctx, buf, htx))
goto full;
}
ctx->state = STAT_STATE_FIN;
__fallthrough;
case STAT_STATE_FIN:
return 1;
default:
/* unknown state ! */
ctx->state = STAT_STATE_FIN;
return -1;
}
full:
return 0;
}
/* Dump all fields from <info_fields> into <out> using the "show info" format (name: value) */
static int stats_dump_info_fields(struct buffer *out,
const struct field *line,
struct show_stat_ctx *ctx)
{
int flags = ctx->flags;
int i;
for (i = 0; i < ST_I_INF_MAX; i++) {
if (!field_format(line, i))
continue;
if (!chunk_appendf(out, "%s: ", stat_cols_info[i].name))
return 0;
if (!stats_emit_raw_data_field(out, &line[i]))
return 0;
if ((flags & STAT_F_SHOW_FDESC) && !chunk_appendf(out, ":\"%s\"", stat_cols_info[i].desc))
return 0;
if (!chunk_strcat(out, "\n"))
return 0;
}
return 1;
}
/* Dump all fields from <line> into <out> using the "show info typed" format */
static int stats_dump_typed_info_fields(struct buffer *out,
const struct field *line,
struct show_stat_ctx *ctx)
{
int flags = ctx->flags;
int i;
for (i = 0; i < ST_I_INF_MAX; i++) {
if (!field_format(line, i))
continue;
if (!chunk_appendf(out, "%d.%s.%u:", i, stat_cols_info[i].name,
line[ST_I_INF_PROCESS_NUM].u.u32)) {
return 0;
}
if (!stats_emit_field_tags(out, &line[i], ':'))
return 0;
if (!stats_emit_typed_data_field(out, &line[i]))
return 0;
if ((flags & STAT_F_SHOW_FDESC) && !chunk_appendf(out, ":\"%s\"", stat_cols_info[i].desc))
return 0;
if (!chunk_strcat(out, "\n"))
return 0;
}
return 1;
}
/* Fill <info> with HAProxy global info. <info> is preallocated array of length
* <len>. The length of the array must be ST_I_INF_MAX. If this length is
* less then this value, the function returns 0, otherwise, it returns 1. Some
* fields' presence or precision may depend on some of the STAT_F_* flags present
* in <flags>.
*/
int stats_fill_info(struct field *line, int len, uint flags)
{
struct buffer *out = get_trash_chunk();
uint64_t glob_out_bytes, glob_spl_bytes, glob_out_b32;
uint up_sec, up_usec;
ullong up;
ulong boot;
int thr;
#ifdef USE_OPENSSL
double ssl_sess_rate = read_freq_ctr_flt(&global.ssl_per_sec);
double ssl_key_rate = read_freq_ctr_flt(&global.ssl_fe_keys_per_sec);
double ssl_reuse = 0;
if (ssl_key_rate < ssl_sess_rate)
ssl_reuse = 100.0 * (1.0 - ssl_key_rate / ssl_sess_rate);
#endif
/* sum certain per-thread totals (mostly byte counts) */
glob_out_bytes = glob_spl_bytes = glob_out_b32 = 0;
for (thr = 0; thr < global.nbthread; thr++) {
glob_out_bytes += HA_ATOMIC_LOAD(&ha_thread_ctx[thr].out_bytes);
glob_spl_bytes += HA_ATOMIC_LOAD(&ha_thread_ctx[thr].spliced_out_bytes);
glob_out_b32 += read_freq_ctr(&ha_thread_ctx[thr].out_32bps);
}
glob_out_b32 *= 32; // values are 32-byte units
up = now_ns - start_time_ns;
up_sec = ns_to_sec(up);
up_usec = (up / 1000U) % 1000000U;
boot = tv_ms_remain(&start_date, &ready_date);
if (len < ST_I_INF_MAX)
return 0;
chunk_reset(out);
memset(line, 0, sizeof(*line) * len);
line[ST_I_INF_NAME] = mkf_str(FO_PRODUCT|FN_OUTPUT|FS_SERVICE, PRODUCT_NAME);
line[ST_I_INF_VERSION] = mkf_str(FO_PRODUCT|FN_OUTPUT|FS_SERVICE, haproxy_version);
line[ST_I_INF_BUILD_INFO] = mkf_str(FO_PRODUCT|FN_OUTPUT|FS_SERVICE, haproxy_version);
line[ST_I_INF_RELEASE_DATE] = mkf_str(FO_PRODUCT|FN_OUTPUT|FS_SERVICE, haproxy_date);
line[ST_I_INF_NBTHREAD] = mkf_u32(FO_CONFIG|FS_SERVICE, global.nbthread);
line[ST_I_INF_NBPROC] = mkf_u32(FO_CONFIG|FS_SERVICE, 1);
line[ST_I_INF_PROCESS_NUM] = mkf_u32(FO_KEY, 1);
line[ST_I_INF_PID] = mkf_u32(FO_STATUS, pid);
line[ST_I_INF_UPTIME] = mkf_str(FN_DURATION, chunk_newstr(out));
chunk_appendf(out, "%ud %uh%02um%02us", up_sec / 86400, (up_sec % 86400) / 3600, (up_sec % 3600) / 60, (up_sec % 60));
line[ST_I_INF_UPTIME_SEC] = (flags & STAT_F_USE_FLOAT) ? mkf_flt(FN_DURATION, up_sec + up_usec / 1000000.0) : mkf_u32(FN_DURATION, up_sec);
line[ST_I_INF_START_TIME_SEC] = (flags & STAT_F_USE_FLOAT) ? mkf_flt(FN_DURATION, start_date.tv_sec + start_date.tv_usec / 1000000.0) : mkf_u32(FN_DURATION, start_date.tv_sec);
line[ST_I_INF_MEMMAX_MB] = mkf_u32(FO_CONFIG|FN_LIMIT, global.rlimit_memmax);
line[ST_I_INF_MEMMAX_BYTES] = mkf_u32(FO_CONFIG|FN_LIMIT, global.rlimit_memmax * 1048576L);
line[ST_I_INF_POOL_ALLOC_MB] = mkf_u32(0, (unsigned)(pool_total_allocated() / 1048576L));
line[ST_I_INF_POOL_ALLOC_BYTES] = mkf_u64(0, pool_total_allocated());
line[ST_I_INF_POOL_USED_MB] = mkf_u32(0, (unsigned)(pool_total_used() / 1048576L));
line[ST_I_INF_POOL_USED_BYTES] = mkf_u64(0, pool_total_used());
line[ST_I_INF_POOL_FAILED] = mkf_u32(FN_COUNTER, pool_total_failures());
line[ST_I_INF_ULIMIT_N] = mkf_u32(FO_CONFIG|FN_LIMIT, global.rlimit_nofile);
line[ST_I_INF_MAXSOCK] = mkf_u32(FO_CONFIG|FN_LIMIT, global.maxsock);
line[ST_I_INF_MAXCONN] = mkf_u32(FO_CONFIG|FN_LIMIT, global.maxconn);
line[ST_I_INF_HARD_MAXCONN] = mkf_u32(FO_CONFIG|FN_LIMIT, global.hardmaxconn);
line[ST_I_INF_CURR_CONN] = mkf_u32(0, actconn);
line[ST_I_INF_CUM_CONN] = mkf_u32(FN_COUNTER, totalconn);
line[ST_I_INF_CUM_REQ] = mkf_u32(FN_COUNTER, global.req_count);
#ifdef USE_OPENSSL
line[ST_I_INF_MAX_SSL_CONNS] = mkf_u32(FN_MAX, global.maxsslconn);
line[ST_I_INF_CURR_SSL_CONNS] = mkf_u32(0, global.sslconns);
line[ST_I_INF_CUM_SSL_CONNS] = mkf_u32(FN_COUNTER, global.totalsslconns);
#endif
line[ST_I_INF_MAXPIPES] = mkf_u32(FO_CONFIG|FN_LIMIT, global.maxpipes);
line[ST_I_INF_PIPES_USED] = mkf_u32(0, pipes_used);
line[ST_I_INF_PIPES_FREE] = mkf_u32(0, pipes_free);
line[ST_I_INF_CONN_RATE] = (flags & STAT_F_USE_FLOAT) ? mkf_flt(FN_RATE, read_freq_ctr_flt(&global.conn_per_sec)) : mkf_u32(FN_RATE, read_freq_ctr(&global.conn_per_sec));
line[ST_I_INF_CONN_RATE_LIMIT] = mkf_u32(FO_CONFIG|FN_LIMIT, global.cps_lim);
line[ST_I_INF_MAX_CONN_RATE] = mkf_u32(FN_MAX, global.cps_max);
line[ST_I_INF_SESS_RATE] = (flags & STAT_F_USE_FLOAT) ? mkf_flt(FN_RATE, read_freq_ctr_flt(&global.sess_per_sec)) : mkf_u32(FN_RATE, read_freq_ctr(&global.sess_per_sec));
line[ST_I_INF_SESS_RATE_LIMIT] = mkf_u32(FO_CONFIG|FN_LIMIT, global.sps_lim);
line[ST_I_INF_MAX_SESS_RATE] = mkf_u32(FN_RATE, global.sps_max);
#ifdef USE_OPENSSL
line[ST_I_INF_SSL_RATE] = (flags & STAT_F_USE_FLOAT) ? mkf_flt(FN_RATE, ssl_sess_rate) : mkf_u32(FN_RATE, ssl_sess_rate);
line[ST_I_INF_SSL_RATE_LIMIT] = mkf_u32(FO_CONFIG|FN_LIMIT, global.ssl_lim);
line[ST_I_INF_MAX_SSL_RATE] = mkf_u32(FN_MAX, global.ssl_max);
line[ST_I_INF_SSL_FRONTEND_KEY_RATE] = (flags & STAT_F_USE_FLOAT) ? mkf_flt(FN_RATE, ssl_key_rate) : mkf_u32(0, ssl_key_rate);
line[ST_I_INF_SSL_FRONTEND_MAX_KEY_RATE] = mkf_u32(FN_MAX, global.ssl_fe_keys_max);
line[ST_I_INF_SSL_FRONTEND_SESSION_REUSE_PCT] = (flags & STAT_F_USE_FLOAT) ? mkf_flt(FN_RATE, ssl_reuse) : mkf_u32(0, ssl_reuse);
line[ST_I_INF_SSL_BACKEND_KEY_RATE] = (flags & STAT_F_USE_FLOAT) ? mkf_flt(FN_RATE, read_freq_ctr_flt(&global.ssl_be_keys_per_sec)) : mkf_u32(FN_RATE, read_freq_ctr(&global.ssl_be_keys_per_sec));
line[ST_I_INF_SSL_BACKEND_MAX_KEY_RATE] = mkf_u32(FN_MAX, global.ssl_be_keys_max);
line[ST_I_INF_SSL_CACHE_LOOKUPS] = mkf_u32(FN_COUNTER, global.shctx_lookups);
line[ST_I_INF_SSL_CACHE_MISSES] = mkf_u32(FN_COUNTER, global.shctx_misses);
#endif
line[ST_I_INF_COMPRESS_BPS_IN] = (flags & STAT_F_USE_FLOAT) ? mkf_flt(FN_RATE, read_freq_ctr_flt(&global.comp_bps_in)) : mkf_u32(FN_RATE, read_freq_ctr(&global.comp_bps_in));
line[ST_I_INF_COMPRESS_BPS_OUT] = (flags & STAT_F_USE_FLOAT) ? mkf_flt(FN_RATE, read_freq_ctr_flt(&global.comp_bps_out)) : mkf_u32(FN_RATE, read_freq_ctr(&global.comp_bps_out));
line[ST_I_INF_COMPRESS_BPS_RATE_LIM] = mkf_u32(FO_CONFIG|FN_LIMIT, global.comp_rate_lim);
#ifdef USE_ZLIB
line[ST_I_INF_ZLIB_MEM_USAGE] = mkf_u32(0, zlib_used_memory);
line[ST_I_INF_MAX_ZLIB_MEM_USAGE] = mkf_u32(FO_CONFIG|FN_LIMIT, global.maxzlibmem);
#endif
line[ST_I_INF_TASKS] = mkf_u32(0, total_allocated_tasks());
line[ST_I_INF_RUN_QUEUE] = mkf_u32(0, total_run_queues());
line[ST_I_INF_IDLE_PCT] = mkf_u32(FN_AVG, clock_report_idle());
line[ST_I_INF_NODE] = mkf_str(FO_CONFIG|FN_OUTPUT|FS_SERVICE, global.node);
if (global.desc)
line[ST_I_INF_DESCRIPTION] = mkf_str(FO_CONFIG|FN_OUTPUT|FS_SERVICE, global.desc);
line[ST_I_INF_STOPPING] = mkf_u32(0, stopping);
line[ST_I_INF_JOBS] = mkf_u32(0, jobs);
line[ST_I_INF_UNSTOPPABLE_JOBS] = mkf_u32(0, unstoppable_jobs);
line[ST_I_INF_LISTENERS] = mkf_u32(0, listeners);
line[ST_I_INF_ACTIVE_PEERS] = mkf_u32(0, active_peers);
line[ST_I_INF_CONNECTED_PEERS] = mkf_u32(0, connected_peers);
line[ST_I_INF_DROPPED_LOGS] = mkf_u32(0, dropped_logs);
line[ST_I_INF_BUSY_POLLING] = mkf_u32(0, !!(global.tune.options & GTUNE_BUSY_POLLING));
line[ST_I_INF_FAILED_RESOLUTIONS] = mkf_u32(0, resolv_failed_resolutions);
line[ST_I_INF_TOTAL_BYTES_OUT] = mkf_u64(0, glob_out_bytes);
line[ST_I_INF_TOTAL_SPLICED_BYTES_OUT] = mkf_u64(0, glob_spl_bytes);
line[ST_I_INF_BYTES_OUT_RATE] = mkf_u64(FN_RATE, glob_out_b32);
line[ST_I_INF_DEBUG_COMMANDS_ISSUED] = mkf_u32(0, debug_commands_issued);
line[ST_I_INF_CUM_LOG_MSGS] = mkf_u32(FN_COUNTER, cum_log_messages);
line[ST_I_INF_TAINTED] = mkf_str(FO_STATUS, chunk_newstr(out));
chunk_appendf(out, "%#x", get_tainted());
line[ST_I_INF_WARNINGS] = mkf_u32(FN_COUNTER, HA_ATOMIC_LOAD(&tot_warnings));
line[ST_I_INF_MAXCONN_REACHED] = mkf_u32(FN_COUNTER, HA_ATOMIC_LOAD(&maxconn_reached));
line[ST_I_INF_BOOTTIME_MS] = mkf_u32(FN_DURATION, boot);
line[ST_I_INF_NICED_TASKS] = mkf_u32(0, total_niced_running_tasks());
return 1;
}
/* This function dumps information onto the stream connector's read buffer.
* It returns 0 as long as it does not complete, non-zero upon completion.
* No state is used.
*/
static int stats_dump_info_to_buffer(struct stconn *sc)
{
struct appctx *appctx = __sc_appctx(sc);
struct show_stat_ctx *ctx = appctx->svcctx;
struct buffer *chk = &ctx->chunk;
int ret;
int current_field;
if (!stats_fill_info(stat_line_info, ST_I_INF_MAX, ctx->flags))
return 0;
chunk_reset(chk);
more:
current_field = ctx->field;
if (ctx->flags & STAT_F_FMT_TYPED)
ret = stats_dump_typed_info_fields(chk, stat_line_info, ctx);
else if (ctx->flags & STAT_F_FMT_JSON)
ret = stats_dump_json_info_fields(chk, stat_line_info, ctx);
else
ret = stats_dump_info_fields(chk, stat_line_info, ctx);
if (applet_putchk(appctx, chk) == -1) {
/* restore previous field */
ctx->field = current_field;
return 0;
}
if (ret && ctx->field) {
/* partial dump */
goto more;
}
ctx->field = 0;
return 1;
}
static int cli_parse_clear_counters(char **args, char *payload, struct appctx *appctx, void *private)
{
int clrall = 0;
if (strcmp(args[2], "all") == 0)
clrall = 1;
/* check permissions */
if (!cli_has_level(appctx, ACCESS_LVL_OPER) ||
(clrall && !cli_has_level(appctx, ACCESS_LVL_ADMIN)))
return 1;
global.cps_max = 0;
global.sps_max = 0;
global.ssl_max = 0;
global.ssl_fe_keys_max = 0;
global.ssl_be_keys_max = 0;
proxy_stats_clear_counters(clrall, &stats_module_list[STATS_DOMAIN_PROXY]);
resolv_stats_clear_counters(clrall, &stats_module_list[STATS_DOMAIN_RESOLVERS]);
memset(activity, 0, sizeof(activity));
return 1;
}
static int cli_parse_show_info(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_stat_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
int arg = 2;
ctx->scope_str = 0;
ctx->scope_len = 0;
ctx->flags = 0;
ctx->field = 0; /* explicit default value */
while (*args[arg]) {
if (strcmp(args[arg], "typed") == 0)
ctx->flags = (ctx->flags & ~STAT_F_FMT_MASK) | STAT_F_FMT_TYPED;
else if (strcmp(args[arg], "json") == 0)
ctx->flags = (ctx->flags & ~STAT_F_FMT_MASK) | STAT_F_FMT_JSON;
else if (strcmp(args[arg], "desc") == 0)
ctx->flags |= STAT_F_SHOW_FDESC;
else if (strcmp(args[arg], "float") == 0)
ctx->flags |= STAT_F_USE_FLOAT;
arg++;
}
return 0;
}
static int cli_parse_show_stat(char **args, char *payload, struct appctx *appctx, void *private)
{
struct show_stat_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
int arg = 2;
ctx->scope_str = 0;
ctx->scope_len = 0;
ctx->http_px = NULL; // not under http context
ctx->flags = STAT_F_SHNODE | STAT_F_SHDESC;
if ((strm_li(appctx_strm(appctx))->bind_conf->level & ACCESS_LVL_MASK) >= ACCESS_LVL_OPER)
ctx->flags |= STAT_F_SHLGNDS;
/* proxy is the default domain */
ctx->domain = STATS_DOMAIN_PROXY;
if (strcmp(args[arg], "domain") == 0) {
++args;
if (strcmp(args[arg], "proxy") == 0) {
++args;
} else if (strcmp(args[arg], "resolvers") == 0) {
ctx->domain = STATS_DOMAIN_RESOLVERS;
++args;
} else {
return cli_err(appctx, "Invalid statistics domain.\n");
}
}
if (ctx->domain == STATS_DOMAIN_PROXY
&& *args[arg] && *args[arg+1] && *args[arg+2]) {
struct proxy *px;
px = proxy_find_by_name(args[arg], 0, 0);
if (px)
ctx->iid = px->uuid;
else
ctx->iid = atoi(args[arg]);
if (!ctx->iid)
return cli_err(appctx, "No such proxy.\n");
ctx->flags |= STAT_F_BOUND;
ctx->type = atoi(args[arg+1]);
ctx->sid = atoi(args[arg+2]);
arg += 3;
}
while (*args[arg]) {
if (strcmp(args[arg], "typed") == 0)
ctx->flags = (ctx->flags & ~STAT_F_FMT_MASK) | STAT_F_FMT_TYPED;
else if (strcmp(args[arg], "json") == 0)
ctx->flags = (ctx->flags & ~STAT_F_FMT_MASK) | STAT_F_FMT_JSON;
else if (strcmp(args[arg], "desc") == 0)
ctx->flags |= STAT_F_SHOW_FDESC;
else if (strcmp(args[arg], "no-maint") == 0)
ctx->flags |= STAT_F_HIDE_MAINT;
else if (strcmp(args[arg], "up") == 0)
ctx->flags |= STAT_F_HIDE_DOWN;
arg++;
}
return 0;
}
static int cli_io_handler_dump_info(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
ctx->chunk = b_make(trash.area, trash.size, 0, 0);
return stats_dump_info_to_buffer(appctx_sc(appctx));
}
/* This I/O handler runs as an applet embedded in a stream connector. It is
* used to send raw stats over a socket.
*/
static int cli_io_handler_dump_stat(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
ctx->chunk = b_make(trash.area, trash.size, 0, 0);
return stats_dump_stat_to_buffer(appctx_sc(appctx), NULL, NULL);
}
static void cli_io_handler_release_stat(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
if (ctx->px_st == STAT_PX_ST_SV)
srv_drop(ctx->obj2);
}
static int cli_io_handler_dump_json_schema(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
ctx->chunk = b_make(trash.area, trash.size, 0, 0);
return stats_dump_json_schema_to_buffer(appctx);
}
static int cli_parse_dump_stat_file(char **args, char *payload,
struct appctx *appctx, void *private)
{
struct show_stat_ctx *ctx = applet_reserve_svcctx(appctx, sizeof(*ctx));
ctx->chunk = b_make(trash.area, trash.size, 0, 0);
ctx->domain = STATS_DOMAIN_PROXY;
ctx->flags |= STAT_F_FMT_FILE;
return 0;
}
/* Returns 1 on completion else 0. */
static int cli_io_handler_dump_stat_file(struct appctx *appctx)
{
struct show_stat_ctx *ctx = appctx->svcctx;
int ret;
/* Frontend and backend sides are outputted separately on stats-file.
* As such, use STAT_F_BOUND to restrict proxies looping over frontend
* side first before first stats_dump_stat_to_buffer(). A second
* iteration is conducted for backend side after.
*/
ctx->flags |= STAT_F_BOUND;
if (!(ctx->type & (1 << STATS_TYPE_BE))) {
/* Restrict to frontend side. */
ctx->type = (1 << STATS_TYPE_FE) | (1 << STATS_TYPE_SO);
ctx->iid = ctx->sid = -1;
ret = stats_dump_stat_to_buffer(appctx_sc(appctx), NULL, NULL);
if (!ret)
return 0;
chunk_strcat(&ctx->chunk, "\n");
if (!stats_putchk(appctx, NULL, NULL))
return 0;
/* Switch to backend side. */
ctx->state = STAT_STATE_INIT;
ctx->type = (1 << STATS_TYPE_BE) | (1 << STATS_TYPE_SV);
}
return stats_dump_stat_to_buffer(appctx_sc(appctx), NULL, NULL);
}
static void cli_io_handler_release_dump_stat_file(struct appctx *appctx)
{
}
int stats_allocate_proxy_counters_internal(struct extra_counters **counters,
int type, int px_cap)
{
struct stats_module *mod;
EXTRA_COUNTERS_REGISTER(counters, type, alloc_failed);
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
if (!(stats_px_get_cap(mod->domain_flags) & px_cap))
continue;
EXTRA_COUNTERS_ADD(mod, *counters, mod->counters, mod->counters_size);
}
EXTRA_COUNTERS_ALLOC(*counters, alloc_failed);
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
if (!(stats_px_get_cap(mod->domain_flags) & px_cap))
continue;
EXTRA_COUNTERS_INIT(*counters, mod, mod->counters, mod->counters_size);
}
return 1;
alloc_failed:
return 0;
}
/* Initialize and allocate all extra counters for a proxy and its attached
* servers/listeners with all already registered stats module
*/
int stats_allocate_proxy_counters(struct proxy *px)
{
struct server *sv;
struct listener *li;
if (px->cap & PR_CAP_FE) {
if (!stats_allocate_proxy_counters_internal(&px->extra_counters_fe,
COUNTERS_FE,
STATS_PX_CAP_FE)) {
return 0;
}
}
if (px->cap & PR_CAP_BE) {
if (!stats_allocate_proxy_counters_internal(&px->extra_counters_be,
COUNTERS_BE,
STATS_PX_CAP_BE)) {
return 0;
}
}
for (sv = px->srv; sv; sv = sv->next) {
if (!stats_allocate_proxy_counters_internal(&sv->extra_counters,
COUNTERS_SV,
STATS_PX_CAP_SRV)) {
return 0;
}
}
list_for_each_entry(li, &px->conf.listeners, by_fe) {
if (!stats_allocate_proxy_counters_internal(&li->extra_counters,
COUNTERS_LI,
STATS_PX_CAP_LI)) {
return 0;
}
}
return 1;
}
void stats_register_module(struct stats_module *m)
{
const uint8_t domain = stats_get_domain(m->domain_flags);
LIST_APPEND(&stats_module_list[domain], &m->list);
stat_cols_len[domain] += m->stats_count;
}
static int allocate_stats_px_postcheck(void)
{
struct stats_module *mod;
size_t i = ST_I_PX_MAX, offset;
int err_code = 0;
struct proxy *px;
stat_cols_len[STATS_DOMAIN_PROXY] += ST_I_PX_MAX;
stat_cols[STATS_DOMAIN_PROXY] = malloc(stat_cols_len[STATS_DOMAIN_PROXY] * sizeof(struct name_desc));
if (!stat_cols[STATS_DOMAIN_PROXY]) {
ha_alert("stats: cannot allocate all fields for proxy statistics\n");
err_code |= ERR_ALERT | ERR_FATAL;
return err_code;
}
for (i = 0; i < ST_I_PX_MAX; ++i)
stcol2ndesc(&stat_cols[STATS_DOMAIN_PROXY][i], &stat_cols_px[i]);
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_PROXY], list) {
for (offset = i, i = 0; i < mod->stats_count; ++i) {
stcol2ndesc(&stat_cols[STATS_DOMAIN_PROXY][offset + i],
&mod->stats[i]);
}
i += offset;
}
for (px = proxies_list; px; px = px->next) {
if (!stats_allocate_proxy_counters(px)) {
ha_alert("stats: cannot allocate all counters for proxy statistics\n");
err_code |= ERR_ALERT | ERR_FATAL;
return err_code;
}
}
/* wait per-thread alloc to perform corresponding stat_lines allocation */
return err_code;
}
REGISTER_CONFIG_POSTPARSER("allocate-stats-px", allocate_stats_px_postcheck);
static int allocate_stats_rslv_postcheck(void)
{
struct stats_module *mod;
size_t i = 0, offset;
int err_code = 0;
stat_cols[STATS_DOMAIN_RESOLVERS] = malloc(stat_cols_len[STATS_DOMAIN_RESOLVERS] * sizeof(struct name_desc));
if (!stat_cols[STATS_DOMAIN_RESOLVERS]) {
ha_alert("stats: cannot allocate all fields for resolver statistics\n");
err_code |= ERR_ALERT | ERR_FATAL;
return err_code;
}
list_for_each_entry(mod, &stats_module_list[STATS_DOMAIN_RESOLVERS], list) {
for (offset = i, i = 0; i < mod->stats_count; ++i) {
stcol2ndesc(&stat_cols[STATS_DOMAIN_RESOLVERS][offset + i],
&mod->stats[i]);
}
i += offset;
}
if (!resolv_allocate_counters(&stats_module_list[STATS_DOMAIN_RESOLVERS])) {
ha_alert("stats: cannot allocate all counters for resolver statistics\n");
err_code |= ERR_ALERT | ERR_FATAL;
return err_code;
}
/* wait per-thread alloc to perform corresponding stat_lines allocation */
return err_code;
}
REGISTER_CONFIG_POSTPARSER("allocate-stats-resolver", allocate_stats_rslv_postcheck);
static int allocate_stat_lines_per_thread(void)
{
int domains[] = { STATS_DOMAIN_PROXY, STATS_DOMAIN_RESOLVERS }, i;
for (i = 0; i < STATS_DOMAIN_COUNT; ++i) {
const int domain = domains[i];
stat_lines[domain] = malloc(stat_cols_len[domain] * sizeof(struct field));
if (!stat_lines[domain])
return 0;
}
return 1;
}
REGISTER_PER_THREAD_ALLOC(allocate_stat_lines_per_thread);
static int allocate_trash_counters(void)
{
struct stats_module *mod;
int domains[] = { STATS_DOMAIN_PROXY, STATS_DOMAIN_RESOLVERS }, i;
size_t max_counters_size = 0;
/* calculate the greatest counters used by any stats modules */
for (i = 0; i < STATS_DOMAIN_COUNT; ++i) {
list_for_each_entry(mod, &stats_module_list[domains[i]], list) {
max_counters_size = mod->counters_size > max_counters_size ?
mod->counters_size : max_counters_size;
}
}
/* allocate the trash with the size of the greatest counters */
if (max_counters_size) {
trash_counters = malloc(max_counters_size);
if (!trash_counters) {
ha_alert("stats: cannot allocate trash counters for statistics\n");
return 0;
}
}
return 1;
}
REGISTER_PER_THREAD_ALLOC(allocate_trash_counters);
static void deinit_stat_lines_per_thread(void)
{
int domains[] = { STATS_DOMAIN_PROXY, STATS_DOMAIN_RESOLVERS }, i;
for (i = 0; i < STATS_DOMAIN_COUNT; ++i) {
const int domain = domains[i];
ha_free(&stat_lines[domain]);
}
}
REGISTER_PER_THREAD_FREE(deinit_stat_lines_per_thread);
static void deinit_stats(void)
{
int domains[] = { STATS_DOMAIN_PROXY, STATS_DOMAIN_RESOLVERS }, i;
for (i = 0; i < STATS_DOMAIN_COUNT; ++i) {
const int domain = domains[i];
if (stat_cols[domain])
free(stat_cols[domain]);
}
}
REGISTER_POST_DEINIT(deinit_stats);
static void free_trash_counters(void)
{
if (trash_counters)
free(trash_counters);
}
REGISTER_PER_THREAD_FREE(free_trash_counters);
/* register cli keywords */
static struct cli_kw_list cli_kws = {{ },{
{ { "clear", "counters", NULL }, "clear counters [all] : clear max statistics counters (or all counters)", cli_parse_clear_counters, NULL, NULL },
{ { "show", "info", NULL }, "show info [desc|json|typed|float]* : report information about the running process", cli_parse_show_info, cli_io_handler_dump_info, NULL },
{ { "show", "stat", NULL }, "show stat [desc|json|no-maint|typed|up]*: report counters for each proxy and server", cli_parse_show_stat, cli_io_handler_dump_stat, cli_io_handler_release_stat },
{ { "show", "schema", "json", NULL }, "show schema json : report schema used for stats", NULL, cli_io_handler_dump_json_schema, NULL },
{ { "dump", "stats-file", NULL }, "dump stats-file : dump stats for restore", cli_parse_dump_stat_file, cli_io_handler_dump_stat_file, cli_io_handler_release_dump_stat_file },
{{},}
}};
INITCALL1(STG_REGISTER, cli_register_kw, &cli_kws);
/*
* Local variables:
* c-indent-level: 8
* c-basic-offset: 8
* End:
*/