haproxy/doc/management.txt
William Lallemand f76b3b47ea DOC: management: add forgotten "show startup-logs"
The keyword was never documented.

Must be backported in all maintained versions.
2022-10-14 15:43:28 +02:00

4285 lines
218 KiB
Plaintext

------------------------
HAProxy Management Guide
------------------------
version 2.7
This document describes how to start, stop, manage, and troubleshoot HAProxy,
as well as some known limitations and traps to avoid. It does not describe how
to configure it (for this please read configuration.txt).
Note to documentation contributors :
This document is formatted with 80 columns per line, with even number of
spaces for indentation and without tabs. Please follow these rules strictly
so that it remains easily printable everywhere. If you add sections, please
update the summary below for easier searching.
Summary
-------
1. Prerequisites
2. Quick reminder about HAProxy's architecture
3. Starting HAProxy
4. Stopping and restarting HAProxy
5. File-descriptor limitations
6. Memory management
7. CPU usage
8. Logging
9. Statistics and monitoring
9.1. CSV format
9.2. Typed output format
9.3. Unix Socket commands
9.4. Master CLI
9.4.1. Master CLI commands
10. Tricks for easier configuration management
11. Well-known traps to avoid
12. Debugging and performance issues
13. Security considerations
1. Prerequisites
----------------
In this document it is assumed that the reader has sufficient administration
skills on a UNIX-like operating system, uses the shell on a daily basis and is
familiar with troubleshooting utilities such as strace and tcpdump.
2. Quick reminder about HAProxy's architecture
----------------------------------------------
HAProxy is a multi-threaded, event-driven, non-blocking daemon. This means is
uses event multiplexing to schedule all of its activities instead of relying on
the system to schedule between multiple activities. Most of the time it runs as
a single process, so the output of "ps aux" on a system will report only one
"haproxy" process, unless a soft reload is in progress and an older process is
finishing its job in parallel to the new one. It is thus always easy to trace
its activity using the strace utility. In order to scale with the number of
available processors, by default haproxy will start one worker thread per
processor it is allowed to run on. Unless explicitly configured differently,
the incoming traffic is spread over all these threads, all running the same
event loop. A great care is taken to limit inter-thread dependencies to the
strict minimum, so as to try to achieve near-linear scalability. This has some
impacts such as the fact that a given connection is served by a single thread.
Thus in order to use all available processing capacity, it is needed to have at
least as many connections as there are threads, which is almost always granted.
HAProxy is designed to isolate itself into a chroot jail during startup, where
it cannot perform any file-system access at all. This is also true for the
libraries it depends on (eg: libc, libssl, etc). The immediate effect is that
a running process will not be able to reload a configuration file to apply
changes, instead a new process will be started using the updated configuration
file. Some other less obvious effects are that some timezone files or resolver
files the libc might attempt to access at run time will not be found, though
this should generally not happen as they're not needed after startup. A nice
consequence of this principle is that the HAProxy process is totally stateless,
and no cleanup is needed after it's killed, so any killing method that works
will do the right thing.
HAProxy doesn't write log files, but it relies on the standard syslog protocol
to send logs to a remote server (which is often located on the same system).
HAProxy uses its internal clock to enforce timeouts, that is derived from the
system's time but where unexpected drift is corrected. This is done by limiting
the time spent waiting in poll() for an event, and measuring the time it really
took. In practice it never waits more than one second. This explains why, when
running strace over a completely idle process, periodic calls to poll() (or any
of its variants) surrounded by two gettimeofday() calls are noticed. They are
normal, completely harmless and so cheap that the load they imply is totally
undetectable at the system scale, so there's nothing abnormal there. Example :
16:35:40.002320 gettimeofday({1442759740, 2605}, NULL) = 0
16:35:40.002942 epoll_wait(0, {}, 200, 1000) = 0
16:35:41.007542 gettimeofday({1442759741, 7641}, NULL) = 0
16:35:41.007998 gettimeofday({1442759741, 8114}, NULL) = 0
16:35:41.008391 epoll_wait(0, {}, 200, 1000) = 0
16:35:42.011313 gettimeofday({1442759742, 11411}, NULL) = 0
HAProxy is a TCP proxy, not a router. It deals with established connections that
have been validated by the kernel, and not with packets of any form nor with
sockets in other states (eg: no SYN_RECV nor TIME_WAIT), though their existence
may prevent it from binding a port. It relies on the system to accept incoming
connections and to initiate outgoing connections. An immediate effect of this is
that there is no relation between packets observed on the two sides of a
forwarded connection, which can be of different size, numbers and even family.
Since a connection may only be accepted from a socket in LISTEN state, all the
sockets it is listening to are necessarily visible using the "netstat" utility
to show listening sockets. Example :
# netstat -ltnp
Active Internet connections (only servers)
Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 1629/sshd
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 2847/haproxy
tcp 0 0 0.0.0.0:443 0.0.0.0:* LISTEN 2847/haproxy
3. Starting HAProxy
-------------------
HAProxy is started by invoking the "haproxy" program with a number of arguments
passed on the command line. The actual syntax is :
$ haproxy [<options>]*
where [<options>]* is any number of options. An option always starts with '-'
followed by one of more letters, and possibly followed by one or multiple extra
arguments. Without any option, HAProxy displays the help page with a reminder
about supported options. Available options may vary slightly based on the
operating system. A fair number of these options overlap with an equivalent one
if the "global" section. In this case, the command line always has precedence
over the configuration file, so that the command line can be used to quickly
enforce some settings without touching the configuration files. The current
list of options is :
-- <cfgfile>* : all the arguments following "--" are paths to configuration
file/directory to be loaded and processed in the declaration order. It is
mostly useful when relying on the shell to load many files that are
numerically ordered. See also "-f". The difference between "--" and "-f" is
that one "-f" must be placed before each file name, while a single "--" is
needed before all file names. Both options can be used together, the
command line ordering still applies. When more than one file is specified,
each file must start on a section boundary, so the first keyword of each
file must be one of "global", "defaults", "peers", "listen", "frontend",
"backend", and so on. A file cannot contain just a server list for example.
-f <cfgfile|cfgdir> : adds <cfgfile> to the list of configuration files to be
loaded. If <cfgdir> is a directory, all the files (and only files) it
contains are added in lexical order (using LC_COLLATE=C) to the list of
configuration files to be loaded ; only files with ".cfg" extension are
added, only non hidden files (not prefixed with ".") are added.
Configuration files are loaded and processed in their declaration order.
This option may be specified multiple times to load multiple files. See
also "--". The difference between "--" and "-f" is that one "-f" must be
placed before each file name, while a single "--" is needed before all file
names. Both options can be used together, the command line ordering still
applies. When more than one file is specified, each file must start on a
section boundary, so the first keyword of each file must be one of
"global", "defaults", "peers", "listen", "frontend", "backend", and so on.
A file cannot contain just a server list for example.
-C <dir> : changes to directory <dir> before loading configuration
files. This is useful when using relative paths. Warning when using
wildcards after "--" which are in fact replaced by the shell before
starting haproxy.
-D : start as a daemon. The process detaches from the current terminal after
forking, and errors are not reported anymore in the terminal. It is
equivalent to the "daemon" keyword in the "global" section of the
configuration. It is recommended to always force it in any init script so
that a faulty configuration doesn't prevent the system from booting.
-L <name> : change the local peer name to <name>, which defaults to the local
hostname. This is used only with peers replication. You can use the
variable $HAPROXY_LOCALPEER in the configuration file to reference the
peer name.
-N <limit> : sets the default per-proxy maxconn to <limit> instead of the
builtin default value (usually 2000). Only useful for debugging.
-V : enable verbose mode (disables quiet mode). Reverts the effect of "-q" or
"quiet".
-W : master-worker mode. It is equivalent to the "master-worker" keyword in
the "global" section of the configuration. This mode will launch a "master"
which will monitor the "workers". Using this mode, you can reload HAProxy
directly by sending a SIGUSR2 signal to the master. The master-worker mode
is compatible either with the foreground or daemon mode. It is
recommended to use this mode with multiprocess and systemd.
-Ws : master-worker mode with support of `notify` type of systemd service.
This option is only available when HAProxy was built with `USE_SYSTEMD`
build option enabled.
-c : only performs a check of the configuration files and exits before trying
to bind. The exit status is zero if everything is OK, or non-zero if an
error is encountered. Presence of warnings will be reported if any.
-cc : evaluates a condition as used within a conditional block of the
configuration. The exit status is zero if the condition is true, 1 if the
condition is false or 2 if an error is encountered.
-d : enable debug mode. This disables daemon mode, forces the process to stay
in foreground and to show incoming and outgoing events. It must never be
used in an init script.
-dC[key] : dump the configuration file. It is performed after the lines are
tokenized, so comments are stripped and indenting is forced. If a non-zero
key is specified, lines are truncated before sensitive/confidential fields,
and identifiers and addresses are emitted hashed with this key using the
same algorithmm as the one used by the anonymized mode on the CLI. This
means that the output may safely be shared with a developer who needs it
to figure what's happening in a dump that was anonymized using the same
key. Please also see the CLI's "set anon" command.
-dD : enable diagnostic mode. This mode will output extra warnings about
suspicious configuration statements. This will never prevent startup even in
"zero-warning" mode nor change the exit status code.
-dG : disable use of getaddrinfo() to resolve host names into addresses. It
can be used when suspecting that getaddrinfo() doesn't work as expected.
This option was made available because many bogus implementations of
getaddrinfo() exist on various systems and cause anomalies that are
difficult to troubleshoot.
-dK<class[,class]*> : dumps the list of registered keywords in each class.
The list of classes is available with "-dKhelp". All classes may be dumped
using "-dKall", otherwise a selection of those shown in the help can be
specified as a comma-delimited list. The output format will vary depending
on what class of keywords is being dumped (e.g. "cfg" will show the known
configuration keywords in a format resembling the config file format while
"smp" will show sample fetch functions prefixed with a compatibility matrix
with each rule set). These may rarely be used as-is by humans but can be of
great help for external tools that try to detect the appearance of new
keywords at certain places to automatically update some documentation,
syntax highlighting files, configuration parsers, API etc. The output
format may evolve a bit over time so it is really recommended to use this
output mostly to detect differences with previous archives. Note that not
all keywords are listed because many keywords have existed long before the
different keyword registration subsystems were created, and they do not
appear there. However since new keywords are only added via the modern
mechanisms, it's reasonably safe to assume that this output may be used to
detect language additions with a good accuracy. The keywords are only
dumped after the configuration is fully parsed, so that even dynamically
created keywords can be dumped. A good way to dump and exit is to run a
silent config check on an existing configuration:
./haproxy -dKall -q -c -f foo.cfg
If no configuration file is available, using "-f /dev/null" will work as
well to dump all default keywords, but then the return status will not be
zero since there will be no listener, and will have to be ignored.
-dL : dumps the list of dynamic shared libraries that are loaded at the end
of the config processing. This will generally also include deep dependencies
such as anything loaded from Lua code for example, as well as the executable
itself. The list is printed in a format that ought to be easy enough to
sanitize to directly produce a tarball of all dependencies. Since it doesn't
stop the program's startup, it is recommended to only use it in combination
with "-c" and "-q" where only the list of loaded objects will be displayed
(or nothing in case of error). In addition, keep in mind that when providing
such a package to help with a core file analysis, most libraries are in fact
symbolic links that need to be dereferenced when creating the archive:
./haproxy -W -q -c -dL -f foo.cfg | tar -T - -hzcf archive.tgz
-dM[<byte>[,]][help|options,...] : forces memory poisoning, and/or changes
memory other debugging options. Memory poisonning means that each and every
memory region allocated with malloc() or pool_alloc() will be filled with
<byte> before being passed to the caller. When <byte> is not specified, it
defaults to 0x50 ('P'). While this slightly slows down operations, it is
useful to reliably trigger issues resulting from missing initializations in
the code that cause random crashes. Note that -dM0 has the effect of
turning any malloc() into a calloc(). In any case if a bug appears or
disappears when using this option it means there is a bug in haproxy, so
please report it. A number of other options are available either alone or
after a comma following the byte. The special option "help" will list the
currently supported options and their current value. Each debugging option
may be forced on or off. The most optimal options are usually chosen at
build time based on the operating system and do not need to be adjusted,
unless suggested by a developer. Supported debugging options include
(set/clear):
- fail / no-fail:
This enables randomly failing memory allocations, in conjunction with
the global "tune.fail-alloc" setting. This is used to detect missing
error checks in the code.
- no-merge / merge:
By default, pools of very similar sizes are merged, resulting in more
efficiency, but this complicates the analysis of certain memory dumps.
This option allows to disable this mechanism, and may slightly increase
the memory usage.
- cold-first / hot-first:
In order to optimize the CPU cache hit ratio, by default the most
recently released objects ("hot") are recycled for new allocations.
But doing so also complicates analysis of memory dumps and may hide
use-after-free bugs. This option allows to instead pick the coldest
objects first, which may result in a slight increase of CPU usage.
- integrity / no-integrity:
When this option is enabled, memory integrity checks are enabled on
the allocated area to verify that it hasn't been modified since it was
last released. This works best with "no-merge", "cold-first" and "tag".
Enabling this option will slightly increase the CPU usage.
- no-global / global:
Depending on the operating system, a process-wide global memory cache
may be enabled if it is estimated that the standard allocator is too
slow or inefficient with threads. This option allows to forcefully
disable it or enable it. Disabling it may result in a CPU usage
increase with inefficient allocators. Enabling it may result in a
higher memory usage with efficient allocators.
- no-cache / cache:
Each thread uses a very fast local object cache for allocations, which
is always enabled by default. This option allows to disable it. Since
the global cache also passes via the local caches, this will
effectively result in disabling all caches and allocating directly from
the default allocator. This may result in a significant increase of CPU
usage, but may also result in small memory savings on tiny systems.
- caller / no-caller:
Enabling this option reserves some extra space in each allocated object
to store the address of the last caller that allocated or released it.
This helps developers go back in time when analysing memory dumps and
to guess how something unexpected happened.
- tag / no-tag:
Enabling this option reserves some extra space in each allocated object
to store a tag that allows to detect bugs such as double-free, freeing
an invalid object, and buffer overflows. It offers much stronger
reliability guarantees at the expense of 4 or 8 extra bytes per
allocation. It usually is the first step to detect memory corruption.
- poison / no-poison:
Enabling this option will fill allocated objects with a fixed pattern
that will make sure that some accidental values such as 0 will not be
present if a newly added field was mistakenly forgotten in an
initialization routine. Such bugs tend to rarely reproduce, especially
when pools are not merged. This is normally enabled by directly passing
the byte's value to -dM but using this option allows to disable/enable
use of a previously set value.
-dS : disable use of the splice() system call. It is equivalent to the
"global" section's "nosplice" keyword. This may be used when splice() is
suspected to behave improperly or to cause performance issues, or when
using strace to see the forwarded data (which do not appear when using
splice()).
-dV : disable SSL verify on the server side. It is equivalent to having
"ssl-server-verify none" in the "global" section. This is useful when
trying to reproduce production issues out of the production
environment. Never use this in an init script as it degrades SSL security
to the servers.
-dW : if set, haproxy will refuse to start if any warning was emitted while
processing the configuration. This helps detect subtle mistakes and keep the
configuration clean and portable across versions. It is recommended to set
this option in service scripts when configurations are managed by humans,
but it is recommended not to use it with generated configurations, which
tend to emit more warnings. It may be combined with "-c" to cause warnings
in checked configurations to fail. This is equivalent to global option
"zero-warning".
-db : disable background mode and multi-process mode. The process remains in
foreground. It is mainly used during development or during small tests, as
Ctrl-C is enough to stop the process. Never use it in an init script.
-de : disable the use of the "epoll" poller. It is equivalent to the "global"
section's keyword "noepoll". It is mostly useful when suspecting a bug
related to this poller. On systems supporting epoll, the fallback will
generally be the "poll" poller.
-dk : disable the use of the "kqueue" poller. It is equivalent to the
"global" section's keyword "nokqueue". It is mostly useful when suspecting
a bug related to this poller. On systems supporting kqueue, the fallback
will generally be the "poll" poller.
-dp : disable the use of the "poll" poller. It is equivalent to the "global"
section's keyword "nopoll". It is mostly useful when suspecting a bug
related to this poller. On systems supporting poll, the fallback will
generally be the "select" poller, which cannot be disabled and is limited
to 1024 file descriptors.
-dr : ignore server address resolution failures. It is very common when
validating a configuration out of production not to have access to the same
resolvers and to fail on server address resolution, making it difficult to
test a configuration. This option simply appends the "none" method to the
list of address resolution methods for all servers, ensuring that even if
the libc fails to resolve an address, the startup sequence is not
interrupted.
-m <limit> : limit the total allocatable memory to <limit> megabytes across
all processes. This may cause some connection refusals or some slowdowns
depending on the amount of memory needed for normal operations. This is
mostly used to force the processes to work in a constrained resource usage
scenario. It is important to note that the memory is not shared between
processes, so in a multi-process scenario, this value is first divided by
global.nbproc before forking.
-n <limit> : limits the per-process connection limit to <limit>. This is
equivalent to the global section's keyword "maxconn". It has precedence
over this keyword. This may be used to quickly force lower limits to avoid
a service outage on systems where resource limits are too low.
-p <file> : write all processes' pids into <file> during startup. This is
equivalent to the "global" section's keyword "pidfile". The file is opened
before entering the chroot jail, and after doing the chdir() implied by
"-C". Each pid appears on its own line.
-q : set "quiet" mode. This disables some messages during the configuration
parsing and during startup. It can be used in combination with "-c" to
just check if a configuration file is valid or not.
-S <bind>[,bind_options...]: in master-worker mode, bind a master CLI, which
allows the access to every processes, running or leaving ones.
For security reasons, it is recommended to bind the master CLI to a local
UNIX socket. The bind options are the same as the keyword "bind" in
the configuration file with words separated by commas instead of spaces.
Note that this socket can't be used to retrieve the listening sockets from
an old process during a seamless reload.
-sf <pid>* : send the "finish" signal (SIGUSR1) to older processes after boot
completion to ask them to finish what they are doing and to leave. <pid>
is a list of pids to signal (one per argument). The list ends on any
option starting with a "-". It is not a problem if the list of pids is
empty, so that it can be built on the fly based on the result of a command
like "pidof" or "pgrep". QUIC connections will be aborted.
-st <pid>* : send the "terminate" signal (SIGTERM) to older processes after
boot completion to terminate them immediately without finishing what they
were doing. <pid> is a list of pids to signal (one per argument). The list
is ends on any option starting with a "-". It is not a problem if the list
of pids is empty, so that it can be built on the fly based on the result of
a command like "pidof" or "pgrep".
-v : report the version and build date.
-vv : display the version, build options, libraries versions and usable
pollers. This output is systematically requested when filing a bug report.
-x <unix_socket> : connect to the specified socket and try to retrieve any
listening sockets from the old process, and use them instead of trying to
bind new ones. This is useful to avoid missing any new connection when
reloading the configuration on Linux. The capability must be enable on the
stats socket using "expose-fd listeners" in your configuration.
In master-worker mode, the master will use this option upon a reload with
the "sockpair@" syntax, which allows the master to connect directly to a
worker without using stats socket declared in the configuration.
A safe way to start HAProxy from an init file consists in forcing the daemon
mode, storing existing pids to a pid file and using this pid file to notify
older processes to finish before leaving :
haproxy -f /etc/haproxy.cfg \
-D -p /var/run/haproxy.pid -sf $(cat /var/run/haproxy.pid)
When the configuration is split into a few specific files (eg: tcp vs http),
it is recommended to use the "-f" option :
haproxy -f /etc/haproxy/global.cfg -f /etc/haproxy/stats.cfg \
-f /etc/haproxy/default-tcp.cfg -f /etc/haproxy/tcp.cfg \
-f /etc/haproxy/default-http.cfg -f /etc/haproxy/http.cfg \
-D -p /var/run/haproxy.pid -sf $(cat /var/run/haproxy.pid)
When an unknown number of files is expected, such as customer-specific files,
it is recommended to assign them a name starting with a fixed-size sequence
number and to use "--" to load them, possibly after loading some defaults :
haproxy -f /etc/haproxy/global.cfg -f /etc/haproxy/stats.cfg \
-f /etc/haproxy/default-tcp.cfg -f /etc/haproxy/tcp.cfg \
-f /etc/haproxy/default-http.cfg -f /etc/haproxy/http.cfg \
-D -p /var/run/haproxy.pid -sf $(cat /var/run/haproxy.pid) \
-f /etc/haproxy/default-customers.cfg -- /etc/haproxy/customers/*
Sometimes a failure to start may happen for whatever reason. Then it is
important to verify if the version of HAProxy you are invoking is the expected
version and if it supports the features you are expecting (eg: SSL, PCRE,
compression, Lua, etc). This can be verified using "haproxy -vv". Some
important information such as certain build options, the target system and
the versions of the libraries being used are reported there. It is also what
you will systematically be asked for when posting a bug report :
$ haproxy -vv
HAProxy version 1.6-dev7-a088d3-4 2015/10/08
Copyright 2000-2015 Willy Tarreau <willy@haproxy.org>
Build options :
TARGET = linux2628
CPU = generic
CC = gcc
CFLAGS = -pg -O0 -g -fno-strict-aliasing -Wdeclaration-after-statement \
-DBUFSIZE=8030 -DMAXREWRITE=1030 -DSO_MARK=36 -DTCP_REPAIR=19
OPTIONS = USE_ZLIB=1 USE_DLMALLOC=1 USE_OPENSSL=1 USE_LUA=1 USE_PCRE=1
Default settings :
maxconn = 2000, bufsize = 8030, maxrewrite = 1030, maxpollevents = 200
Encrypted password support via crypt(3): yes
Built with zlib version : 1.2.6
Compression algorithms supported : identity("identity"), deflate("deflate"), \
raw-deflate("deflate"), gzip("gzip")
Built with OpenSSL version : OpenSSL 1.0.1o 12 Jun 2015
Running on OpenSSL version : OpenSSL 1.0.1o 12 Jun 2015
OpenSSL library supports TLS extensions : yes
OpenSSL library supports SNI : yes
OpenSSL library supports prefer-server-ciphers : yes
Built with PCRE version : 8.12 2011-01-15
PCRE library supports JIT : no (USE_PCRE_JIT not set)
Built with Lua version : Lua 5.3.1
Built with transparent proxy support using: IP_TRANSPARENT IP_FREEBIND
Available polling systems :
epoll : pref=300, test result OK
poll : pref=200, test result OK
select : pref=150, test result OK
Total: 3 (3 usable), will use epoll.
The relevant information that many non-developer users can verify here are :
- the version : 1.6-dev7-a088d3-4 above means the code is currently at commit
ID "a088d3" which is the 4th one after after official version "1.6-dev7".
Version 1.6-dev7 would show as "1.6-dev7-8c1ad7". What matters here is in
fact "1.6-dev7". This is the 7th development version of what will become
version 1.6 in the future. A development version not suitable for use in
production (unless you know exactly what you are doing). A stable version
will show as a 3-numbers version, such as "1.5.14-16f863", indicating the
14th level of fix on top of version 1.5. This is a production-ready version.
- the release date : 2015/10/08. It is represented in the universal
year/month/day format. Here this means August 8th, 2015. Given that stable
releases are issued every few months (1-2 months at the beginning, sometimes
6 months once the product becomes very stable), if you're seeing an old date
here, it means you're probably affected by a number of bugs or security
issues that have since been fixed and that it might be worth checking on the
official site.
- build options : they are relevant to people who build their packages
themselves, they can explain why things are not behaving as expected. For
example the development version above was built for Linux 2.6.28 or later,
targeting a generic CPU (no CPU-specific optimizations), and lacks any
code optimization (-O0) so it will perform poorly in terms of performance.
- libraries versions : zlib version is reported as found in the library
itself. In general zlib is considered a very stable product and upgrades
are almost never needed. OpenSSL reports two versions, the version used at
build time and the one being used, as found on the system. These ones may
differ by the last letter but never by the numbers. The build date is also
reported because most OpenSSL bugs are security issues and need to be taken
seriously, so this library absolutely needs to be kept up to date. Seeing a
4-months old version here is highly suspicious and indeed an update was
missed. PCRE provides very fast regular expressions and is highly
recommended. Certain of its extensions such as JIT are not present in all
versions and still young so some people prefer not to build with them,
which is why the build status is reported as well. Regarding the Lua
scripting language, HAProxy expects version 5.3 which is very young since
it was released a little time before HAProxy 1.6. It is important to check
on the Lua web site if some fixes are proposed for this branch.
- Available polling systems will affect the process's scalability when
dealing with more than about one thousand of concurrent connections. These
ones are only available when the correct system was indicated in the TARGET
variable during the build. The "epoll" mechanism is highly recommended on
Linux, and the kqueue mechanism is highly recommended on BSD. Lacking them
will result in poll() or even select() being used, causing a high CPU usage
when dealing with a lot of connections.
4. Stopping and restarting HAProxy
----------------------------------
HAProxy supports a graceful and a hard stop. The hard stop is simple, when the
SIGTERM signal is sent to the haproxy process, it immediately quits and all
established connections are closed. The graceful stop is triggered when the
SIGUSR1 signal is sent to the haproxy process. It consists in only unbinding
from listening ports, but continue to process existing connections until they
close. Once the last connection is closed, the process leaves.
The hard stop method is used for the "stop" or "restart" actions of the service
management script. The graceful stop is used for the "reload" action which
tries to seamlessly reload a new configuration in a new process.
Both of these signals may be sent by the new haproxy process itself during a
reload or restart, so that they are sent at the latest possible moment and only
if absolutely required. This is what is performed by the "-st" (hard) and "-sf"
(graceful) options respectively.
In master-worker mode, it is not needed to start a new haproxy process in
order to reload the configuration. The master process reacts to the SIGUSR2
signal by reexecuting itself with the -sf parameter followed by the PIDs of
the workers. The master will then parse the configuration file and fork new
workers.
To understand better how these signals are used, it is important to understand
the whole restart mechanism.
First, an existing haproxy process is running. The administrator uses a system
specific command such as "/etc/init.d/haproxy reload" to indicate they want to
take the new configuration file into effect. What happens then is the following.
First, the service script (/etc/init.d/haproxy or equivalent) will verify that
the configuration file parses correctly using "haproxy -c". After that it will
try to start haproxy with this configuration file, using "-st" or "-sf".
Then HAProxy tries to bind to all listening ports. If some fatal errors happen
(eg: address not present on the system, permission denied), the process quits
with an error. If a socket binding fails because a port is already in use, then
the process will first send a SIGTTOU signal to all the pids specified in the
"-st" or "-sf" pid list. This is what is called the "pause" signal. It instructs
all existing haproxy processes to temporarily stop listening to their ports so
that the new process can try to bind again. During this time, the old process
continues to process existing connections. If the binding still fails (because
for example a port is shared with another daemon), then the new process sends a
SIGTTIN signal to the old processes to instruct them to resume operations just
as if nothing happened. The old processes will then restart listening to the
ports and continue to accept connections. Note that this mechanism is system
dependent and some operating systems may not support it in multi-process mode.
If the new process manages to bind correctly to all ports, then it sends either
the SIGTERM (hard stop in case of "-st") or the SIGUSR1 (graceful stop in case
of "-sf") to all processes to notify them that it is now in charge of operations
and that the old processes will have to leave, either immediately or once they
have finished their job.
It is important to note that during this timeframe, there are two small windows
of a few milliseconds each where it is possible that a few connection failures
will be noticed during high loads. Typically observed failure rates are around
1 failure during a reload operation every 10000 new connections per second,
which means that a heavily loaded site running at 30000 new connections per
second may see about 3 failed connection upon every reload. The two situations
where this happens are :
- if the new process fails to bind due to the presence of the old process,
it will first have to go through the SIGTTOU+SIGTTIN sequence, which
typically lasts about one millisecond for a few tens of frontends, and
during which some ports will not be bound to the old process and not yet
bound to the new one. HAProxy works around this on systems that support the
SO_REUSEPORT socket options, as it allows the new process to bind without
first asking the old one to unbind. Most BSD systems have been supporting
this almost forever. Linux has been supporting this in version 2.0 and
dropped it around 2.2, but some patches were floating around by then. It
was reintroduced in kernel 3.9, so if you are observing a connection
failure rate above the one mentioned above, please ensure that your kernel
is 3.9 or newer, or that relevant patches were backported to your kernel
(less likely).
- when the old processes close the listening ports, the kernel may not always
redistribute any pending connection that was remaining in the socket's
backlog. Under high loads, a SYN packet may happen just before the socket
is closed, and will lead to an RST packet being sent to the client. In some
critical environments where even one drop is not acceptable, these ones are
sometimes dealt with using firewall rules to block SYN packets during the
reload, forcing the client to retransmit. This is totally system-dependent,
as some systems might be able to visit other listening queues and avoid
this RST. A second case concerns the ACK from the client on a local socket
that was in SYN_RECV state just before the close. This ACK will lead to an
RST packet while the haproxy process is still not aware of it. This one is
harder to get rid of, though the firewall filtering rules mentioned above
will work well if applied one second or so before restarting the process.
For the vast majority of users, such drops will never ever happen since they
don't have enough load to trigger the race conditions. And for most high traffic
users, the failure rate is still fairly within the noise margin provided that at
least SO_REUSEPORT is properly supported on their systems.
QUIC limitations: soft-stop is not supported. In case of reload, QUIC connections
will not be preserved.
5. File-descriptor limitations
------------------------------
In order to ensure that all incoming connections will successfully be served,
HAProxy computes at load time the total number of file descriptors that will be
needed during the process's life. A regular Unix process is generally granted
1024 file descriptors by default, and a privileged process can raise this limit
itself. This is one reason for starting HAProxy as root and letting it adjust
the limit. The default limit of 1024 file descriptors roughly allow about 500
concurrent connections to be processed. The computation is based on the global
maxconn parameter which limits the total number of connections per process, the
number of listeners, the number of servers which have a health check enabled,
the agent checks, the peers, the loggers and possibly a few other technical
requirements. A simple rough estimate of this number consists in simply
doubling the maxconn value and adding a few tens to get the approximate number
of file descriptors needed.
Originally HAProxy did not know how to compute this value, and it was necessary
to pass the value using the "ulimit-n" setting in the global section. This
explains why even today a lot of configurations are seen with this setting
present. Unfortunately it was often miscalculated resulting in connection
failures when approaching maxconn instead of throttling incoming connection
while waiting for the needed resources. For this reason it is important to
remove any vestigial "ulimit-n" setting that can remain from very old versions.
Raising the number of file descriptors to accept even moderate loads is
mandatory but comes with some OS-specific adjustments. First, the select()
polling system is limited to 1024 file descriptors. In fact on Linux it used
to be capable of handling more but since certain OS ship with excessively
restrictive SELinux policies forbidding the use of select() with more than
1024 file descriptors, HAProxy now refuses to start in this case in order to
avoid any issue at run time. On all supported operating systems, poll() is
available and will not suffer from this limitation. It is automatically picked
so there is nothing to do to get a working configuration. But poll's becomes
very slow when the number of file descriptors increases. While HAProxy does its
best to limit this performance impact (eg: via the use of the internal file
descriptor cache and batched processing), a good rule of thumb is that using
poll() with more than a thousand concurrent connections will use a lot of CPU.
For Linux systems base on kernels 2.6 and above, the epoll() system call will
be used. It's a much more scalable mechanism relying on callbacks in the kernel
that guarantee a constant wake up time regardless of the number of registered
monitored file descriptors. It is automatically used where detected, provided
that HAProxy had been built for one of the Linux flavors. Its presence and
support can be verified using "haproxy -vv".
For BSD systems which support it, kqueue() is available as an alternative. It
is much faster than poll() and even slightly faster than epoll() thanks to its
batched handling of changes. At least FreeBSD and OpenBSD support it. Just like
with Linux's epoll(), its support and availability are reported in the output
of "haproxy -vv".
Having a good poller is one thing, but it is mandatory that the process can
reach the limits. When HAProxy starts, it immediately sets the new process's
file descriptor limits and verifies if it succeeds. In case of failure, it
reports it before forking so that the administrator can see the problem. As
long as the process is started by as root, there should be no reason for this
setting to fail. However, it can fail if the process is started by an
unprivileged user. If there is a compelling reason for *not* starting haproxy
as root (eg: started by end users, or by a per-application account), then the
file descriptor limit can be raised by the system administrator for this
specific user. The effectiveness of the setting can be verified by issuing
"ulimit -n" from the user's command line. It should reflect the new limit.
Warning: when an unprivileged user's limits are changed in this user's account,
it is fairly common that these values are only considered when the user logs in
and not at all in some scripts run at system boot time nor in crontabs. This is
totally dependent on the operating system, keep in mind to check "ulimit -n"
before starting haproxy when running this way. The general advice is never to
start haproxy as an unprivileged user for production purposes. Another good
reason is that it prevents haproxy from enabling some security protections.
Once it is certain that the system will allow the haproxy process to use the
requested number of file descriptors, two new system-specific limits may be
encountered. The first one is the system-wide file descriptor limit, which is
the total number of file descriptors opened on the system, covering all
processes. When this limit is reached, accept() or socket() will typically
return ENFILE. The second one is the per-process hard limit on the number of
file descriptors, it prevents setrlimit() from being set higher. Both are very
dependent on the operating system. On Linux, the system limit is set at boot
based on the amount of memory. It can be changed with the "fs.file-max" sysctl.
And the per-process hard limit is set to 1048576 by default, but it can be
changed using the "fs.nr_open" sysctl.
File descriptor limitations may be observed on a running process when they are
set too low. The strace utility will report that accept() and socket() return
"-1 EMFILE" when the process's limits have been reached. In this case, simply
raising the "ulimit-n" value (or removing it) will solve the problem. If these
system calls return "-1 ENFILE" then it means that the kernel's limits have
been reached and that something must be done on a system-wide parameter. These
trouble must absolutely be addressed, as they result in high CPU usage (when
accept() fails) and failed connections that are generally visible to the user.
One solution also consists in lowering the global maxconn value to enforce
serialization, and possibly to disable HTTP keep-alive to force connections
to be released and reused faster.
6. Memory management
--------------------
HAProxy uses a simple and fast pool-based memory management. Since it relies on
a small number of different object types, it's much more efficient to pick new
objects from a pool which already contains objects of the appropriate size than
to call malloc() for each different size. The pools are organized as a stack or
LIFO, so that newly allocated objects are taken from recently released objects
still hot in the CPU caches. Pools of similar sizes are merged together, in
order to limit memory fragmentation.
By default, since the focus is set on performance, each released object is put
back into the pool it came from, and allocated objects are never freed since
they are expected to be reused very soon.
On the CLI, it is possible to check how memory is being used in pools thanks to
the "show pools" command :
> show pools
Dumping pools usage. Use SIGQUIT to flush them.
- Pool cache_st (16 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 1 users, @0x9ccc40=03 [SHARED]
- Pool pipe (32 bytes) : 5 allocated (160 bytes), 5 used, 0 failures, 2 users, @0x9ccac0=00 [SHARED]
- Pool comp_state (48 bytes) : 3 allocated (144 bytes), 3 used, 0 failures, 5 users, @0x9cccc0=04 [SHARED]
- Pool filter (64 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 3 users, @0x9ccbc0=02 [SHARED]
- Pool vars (80 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 2 users, @0x9ccb40=01 [SHARED]
- Pool uniqueid (128 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 2 users, @0x9cd240=15 [SHARED]
- Pool task (144 bytes) : 55 allocated (7920 bytes), 55 used, 0 failures, 1 users, @0x9cd040=11 [SHARED]
- Pool session (160 bytes) : 1 allocated (160 bytes), 1 used, 0 failures, 1 users, @0x9cd140=13 [SHARED]
- Pool h2s (208 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 2 users, @0x9ccec0=08 [SHARED]
- Pool h2c (288 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 1 users, @0x9cce40=07 [SHARED]
- Pool spoe_ctx (304 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 2 users, @0x9ccf40=09 [SHARED]
- Pool connection (400 bytes) : 2 allocated (800 bytes), 2 used, 0 failures, 1 users, @0x9cd1c0=14 [SHARED]
- Pool hdr_idx (416 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 1 users, @0x9cd340=17 [SHARED]
- Pool dns_resolut (480 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 1 users, @0x9ccdc0=06 [SHARED]
- Pool dns_answer_ (576 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 1 users, @0x9ccd40=05 [SHARED]
- Pool stream (960 bytes) : 1 allocated (960 bytes), 1 used, 0 failures, 1 users, @0x9cd0c0=12 [SHARED]
- Pool requri (1024 bytes) : 0 allocated (0 bytes), 0 used, 0 failures, 1 users, @0x9cd2c0=16 [SHARED]
- Pool buffer (8030 bytes) : 3 allocated (24090 bytes), 2 used, 0 failures, 1 users, @0x9cd3c0=18 [SHARED]
- Pool trash (8062 bytes) : 1 allocated (8062 bytes), 1 used, 0 failures, 1 users, @0x9cd440=19
Total: 19 pools, 42296 bytes allocated, 34266 used.
The pool name is only indicative, it's the name of the first object type using
this pool. The size in parenthesis is the object size for objects in this pool.
Object sizes are always rounded up to the closest multiple of 16 bytes. The
number of objects currently allocated and the equivalent number of bytes is
reported so that it is easy to know which pool is responsible for the highest
memory usage. The number of objects currently in use is reported as well in the
"used" field. The difference between "allocated" and "used" corresponds to the
objects that have been freed and are available for immediate use. The address
at the end of the line is the pool's address, and the following number is the
pool index when it exists, or is reported as -1 if no index was assigned.
It is possible to limit the amount of memory allocated per process using the
"-m" command line option, followed by a number of megabytes. It covers all of
the process's addressable space, so that includes memory used by some libraries
as well as the stack, but it is a reliable limit when building a resource
constrained system. It works the same way as "ulimit -v" on systems which have
it, or "ulimit -d" for the other ones.
If a memory allocation fails due to the memory limit being reached or because
the system doesn't have any enough memory, then haproxy will first start to
free all available objects from all pools before attempting to allocate memory
again. This mechanism of releasing unused memory can be triggered by sending
the signal SIGQUIT to the haproxy process. When doing so, the pools state prior
to the flush will also be reported to stderr when the process runs in
foreground.
During a reload operation, the process switched to the graceful stop state also
automatically performs some flushes after releasing any connection so that all
possible memory is released to save it for the new process.
7. CPU usage
------------
HAProxy normally spends most of its time in the system and a smaller part in
userland. A finely tuned 3.5 GHz CPU can sustain a rate about 80000 end-to-end
connection setups and closes per second at 100% CPU on a single core. When one
core is saturated, typical figures are :
- 95% system, 5% user for long TCP connections or large HTTP objects
- 85% system and 15% user for short TCP connections or small HTTP objects in
close mode
- 70% system and 30% user for small HTTP objects in keep-alive mode
The amount of rules processing and regular expressions will increase the user
land part. The presence of firewall rules, connection tracking, complex routing
tables in the system will instead increase the system part.
On most systems, the CPU time observed during network transfers can be cut in 4
parts :
- the interrupt part, which concerns all the processing performed upon I/O
receipt, before the target process is even known. Typically Rx packets are
accounted for in interrupt. On some systems such as Linux where interrupt
processing may be deferred to a dedicated thread, it can appear as softirq,
and the thread is called ksoftirqd/0 (for CPU 0). The CPU taking care of
this load is generally defined by the hardware settings, though in the case
of softirq it is often possible to remap the processing to another CPU.
This interrupt part will often be perceived as parasitic since it's not
associated with any process, but it actually is some processing being done
to prepare the work for the process.
- the system part, which concerns all the processing done using kernel code
called from userland. System calls are accounted as system for example. All
synchronously delivered Tx packets will be accounted for as system time. If
some packets have to be deferred due to queues filling up, they may then be
processed in interrupt context later (eg: upon receipt of an ACK opening a
TCP window).
- the user part, which exclusively runs application code in userland. HAProxy
runs exclusively in this part, though it makes heavy use of system calls.
Rules processing, regular expressions, compression, encryption all add to
the user portion of CPU consumption.
- the idle part, which is what the CPU does when there is nothing to do. For
example HAProxy waits for an incoming connection, or waits for some data to
leave, meaning the system is waiting for an ACK from the client to push
these data.
In practice regarding HAProxy's activity, it is in general reasonably accurate
(but totally inexact) to consider that interrupt/softirq are caused by Rx
processing in kernel drivers, that user-land is caused by layer 7 processing
in HAProxy, and that system time is caused by network processing on the Tx
path.
Since HAProxy runs around an event loop, it waits for new events using poll()
(or any alternative) and processes all these events as fast as possible before
going back to poll() waiting for new events. It measures the time spent waiting
in poll() compared to the time spent doing processing events. The ratio of
polling time vs total time is called the "idle" time, it's the amount of time
spent waiting for something to happen. This ratio is reported in the stats page
on the "idle" line, or "Idle_pct" on the CLI. When it's close to 100%, it means
the load is extremely low. When it's close to 0%, it means that there is
constantly some activity. While it cannot be very accurate on an overloaded
system due to other processes possibly preempting the CPU from the haproxy
process, it still provides a good estimate about how HAProxy considers it is
working : if the load is low and the idle ratio is low as well, it may indicate
that HAProxy has a lot of work to do, possibly due to very expensive rules that
have to be processed. Conversely, if HAProxy indicates the idle is close to
100% while things are slow, it means that it cannot do anything to speed things
up because it is already waiting for incoming data to process. In the example
below, haproxy is completely idle :
$ echo "show info" | socat - /var/run/haproxy.sock | grep ^Idle
Idle_pct: 100
When the idle ratio starts to become very low, it is important to tune the
system and place processes and interrupts correctly to save the most possible
CPU resources for all tasks. If a firewall is present, it may be worth trying
to disable it or to tune it to ensure it is not responsible for a large part
of the performance limitation. It's worth noting that unloading a stateful
firewall generally reduces both the amount of interrupt/softirq and of system
usage since such firewalls act both on the Rx and the Tx paths. On Linux,
unloading the nf_conntrack and ip_conntrack modules will show whether there is
anything to gain. If so, then the module runs with default settings and you'll
have to figure how to tune it for better performance. In general this consists
in considerably increasing the hash table size. On FreeBSD, "pfctl -d" will
disable the "pf" firewall and its stateful engine at the same time.
If it is observed that a lot of time is spent in interrupt/softirq, it is
important to ensure that they don't run on the same CPU. Most systems tend to
pin the tasks on the CPU where they receive the network traffic because for
certain workloads it improves things. But with heavily network-bound workloads
it is the opposite as the haproxy process will have to fight against its kernel
counterpart. Pinning haproxy to one CPU core and the interrupts to another one,
all sharing the same L3 cache tends to sensibly increase network performance
because in practice the amount of work for haproxy and the network stack are
quite close, so they can almost fill an entire CPU each. On Linux this is done
using taskset (for haproxy) or using cpu-map (from the haproxy config), and the
interrupts are assigned under /proc/irq. Many network interfaces support
multiple queues and multiple interrupts. In general it helps to spread them
across a small number of CPU cores provided they all share the same L3 cache.
Please always stop irq_balance which always does the worst possible thing on
such workloads.
For CPU-bound workloads consisting in a lot of SSL traffic or a lot of
compression, it may be worth using multiple processes dedicated to certain
tasks, though there is no universal rule here and experimentation will have to
be performed.
In order to increase the CPU capacity, it is possible to make HAProxy run as
several processes, using the "nbproc" directive in the global section. There
are some limitations though :
- health checks are run per process, so the target servers will get as many
checks as there are running processes ;
- maxconn values and queues are per-process so the correct value must be set
to avoid overloading the servers ;
- outgoing connections should avoid using port ranges to avoid conflicts
- stick-tables are per process and are not shared between processes ;
- each peers section may only run on a single process at a time ;
- the CLI operations will only act on a single process at a time.
With this in mind, it appears that the easiest setup often consists in having
one first layer running on multiple processes and in charge for the heavy
processing, passing the traffic to a second layer running in a single process.
This mechanism is suited to SSL and compression which are the two CPU-heavy
features. Instances can easily be chained over UNIX sockets (which are cheaper
than TCP sockets and which do not waste ports), and the proxy protocol which is
useful to pass client information to the next stage. When doing so, it is
generally a good idea to bind all the single-process tasks to process number 1
and extra tasks to next processes, as this will make it easier to generate
similar configurations for different machines.
On Linux versions 3.9 and above, running HAProxy in multi-process mode is much
more efficient when each process uses a distinct listening socket on the same
IP:port ; this will make the kernel evenly distribute the load across all
processes instead of waking them all up. Please check the "process" option of
the "bind" keyword lines in the configuration manual for more information.
8. Logging
----------
For logging, HAProxy always relies on a syslog server since it does not perform
any file-system access. The standard way of using it is to send logs over UDP
to the log server (by default on port 514). Very commonly this is configured to
127.0.0.1 where the local syslog daemon is running, but it's also used over the
network to log to a central server. The central server provides additional
benefits especially in active-active scenarios where it is desirable to keep
the logs merged in arrival order. HAProxy may also make use of a UNIX socket to
send its logs to the local syslog daemon, but it is not recommended at all,
because if the syslog server is restarted while haproxy runs, the socket will
be replaced and new logs will be lost. Since HAProxy will be isolated inside a
chroot jail, it will not have the ability to reconnect to the new socket. It
has also been observed in field that the log buffers in use on UNIX sockets are
very small and lead to lost messages even at very light loads. But this can be
fine for testing however.
It is recommended to add the following directive to the "global" section to
make HAProxy log to the local daemon using facility "local0" :
log 127.0.0.1:514 local0
and then to add the following one to each "defaults" section or to each frontend
and backend section :
log global
This way, all logs will be centralized through the global definition of where
the log server is.
Some syslog daemons do not listen to UDP traffic by default, so depending on
the daemon being used, the syntax to enable this will vary :
- on sysklogd, you need to pass argument "-r" on the daemon's command line
so that it listens to a UDP socket for "remote" logs ; note that there is
no way to limit it to address 127.0.0.1 so it will also receive logs from
remote systems ;
- on rsyslogd, the following lines must be added to the configuration file :
$ModLoad imudp
$UDPServerAddress *
$UDPServerRun 514
- on syslog-ng, a new source can be created the following way, it then needs
to be added as a valid source in one of the "log" directives :
source s_udp {
udp(ip(127.0.0.1) port(514));
};
Please consult your syslog daemon's manual for more information. If no logs are
seen in the system's log files, please consider the following tests :
- restart haproxy. Each frontend and backend logs one line indicating it's
starting. If these logs are received, it means logs are working.
- run "strace -tt -s100 -etrace=sendmsg -p <haproxy's pid>" and perform some
activity that you expect to be logged. You should see the log messages
being sent using sendmsg() there. If they don't appear, restart using
strace on top of haproxy. If you still see no logs, it definitely means
that something is wrong in your configuration.
- run tcpdump to watch for port 514, for example on the loopback interface if
the traffic is being sent locally : "tcpdump -As0 -ni lo port 514". If the
packets are seen there, it's the proof they're sent then the syslogd daemon
needs to be troubleshooted.
While traffic logs are sent from the frontends (where the incoming connections
are accepted), backends also need to be able to send logs in order to report a
server state change consecutive to a health check. Please consult HAProxy's
configuration manual for more information regarding all possible log settings.
It is convenient to chose a facility that is not used by other daemons. HAProxy
examples often suggest "local0" for traffic logs and "local1" for admin logs
because they're never seen in field. A single facility would be enough as well.
Having separate logs is convenient for log analysis, but it's also important to
remember that logs may sometimes convey confidential information, and as such
they must not be mixed with other logs that may accidentally be handed out to
unauthorized people.
For in-field troubleshooting without impacting the server's capacity too much,
it is recommended to make use of the "halog" utility provided with HAProxy.
This is sort of a grep-like utility designed to process HAProxy log files at
a very fast data rate. Typical figures range between 1 and 2 GB of logs per
second. It is capable of extracting only certain logs (eg: search for some
classes of HTTP status codes, connection termination status, search by response
time ranges, look for errors only), count lines, limit the output to a number
of lines, and perform some more advanced statistics such as sorting servers
by response time or error counts, sorting URLs by time or count, sorting client
addresses by access count, and so on. It is pretty convenient to quickly spot
anomalies such as a bot looping on the site, and block them.
9. Statistics and monitoring
----------------------------
It is possible to query HAProxy about its status. The most commonly used
mechanism is the HTTP statistics page. This page also exposes an alternative
CSV output format for monitoring tools. The same format is provided on the
Unix socket.
Statistics are regroup in categories labelled as domains, corresponding to the
multiple components of HAProxy. There are two domains available: proxy and dns.
If not specified, the proxy domain is selected. Note that only the proxy
statistics are printed on the HTTP page.
9.1. CSV format
---------------
The statistics may be consulted either from the unix socket or from the HTTP
page. Both means provide a CSV format whose fields follow. The first line
begins with a sharp ('#') and has one word per comma-delimited field which
represents the title of the column. All other lines starting at the second one
use a classical CSV format using a comma as the delimiter, and the double quote
('"') as an optional text delimiter, but only if the enclosed text is ambiguous
(if it contains a quote or a comma). The double-quote character ('"') in the
text is doubled ('""'), which is the format that most tools recognize. Please
do not insert any column before these ones in order not to break tools which
use hard-coded column positions.
For proxy statistics, after each field name, the types which may have a value
for that field are specified in brackets. The types are L (Listeners), F
(Frontends), B (Backends), and S (Servers). There is a fixed set of static
fields that are always available in the same order. A column containing the
character '-' delimits the end of the static fields, after which presence or
order of the fields are not guaranteed.
Here is the list of static fields using the proxy statistics domain:
0. pxname [LFBS]: proxy name
1. svname [LFBS]: service name (FRONTEND for frontend, BACKEND for backend,
any name for server/listener)
2. qcur [..BS]: current queued requests. For the backend this reports the
number queued without a server assigned.
3. qmax [..BS]: max value of qcur
4. scur [LFBS]: current sessions
5. smax [LFBS]: max sessions
6. slim [LFBS]: configured session limit
7. stot [LFBS]: cumulative number of sessions
8. bin [LFBS]: bytes in
9. bout [LFBS]: bytes out
10. dreq [LFB.]: requests denied because of security concerns.
- For tcp this is because of a matched tcp-request content rule.
- For http this is because of a matched http-request or tarpit rule.
11. dresp [LFBS]: responses denied because of security concerns.
- For http this is because of a matched http-request rule, or
"option checkcache".
12. ereq [LF..]: request errors. Some of the possible causes are:
- early termination from the client, before the request has been sent.
- read error from the client
- client timeout
- client closed connection
- various bad requests from the client.
- request was tarpitted.
13. econ [..BS]: number of requests that encountered an error trying to
connect to a backend server. The backend stat is the sum of the stat
for all servers of that backend, plus any connection errors not
associated with a particular server (such as the backend having no
active servers).
14. eresp [..BS]: response errors. srv_abrt will be counted here also.
Some other errors are:
- write error on the client socket (won't be counted for the server stat)
- failure applying filters to the response.
15. wretr [..BS]: number of times a connection to a server was retried.
16. wredis [..BS]: number of times a request was redispatched to another
server. The server value counts the number of times that server was
switched away from.
17. status [LFBS]: status (UP/DOWN/NOLB/MAINT/MAINT(via)/MAINT(resolution)...)
18. weight [..BS]: total effective weight (backend), effective weight (server)
19. act [..BS]: number of active servers (backend), server is active (server)
20. bck [..BS]: number of backup servers (backend), server is backup (server)
21. chkfail [...S]: number of failed checks. (Only counts checks failed when
the server is up.)
22. chkdown [..BS]: number of UP->DOWN transitions. The backend counter counts
transitions to the whole backend being down, rather than the sum of the
counters for each server.
23. lastchg [..BS]: number of seconds since the last UP<->DOWN transition
24. downtime [..BS]: total downtime (in seconds). The value for the backend
is the downtime for the whole backend, not the sum of the server downtime.
25. qlimit [...S]: configured maxqueue for the server, or nothing in the
value is 0 (default, meaning no limit)
26. pid [LFBS]: process id (0 for first instance, 1 for second, ...)
27. iid [LFBS]: unique proxy id
28. sid [L..S]: server id (unique inside a proxy)
29. throttle [...S]: current throttle percentage for the server, when
slowstart is active, or no value if not in slowstart.
30. lbtot [..BS]: total number of times a server was selected, either for new
sessions, or when re-dispatching. The server counter is the number
of times that server was selected.
31. tracked [...S]: id of proxy/server if tracking is enabled.
32. type [LFBS]: (0=frontend, 1=backend, 2=server, 3=socket/listener)
33. rate [.FBS]: number of sessions per second over last elapsed second
34. rate_lim [.F..]: configured limit on new sessions per second
35. rate_max [.FBS]: max number of new sessions per second
36. check_status [...S]: status of last health check, one of:
UNK -> unknown
INI -> initializing
SOCKERR -> socket error
L4OK -> check passed on layer 4, no upper layers testing enabled
L4TOUT -> layer 1-4 timeout
L4CON -> layer 1-4 connection problem, for example
"Connection refused" (tcp rst) or "No route to host" (icmp)
L6OK -> check passed on layer 6
L6TOUT -> layer 6 (SSL) timeout
L6RSP -> layer 6 invalid response - protocol error
L7OK -> check passed on layer 7
L7OKC -> check conditionally passed on layer 7, for example 404 with
disable-on-404
L7TOUT -> layer 7 (HTTP/SMTP) timeout
L7RSP -> layer 7 invalid response - protocol error
L7STS -> layer 7 response error, for example HTTP 5xx
Notice: If a check is currently running, the last known status will be
reported, prefixed with "* ". e. g. "* L7OK".
37. check_code [...S]: layer5-7 code, if available
38. check_duration [...S]: time in ms took to finish last health check
39. hrsp_1xx [.FBS]: http responses with 1xx code
40. hrsp_2xx [.FBS]: http responses with 2xx code
41. hrsp_3xx [.FBS]: http responses with 3xx code
42. hrsp_4xx [.FBS]: http responses with 4xx code
43. hrsp_5xx [.FBS]: http responses with 5xx code
44. hrsp_other [.FBS]: http responses with other codes (protocol error)
45. hanafail [...S]: failed health checks details
46. req_rate [.F..]: HTTP requests per second over last elapsed second
47. req_rate_max [.F..]: max number of HTTP requests per second observed
48. req_tot [.FB.]: total number of HTTP requests received
49. cli_abrt [..BS]: number of data transfers aborted by the client
50. srv_abrt [..BS]: number of data transfers aborted by the server
(inc. in eresp)
51. comp_in [.FB.]: number of HTTP response bytes fed to the compressor
52. comp_out [.FB.]: number of HTTP response bytes emitted by the compressor
53. comp_byp [.FB.]: number of bytes that bypassed the HTTP compressor
(CPU/BW limit)
54. comp_rsp [.FB.]: number of HTTP responses that were compressed
55. lastsess [..BS]: number of seconds since last session assigned to
server/backend
56. last_chk [...S]: last health check contents or textual error
57. last_agt [...S]: last agent check contents or textual error
58. qtime [..BS]: the average queue time in ms over the 1024 last requests
59. ctime [..BS]: the average connect time in ms over the 1024 last requests
60. rtime [..BS]: the average response time in ms over the 1024 last requests
(0 for TCP)
61. ttime [..BS]: the average total session time in ms over the 1024 last
requests
62. agent_status [...S]: status of last agent check, one of:
UNK -> unknown
INI -> initializing
SOCKERR -> socket error
L4OK -> check passed on layer 4, no upper layers testing enabled
L4TOUT -> layer 1-4 timeout
L4CON -> layer 1-4 connection problem, for example
"Connection refused" (tcp rst) or "No route to host" (icmp)
L7OK -> agent reported "up"
L7STS -> agent reported "fail", "stop", or "down"
63. agent_code [...S]: numeric code reported by agent if any (unused for now)
64. agent_duration [...S]: time in ms taken to finish last check
65. check_desc [...S]: short human-readable description of check_status
66. agent_desc [...S]: short human-readable description of agent_status
67. check_rise [...S]: server's "rise" parameter used by checks
68. check_fall [...S]: server's "fall" parameter used by checks
69. check_health [...S]: server's health check value between 0 and rise+fall-1
70. agent_rise [...S]: agent's "rise" parameter, normally 1
71. agent_fall [...S]: agent's "fall" parameter, normally 1
72. agent_health [...S]: agent's health parameter, between 0 and rise+fall-1
73. addr [L..S]: address:port or "unix". IPv6 has brackets around the address.
74: cookie [..BS]: server's cookie value or backend's cookie name
75: mode [LFBS]: proxy mode (tcp, http, health, unknown)
76: algo [..B.]: load balancing algorithm
77: conn_rate [.F..]: number of connections over the last elapsed second
78: conn_rate_max [.F..]: highest known conn_rate
79: conn_tot [.F..]: cumulative number of connections
80: intercepted [.FB.]: cum. number of intercepted requests (monitor, stats)
81: dcon [LF..]: requests denied by "tcp-request connection" rules
82: dses [LF..]: requests denied by "tcp-request session" rules
83: wrew [LFBS]: cumulative number of failed header rewriting warnings
84: connect [..BS]: cumulative number of connection establishment attempts
85: reuse [..BS]: cumulative number of connection reuses
86: cache_lookups [.FB.]: cumulative number of cache lookups
87: cache_hits [.FB.]: cumulative number of cache hits
88: srv_icur [...S]: current number of idle connections available for reuse
89: src_ilim [...S]: limit on the number of available idle connections
90. qtime_max [..BS]: the maximum observed queue time in ms
91. ctime_max [..BS]: the maximum observed connect time in ms
92. rtime_max [..BS]: the maximum observed response time in ms (0 for TCP)
93. ttime_max [..BS]: the maximum observed total session time in ms
94. eint [LFBS]: cumulative number of internal errors
95. idle_conn_cur [...S]: current number of unsafe idle connections
96. safe_conn_cur [...S]: current number of safe idle connections
97. used_conn_cur [...S]: current number of connections in use
98. need_conn_est [...S]: estimated needed number of connections
99. uweight [..BS]: total user weight (backend), server user weight (server)
For all other statistics domains, the presence or the order of the fields are
not guaranteed. In this case, the header line should always be used to parse
the CSV data.
9.2. Typed output format
------------------------
Both "show info" and "show stat" support a mode where each output value comes
with its type and sufficient information to know how the value is supposed to
be aggregated between processes and how it evolves.
In all cases, the output consists in having a single value per line with all
the information split into fields delimited by colons (':').
The first column designates the object or metric being dumped. Its format is
specific to the command producing this output and will not be described in this
section. Usually it will consist in a series of identifiers and field names.
The second column contains 3 characters respectively indicating the origin, the
nature and the scope of the value being reported. The first character (the
origin) indicates where the value was extracted from. Possible characters are :
M The value is a metric. It is valid at one instant any may change depending
on its nature .
S The value is a status. It represents a discrete value which by definition
cannot be aggregated. It may be the status of a server ("UP" or "DOWN"),
the PID of the process, etc.
K The value is a sorting key. It represents an identifier which may be used
to group some values together because it is unique among its class. All
internal identifiers are keys. Some names can be listed as keys if they
are unique (eg: a frontend name is unique). In general keys come from the
configuration, even though some of them may automatically be assigned. For
most purposes keys may be considered as equivalent to configuration.
C The value comes from the configuration. Certain configuration values make
sense on the output, for example a concurrent connection limit or a cookie
name. By definition these values are the same in all processes started
from the same configuration file.
P The value comes from the product itself. There are very few such values,
most common use is to report the product name, version and release date.
These elements are also the same between all processes.
The second character (the nature) indicates the nature of the information
carried by the field in order to let an aggregator decide on what operation to
use to aggregate multiple values. Possible characters are :
A The value represents an age since a last event. This is a bit different
from the duration in that an age is automatically computed based on the
current date. A typical example is how long ago did the last session
happen on a server. Ages are generally aggregated by taking the minimum
value and do not need to be stored.
a The value represents an already averaged value. The average response times
and server weights are of this nature. Averages can typically be averaged
between processes.
C The value represents a cumulative counter. Such measures perpetually
increase until they wrap around. Some monitoring protocols need to tell
the difference between a counter and a gauge to report a different type.
In general counters may simply be summed since they represent events or
volumes. Examples of metrics of this nature are connection counts or byte
counts.
D The value represents a duration for a status. There are a few usages of
this, most of them include the time taken by the last health check and
the time a server has spent down. Durations are generally not summed,
most of the time the maximum will be retained to compute an SLA.
G The value represents a gauge. It's a measure at one instant. The memory
usage or the current number of active connections are of this nature.
Metrics of this type are typically summed during aggregation.
L The value represents a limit (generally a configured one). By nature,
limits are harder to aggregate since they are specific to the point where
they were retrieved. In certain situations they may be summed or be kept
separate.
M The value represents a maximum. In general it will apply to a gauge and
keep the highest known value. An example of such a metric could be the
maximum amount of concurrent connections that was encountered in the
product's life time. To correctly aggregate maxima, you are supposed to
output a range going from the maximum of all maxima and the sum of all
of them. There is indeed no way to know if they were encountered
simultaneously or not.
m The value represents a minimum. In general it will apply to a gauge and
keep the lowest known value. An example of such a metric could be the
minimum amount of free memory pools that was encountered in the product's
life time. To correctly aggregate minima, you are supposed to output a
range going from the minimum of all minima and the sum of all of them.
There is indeed no way to know if they were encountered simultaneously
or not.
N The value represents a name, so it is a string. It is used to report
proxy names, server names and cookie names. Names have configuration or
keys as their origin and are supposed to be the same among all processes.
O The value represents a free text output. Outputs from various commands,
returns from health checks, node descriptions are of such nature.
R The value represents an event rate. It's a measure at one instant. It is
quite similar to a gauge except that the recipient knows that this measure
moves slowly and may decide not to keep all values. An example of such a
metric is the measured amount of connections per second. Metrics of this
type are typically summed during aggregation.
T The value represents a date or time. A field emitting the current date
would be of this type. The method to aggregate such information is left
as an implementation choice. For now no field uses this type.
The third character (the scope) indicates what extent the value reflects. Some
elements may be per process while others may be per configuration or per system.
The distinction is important to know whether or not a single value should be
kept during aggregation or if values have to be aggregated. The following
characters are currently supported :
C The value is valid for a whole cluster of nodes, which is the set of nodes
communicating over the peers protocol. An example could be the amount of
entries present in a stick table that is replicated with other peers. At
the moment no metric use this scope.
P The value is valid only for the process reporting it. Most metrics use
this scope.
S The value is valid for the whole service, which is the set of processes
started together from the same configuration file. All metrics originating
from the configuration use this scope. Some other metrics may use it as
well for some shared resources (eg: shared SSL cache statistics).
s The value is valid for the whole system, such as the system's hostname,
current date or resource usage. At the moment this scope is not used by
any metric.
Consumers of these information will generally have enough of these 3 characters
to determine how to accurately report aggregated information across multiple
processes.
After this column, the third column indicates the type of the field, among "s32"
(signed 32-bit integer), "s64" (signed 64-bit integer), "u32" (unsigned 32-bit
integer), "u64" (unsigned 64-bit integer), "str" (string). It is important to
know the type before parsing the value in order to properly read it. For example
a string containing only digits is still a string an not an integer (eg: an
error code extracted by a check).
Then the fourth column is the value itself, encoded according to its type.
Strings are dumped as-is immediately after the colon without any leading space.
If a string contains a colon, it will appear normally. This means that the
output should not be exclusively split around colons or some check outputs
or server addresses might be truncated.
9.3. Unix Socket commands
-------------------------
The stats socket is not enabled by default. In order to enable it, it is
necessary to add one line in the global section of the haproxy configuration.
A second line is recommended to set a larger timeout, always appreciated when
issuing commands by hand :
global
stats socket /var/run/haproxy.sock mode 600 level admin
stats timeout 2m
It is also possible to add multiple instances of the stats socket by repeating
the line, and make them listen to a TCP port instead of a UNIX socket. This is
never done by default because this is dangerous, but can be handy in some
situations :
global
stats socket /var/run/haproxy.sock mode 600 level admin
stats socket ipv4@192.168.0.1:9999 level admin
stats timeout 2m
To access the socket, an external utility such as "socat" is required. Socat is
a swiss-army knife to connect anything to anything. We use it to connect
terminals to the socket, or a couple of stdin/stdout pipes to it for scripts.
The two main syntaxes we'll use are the following :
# socat /var/run/haproxy.sock stdio
# socat /var/run/haproxy.sock readline
The first one is used with scripts. It is possible to send the output of a
script to haproxy, and pass haproxy's output to another script. That's useful
for retrieving counters or attack traces for example.
The second one is only useful for issuing commands by hand. It has the benefit
that the terminal is handled by the readline library which supports line
editing and history, which is very convenient when issuing repeated commands
(eg: watch a counter).
The socket supports two operation modes :
- interactive
- non-interactive
The non-interactive mode is the default when socat connects to the socket. In
this mode, a single line may be sent. It is processed as a whole, responses are
sent back, and the connection closes after the end of the response. This is the
mode that scripts and monitoring tools use. It is possible to send multiple
commands in this mode, they need to be delimited by a semi-colon (';'). For
example :
# echo "show info;show stat;show table" | socat /var/run/haproxy stdio
If a command needs to use a semi-colon or a backslash (eg: in a value), it
must be preceded by a backslash ('\').
The interactive mode displays a prompt ('>') and waits for commands to be
entered on the line, then processes them, and displays the prompt again to wait
for a new command. This mode is entered via the "prompt" command which must be
sent on the first line in non-interactive mode. The mode is a flip switch, if
"prompt" is sent in interactive mode, it is disabled and the connection closes
after processing the last command of the same line.
For this reason, when debugging by hand, it's quite common to start with the
"prompt" command :
# socat /var/run/haproxy readline
prompt
> show info
...
>
Since multiple commands may be issued at once, haproxy uses the empty line as a
delimiter to mark an end of output for each command, and takes care of ensuring
that no command can emit an empty line on output. A script can thus easily
parse the output even when multiple commands were pipelined on a single line.
Some commands may take an optional payload. To add one to a command, the first
line needs to end with the "<<\n" pattern. The next lines will be treated as
the payload and can contain as many lines as needed. To validate a command with
a payload, it needs to end with an empty line.
Limitations do exist: the length of the whole buffer passed to the CLI must
not be greater than tune.bfsize and the pattern "<<" must not be glued to the
last word of the line.
When entering a paylod while in interactive mode, the prompt will change from
"> " to "+ ".
It is important to understand that when multiple haproxy processes are started
on the same sockets, any process may pick up the request and will output its
own stats.
The list of commands currently supported on the stats socket is provided below.
If an unknown command is sent, haproxy displays the usage message which reminds
all supported commands. Some commands support a more complex syntax, generally
it will explain what part of the command is invalid when this happens.
Some commands require a higher level of privilege to work. If you do not have
enough privilege, you will get an error "Permission denied". Please check
the "level" option of the "bind" keyword lines in the configuration manual
for more information.
abort ssl ca-file <cafile>
Abort and destroy a temporary CA file update transaction.
See also "set ssl ca-file" and "commit ssl ca-file".
abort ssl cert <filename>
Abort and destroy a temporary SSL certificate update transaction.
See also "set ssl cert" and "commit ssl cert".
abort ssl crl-file <crlfile>
Abort and destroy a temporary CRL file update transaction.
See also "set ssl crl-file" and "commit ssl crl-file".
add acl [@<ver>] <acl> <pattern>
Add an entry into the acl <acl>. <acl> is the #<id> or the <file> returned by
"show acl". This command does not verify if the entry already exists. Entries
are added to the current version of the ACL, unless a specific version is
specified with "@<ver>". This version number must have preliminary been
allocated by "prepare acl", and it will be comprised between the versions
reported in "curr_ver" and "next_ver" on the output of "show acl". Entries
added with a specific version number will not match until a "commit acl"
operation is performed on them. They may however be consulted using the
"show acl @<ver>" command, and cleared using a "clear acl @<ver>" command.
This command cannot be used if the reference <acl> is a file also used with
a map. In this case, the "add map" command must be used instead.
add map [@<ver>] <map> <key> <value>
add map [@<ver>] <map> <payload>
Add an entry into the map <map> to associate the value <value> to the key
<key>. This command does not verify if the entry already exists. It is
mainly used to fill a map after a "clear" or "prepare" operation. Entries
are added to the current version of the ACL, unless a specific version is
specified with "@<ver>". This version number must have preliminary been
allocated by "prepare acl", and it will be comprised between the versions
reported in "curr_ver" and "next_ver" on the output of "show acl". Entries
added with a specific version number will not match until a "commit map"
operation is performed on them. They may however be consulted using the
"show map @<ver>" command, and cleared using a "clear acl @<ver>" command.
If the designated map is also used as an ACL, the ACL will only match the
<key> part and will ignore the <value> part. Using the payload syntax it is
possible to add multiple key/value pairs by entering them on separate lines.
On each new line, the first word is the key and the rest of the line is
considered to be the value which can even contains spaces.
Example:
# socat /tmp/sock1 -
prompt
> add map #-1 <<
+ key1 value1
+ key2 value2 with spaces
+ key3 value3 also with spaces
+ key4 value4
>
add server <backend>/<server> [args]*
Instantiate a new server attached to the backend <backend>.
The <server> name must not be already used in the backend. A special
restriction is put on the backend which must used a dynamic load-balancing
algorithm. A subset of keywords from the server config file statement can be
used to configure the server behavior. Also note that no settings will be
reused from an hypothetical 'default-server' statement in the same backend.
Currently a dynamic server is statically initialized with the "none"
init-addr method. This means that no resolution will be undertaken if a FQDN
is specified as an address, even if the server creation will be validated.
To support the reload operations, it is expected that the server created via
the CLI is also manually inserted in the relevant haproxy configuration file.
A dynamic server not present in the configuration won't be restored after a
reload operation.
A dynamic server may use the "track" keyword to follow the check status of
another server from the configuration. However, it is not possible to track
another dynamic server. This is to ensure that the tracking chain is kept
consistent even in the case of dynamic servers deletion.
Use the "check" keyword to enable health-check support. Note that the
health-check is disabled by default and must be enabled independently from
the server using the "enable health" command. For agent checks, use the
"agent-check" keyword and the "enable agent" command. Note that in this case
the server may be activated via the agent depending on the status reported,
without an explicit "enable server" command. This also means that extra care
is required when removing a dynamic server with agent check. The agent should
be first deactivated via "disable agent" to be able to put the server in the
required maintenance mode before removal.
It may be possible to reach the fd limit when using a large number of dynamic
servers. Please refer to the "u-limit" global keyword documentation in this
case.
Here is the list of the currently supported keywords :
- agent-addr
- agent-check
- agent-inter
- agent-port
- agent-send
- allow-0rtt
- alpn
- addr
- backup
- ca-file
- check
- check-alpn
- check-proto
- check-send-proxy
- check-sni
- check-ssl
- check-via-socks4
- ciphers
- ciphersuites
- crl-file
- crt
- disabled
- downinter
- enabled
- error-limit
- fall
- fastinter
- force-sslv3/tlsv10/tlsv11/tlsv12/tlsv13
- id
- inter
- maxconn
- maxqueue
- minconn
- no-ssl-reuse
- no-sslv3/tlsv10/tlsv11/tlsv12/tlsv13
- no-tls-tickets
- npn
- observe
- on-error
- on-marked-down
- on-marked-up
- pool-low-conn
- pool-max-conn
- pool-purge-delay
- port
- proto
- proxy-v2-options
- rise
- send-proxy
- send-proxy-v2
- send-proxy-v2-ssl
- send-proxy-v2-ssl-cn
- slowstart
- sni
- source
- ssl
- ssl-max-ver
- ssl-min-ver
- tfo
- tls-tickets
- track
- usesrc
- verify
- verifyhost
- weight
- ws
Their syntax is similar to the server line from the configuration file,
please refer to their individual documentation for details.
add ssl ca-file <cafile> <payload>
Add a new certificate to a ca-file. This command is useful when you reached
the buffer size limit on the CLI and want to add multiple certicates.
Instead of doing a "set" with all the certificates you are able to add each
certificate individually. A "set ssl ca-file" will reset the ca-file.
Example:
echo -e "set ssl ca-file cafile.pem <<\n$(cat rootCA.crt)\n" | \
socat /var/run/haproxy.stat -
echo -e "add ssl ca-file cafile.pem <<\n$(cat intermediate1.crt)\n" | \
socat /var/run/haproxy.stat -
echo -e "add ssl ca-file cafile.pem <<\n$(cat intermediate2.crt)\n" | \
socat /var/run/haproxy.stat -
echo "commit ssl ca-file cafile.pem" | socat /var/run/haproxy.stat -
add ssl crt-list <crtlist> <certificate>
add ssl crt-list <crtlist> <payload>
Add an certificate in a crt-list. It can also be used for directories since
directories are now loaded the same way as the crt-lists. This command allow
you to use a certificate name in parameter, to use SSL options or filters a
crt-list line must sent as a payload instead. Only one crt-list line is
supported in the payload. This command will load the certificate for every
bind lines using the crt-list. To push a new certificate to HAProxy the
commands "new ssl cert" and "set ssl cert" must be used.
Example:
$ echo "new ssl cert foobar.pem" | socat /tmp/sock1 -
$ echo -e "set ssl cert foobar.pem <<\n$(cat foobar.pem)\n" | socat
/tmp/sock1 -
$ echo "commit ssl cert foobar.pem" | socat /tmp/sock1 -
$ echo "add ssl crt-list certlist1 foobar.pem" | socat /tmp/sock1 -
$ echo -e 'add ssl crt-list certlist1 <<\nfoobar.pem [allow-0rtt] foo.bar.com
!test1.com\n' | socat /tmp/sock1 -
clear counters
Clear the max values of the statistics counters in each proxy (frontend &
backend) and in each server. The accumulated counters are not affected. The
internal activity counters reported by "show activity" are also reset. This
can be used to get clean counters after an incident, without having to
restart nor to clear traffic counters. This command is restricted and can
only be issued on sockets configured for levels "operator" or "admin".
clear counters all
Clear all statistics counters in each proxy (frontend & backend) and in each
server. This has the same effect as restarting. This command is restricted
and can only be issued on sockets configured for level "admin".
clear acl [@<ver>] <acl>
Remove all entries from the acl <acl>. <acl> is the #<id> or the <file>
returned by "show acl". Note that if the reference <acl> is a file and is
shared with a map, this map will be also cleared. By default only the current
version of the ACL is cleared (the one being matched against). However it is
possible to specify another version using '@' followed by this version.
clear map [@<ver>] <map>
Remove all entries from the map <map>. <map> is the #<id> or the <file>
returned by "show map". Note that if the reference <map> is a file and is
shared with a acl, this acl will be also cleared. By default only the current
version of the map is cleared (the one being matched against). However it is
possible to specify another version using '@' followed by this version.
clear table <table> [ data.<type> <operator> <value> ] | [ key <key> ]
Remove entries from the stick-table <table>.
This is typically used to unblock some users complaining they have been
abusively denied access to a service, but this can also be used to clear some
stickiness entries matching a server that is going to be replaced (see "show
table" below for details). Note that sometimes, removal of an entry will be
refused because it is currently tracked by a session. Retrying a few seconds
later after the session ends is usual enough.
In the case where no options arguments are given all entries will be removed.
When the "data." form is used entries matching a filter applied using the
stored data (see "stick-table" in section 4.2) are removed. A stored data
type must be specified in <type>, and this data type must be stored in the
table otherwise an error is reported. The data is compared according to
<operator> with the 64-bit integer <value>. Operators are the same as with
the ACLs :
- eq : match entries whose data is equal to this value
- ne : match entries whose data is not equal to this value
- le : match entries whose data is less than or equal to this value
- ge : match entries whose data is greater than or equal to this value
- lt : match entries whose data is less than this value
- gt : match entries whose data is greater than this value
When the key form is used the entry <key> is removed. The key must be of the
same type as the table, which currently is limited to IPv4, IPv6, integer and
string.
Example :
$ echo "show table http_proxy" | socat stdio /tmp/sock1
>>> # table: http_proxy, type: ip, size:204800, used:2
>>> 0x80e6a4c: key=127.0.0.1 use=0 exp=3594729 gpc0=0 conn_rate(30000)=1 \
bytes_out_rate(60000)=187
>>> 0x80e6a80: key=127.0.0.2 use=0 exp=3594740 gpc0=1 conn_rate(30000)=10 \
bytes_out_rate(60000)=191
$ echo "clear table http_proxy key 127.0.0.1" | socat stdio /tmp/sock1
$ echo "show table http_proxy" | socat stdio /tmp/sock1
>>> # table: http_proxy, type: ip, size:204800, used:1
>>> 0x80e6a80: key=127.0.0.2 use=0 exp=3594740 gpc0=1 conn_rate(30000)=10 \
bytes_out_rate(60000)=191
$ echo "clear table http_proxy data.gpc0 eq 1" | socat stdio /tmp/sock1
$ echo "show table http_proxy" | socat stdio /tmp/sock1
>>> # table: http_proxy, type: ip, size:204800, used:1
commit acl @<ver> <acl>
Commit all changes made to version <ver> of ACL <acl>, and deletes all past
versions. <acl> is the #<id> or the <file> returned by "show acl". The
version number must be between "curr_ver"+1 and "next_ver" as reported in
"show acl". The contents to be committed to the ACL can be consulted with
"show acl @<ver> <acl>" if desired. The specified version number has normally
been created with the "prepare acl" command. The replacement is atomic. It
consists in atomically updating the current version to the specified version,
which will instantly cause all entries in other versions to become invisible,
and all entries in the new version to become visible. It is also possible to
use this command to perform an atomic removal of all visible entries of an
ACL by calling "prepare acl" first then committing without adding any
entries. This command cannot be used if the reference <acl> is a file also
used as a map. In this case, the "commit map" command must be used instead.
commit map @<ver> <map>
Commit all changes made to version <ver> of map <map>, and deletes all past
versions. <map> is the #<id> or the <file> returned by "show map". The
version number must be between "curr_ver"+1 and "next_ver" as reported in
"show map". The contents to be committed to the map can be consulted with
"show map @<ver> <map>" if desired. The specified version number has normally
been created with the "prepare map" command. The replacement is atomic. It
consists in atomically updating the current version to the specified version,
which will instantly cause all entries in other versions to become invisible,
and all entries in the new version to become visible. It is also possible to
use this command to perform an atomic removal of all visible entries of an
map by calling "prepare map" first then committing without adding any
entries.
commit ssl ca-file <cafile>
Commit a temporary SSL CA file update transaction.
In the case of an existing CA file (in a "Used" state in "show ssl ca-file"),
the new CA file tree entry is inserted in the CA file tree and every instance
that used the CA file entry is rebuilt, along with the SSL contexts it needs.
All the contexts previously used by the rebuilt instances are removed.
Upon success, the previous CA file entry is removed from the tree.
Upon failure, nothing is removed or deleted, and all the original SSL
contexts are kept and used.
Once the temporary transaction is committed, it is destroyed.
In the case of a new CA file (after a "new ssl ca-file" and in a "Unused"
state in "show ssl ca-file"), the CA file will be inserted in the CA file
tree but it won't be used anywhere in HAProxy. To use it and generate SSL
contexts that use it, you will need to add it to a crt-list with "add ssl
crt-list".
See also "new ssl ca-file", "set ssl ca-file", "add ssl ca-file",
"abort ssl ca-file" and "add ssl crt-list".
commit ssl cert <filename>
Commit a temporary SSL certificate update transaction.
In the case of an existing certificate (in a "Used" state in "show ssl
cert"), generate every SSL contextes and SNIs it need, insert them, and
remove the previous ones. Replace in memory the previous SSL certificates
everywhere the <filename> was used in the configuration. Upon failure it
doesn't remove or insert anything. Once the temporary transaction is
committed, it is destroyed.
In the case of a new certificate (after a "new ssl cert" and in a "Unused"
state in "show ssl cert"), the certificate will be committed in a certificate
storage, but it won't be used anywhere in haproxy. To use it and generate
its SNIs you will need to add it to a crt-list or a directory with "add ssl
crt-list".
See also "new ssl cert", "set ssl cert", "abort ssl cert" and
"add ssl crt-list".
commit ssl crl-file <crlfile>
Commit a temporary SSL CRL file update transaction.
In the case of an existing CRL file (in a "Used" state in "show ssl
crl-file"), the new CRL file entry is inserted in the CA file tree (which
holds both the CA files and the CRL files) and every instance that used the
CRL file entry is rebuilt, along with the SSL contexts it needs.
All the contexts previously used by the rebuilt instances are removed.
Upon success, the previous CRL file entry is removed from the tree.
Upon failure, nothing is removed or deleted, and all the original SSL
contexts are kept and used.
Once the temporary transaction is committed, it is destroyed.
In the case of a new CRL file (after a "new ssl crl-file" and in a "Unused"
state in "show ssl crl-file"), the CRL file will be inserted in the CRL file
tree but it won't be used anywhere in HAProxy. To use it and generate SSL
contexts that use it, you will need to add it to a crt-list with "add ssl
crt-list".
See also "new ssl crl-file", "set ssl crl-file", "abort ssl crl-file" and
"add ssl crt-list".
debug dev <command> [args]*
Call a developer-specific command. Only supported on a CLI connection running
in expert mode (see "expert-mode on"). Such commands are extremely dangerous
and not forgiving, any misuse may result in a crash of the process. They are
intended for experts only, and must really not be used unless told to do so.
Some of them are only available when haproxy is built with DEBUG_DEV defined
because they may have security implications. All of these commands require
admin privileges, and are purposely not documented to avoid encouraging their
use by people who are not at ease with the source code.
del acl <acl> [<key>|#<ref>]
Delete all the acl entries from the acl <acl> corresponding to the key <key>.
<acl> is the #<id> or the <file> returned by "show acl". If the <ref> is used,
this command delete only the listed reference. The reference can be found with
listing the content of the acl. Note that if the reference <acl> is a file and
is shared with a map, the entry will be also deleted in the map.
del map <map> [<key>|#<ref>]
Delete all the map entries from the map <map> corresponding to the key <key>.
<map> is the #<id> or the <file> returned by "show map". If the <ref> is used,
this command delete only the listed reference. The reference can be found with
listing the content of the map. Note that if the reference <map> is a file and
is shared with a acl, the entry will be also deleted in the map.
del ssl ca-file <cafile>
Delete a CA file tree entry from HAProxy. The CA file must be unused and
removed from any crt-list. "show ssl ca-file" displays the status of the CA
files. The deletion doesn't work with a certificate referenced directly with
the "ca-file" or "ca-verify-file" directives in the configuration.
del ssl cert <certfile>
Delete a certificate store from HAProxy. The certificate must be unused and
removed from any crt-list or directory. "show ssl cert" displays the status
of the certificate. The deletion doesn't work with a certificate referenced
directly with the "crt" directive in the configuration.
del ssl crl-file <crlfile>
Delete a CRL file tree entry from HAProxy. The CRL file must be unused and
removed from any crt-list. "show ssl crl-file" displays the status of the CRL
files. The deletion doesn't work with a certificate referenced directly with
the "crl-file" directive in the configuration.
del ssl crt-list <filename> <certfile[:line]>
Delete an entry in a crt-list. This will delete every SNIs used for this
entry in the frontends. If a certificate is used several time in a crt-list,
you will need to provide which line you want to delete. To display the line
numbers, use "show ssl crt-list -n <crtlist>".
del server <backend>/<server>
Remove a server attached to the backend <backend>. All servers are eligible,
except servers which are referenced by other configuration elements. The
server must be put in maintenance mode prior to its deletion. The operation
is cancelled if the serveur still has active or idle connection or its
connection queue is not empty.
disable agent <backend>/<server>
Mark the auxiliary agent check as temporarily stopped.
In the case where an agent check is being run as a auxiliary check, due
to the agent-check parameter of a server directive, new checks are only
initialized when the agent is in the enabled. Thus, disable agent will
prevent any new agent checks from begin initiated until the agent
re-enabled using enable agent.
When an agent is disabled the processing of an auxiliary agent check that
was initiated while the agent was set as enabled is as follows: All
results that would alter the weight, specifically "drain" or a weight
returned by the agent, are ignored. The processing of agent check is
otherwise unchanged.
The motivation for this feature is to allow the weight changing effects
of the agent checks to be paused to allow the weight of a server to be
configured using set weight without being overridden by the agent.
This command is restricted and can only be issued on sockets configured for
level "admin".
disable dynamic-cookie backend <backend>
Disable the generation of dynamic cookies for the backend <backend>
disable frontend <frontend>
Mark the frontend as temporarily stopped. This corresponds to the mode which
is used during a soft restart : the frontend releases the port but can be
enabled again if needed. This should be used with care as some non-Linux OSes
are unable to enable it back. This is intended to be used in environments
where stopping a proxy is not even imaginable but a misconfigured proxy must
be fixed. That way it's possible to release the port and bind it into another
process to restore operations. The frontend will appear with status "STOP"
on the stats page.
The frontend may be specified either by its name or by its numeric ID,
prefixed with a sharp ('#').
This command is restricted and can only be issued on sockets configured for
level "admin".
disable health <backend>/<server>
Mark the primary health check as temporarily stopped. This will disable
sending of health checks, and the last health check result will be ignored.
The server will be in unchecked state and considered UP unless an auxiliary
agent check forces it down.
This command is restricted and can only be issued on sockets configured for
level "admin".
disable server <backend>/<server>
Mark the server DOWN for maintenance. In this mode, no more checks will be
performed on the server until it leaves maintenance.
If the server is tracked by other servers, those servers will be set to DOWN
during the maintenance.
In the statistics page, a server DOWN for maintenance will appear with a
"MAINT" status, its tracking servers with the "MAINT(via)" one.
Both the backend and the server may be specified either by their name or by
their numeric ID, prefixed with a sharp ('#').
This command is restricted and can only be issued on sockets configured for
level "admin".
enable agent <backend>/<server>
Resume auxiliary agent check that was temporarily stopped.
See "disable agent" for details of the effect of temporarily starting
and stopping an auxiliary agent.
This command is restricted and can only be issued on sockets configured for
level "admin".
enable dynamic-cookie backend <backend>
Enable the generation of dynamic cookies for the backend <backend>.
A secret key must also be provided.
enable frontend <frontend>
Resume a frontend which was temporarily stopped. It is possible that some of
the listening ports won't be able to bind anymore (eg: if another process
took them since the 'disable frontend' operation). If this happens, an error
is displayed. Some operating systems might not be able to resume a frontend
which was disabled.
The frontend may be specified either by its name or by its numeric ID,
prefixed with a sharp ('#').
This command is restricted and can only be issued on sockets configured for
level "admin".
enable health <backend>/<server>
Resume a primary health check that was temporarily stopped. This will enable
sending of health checks again. Please see "disable health" for details.
This command is restricted and can only be issued on sockets configured for
level "admin".
enable server <backend>/<server>
If the server was previously marked as DOWN for maintenance, this marks the
server UP and checks are re-enabled.
Both the backend and the server may be specified either by their name or by
their numeric ID, prefixed with a sharp ('#').
This command is restricted and can only be issued on sockets configured for
level "admin".
experimental-mode [on|off]
Without options, this indicates whether the experimental mode is enabled or
disabled on the current connection. When passed "on", it turns the
experimental mode on for the current CLI connection only. With "off" it turns
it off.
The experimental mode is used to access to extra features still in
development. These features are currently not stable and should be used with
care. They may be subject to breaking changes across versions.
When used from the master CLI, this command shouldn't be prefixed, as it will
set the mode for any worker when connecting to its CLI.
Example:
echo "@1; experimental-mode on; <experimental_cmd>..." | socat /var/run/haproxy.master -
echo "experimental-mode on; @1 <experimental_cmd>..." | socat /var/run/haproxy.master -
expert-mode [on|off]
This command is similar to experimental-mode but is used to toggle the
expert mode.
The expert mode enables displaying of expert commands that can be extremely
dangerous for the process and which may occasionally help developers collect
important information about complex bugs. Any misuse of these features will
likely lead to a process crash. Do not use this option without being invited
to do so. Note that this command is purposely not listed in the help message.
This command is only accessible in admin level. Changing to another level
automatically resets the expert mode.
When used from the master CLI, this command shouldn't be prefixed, as it will
set the mode for any worker when connecting to its CLI.
Example:
echo "@1; expert-mode on; debug dev exit 1" | socat /var/run/haproxy.master -
echo "expert-mode on; @1 debug dev exit 1" | socat /var/run/haproxy.master -
get map <map> <value>
get acl <acl> <value>
Lookup the value <value> in the map <map> or in the ACL <acl>. <map> or <acl>
are the #<id> or the <file> returned by "show map" or "show acl". This command
returns all the matching patterns associated with this map. This is useful for
debugging maps and ACLs. The output format is composed by one line par
matching type. Each line is composed by space-delimited series of words.
The first two words are:
<match method>: The match method applied. It can be "found", "bool",
"int", "ip", "bin", "len", "str", "beg", "sub", "dir",
"dom", "end" or "reg".
<match result>: The result. Can be "match" or "no-match".
The following words are returned only if the pattern matches an entry.
<index type>: "tree" or "list". The internal lookup algorithm.
<case>: "case-insensitive" or "case-sensitive". The
interpretation of the case.
<entry matched>: match="<entry>". Return the matched pattern. It is
useful with regular expressions.
The two last word are used to show the returned value and its type. With the
"acl" case, the pattern doesn't exist.
return=nothing: No return because there are no "map".
return="<value>": The value returned in the string format.
return=cannot-display: The value cannot be converted as string.
type="<type>": The type of the returned sample.
get var <name>
Show the existence, type and contents of the process-wide variable 'name'.
Only process-wide variables are readable, so the name must begin with
'proc.' otherwise no variable will be found. This command requires levels
"operator" or "admin".
get weight <backend>/<server>
Report the current weight and the initial weight of server <server> in
backend <backend> or an error if either doesn't exist. The initial weight is
the one that appears in the configuration file. Both are normally equal
unless the current weight has been changed. Both the backend and the server
may be specified either by their name or by their numeric ID, prefixed with a
sharp ('#').
help [<command>]
Print the list of known keywords and their basic usage, or commands matching
the requested one. The same help screen is also displayed for unknown
commands.
httpclient <method> <URI>
Launch an HTTP client request and print the response on the CLI. Only
supported on a CLI connection running in expert mode (see "expert-mode on").
It's only meant for debugging. The httpclient is able to resolve a server
name in the URL using the "default" resolvers section, which is populated
with the DNS servers of your /etc/resolv.conf by default. However it won't be
able to resolve an host from /etc/hosts if you don't use a local dns daemon
which can resolve those.
new ssl ca-file <cafile>
Create a new empty CA file tree entry to be filled with a set of CA
certificates and added to a crt-list. This command should be used in
combination with "set ssl ca-file", "add ssl ca-file" and "add ssl crt-list".
new ssl cert <filename>
Create a new empty SSL certificate store to be filled with a certificate and
added to a directory or a crt-list. This command should be used in
combination with "set ssl cert" and "add ssl crt-list".
new ssl crl-file <crlfile>
Create a new empty CRL file tree entry to be filled with a set of CRLs
and added to a crt-list. This command should be used in combination with "set
ssl crl-file" and "add ssl crt-list".
prepare acl <acl>
Allocate a new version number in ACL <acl> for atomic replacement. <acl> is
the #<id> or the <file> returned by "show acl". The new version number is
shown in response after "New version created:". This number will then be
usable to prepare additions of new entries into the ACL which will then
atomically replace the current ones once committed. It is reported as
"next_ver" in "show acl". There is no impact of allocating new versions, as
unused versions will automatically be removed once a more recent version is
committed. Version numbers are unsigned 32-bit values which wrap at the end,
so care must be taken when comparing them in an external program. This
command cannot be used if the reference <acl> is a file also used as a map.
In this case, the "prepare map" command must be used instead.
prepare map <map>
Allocate a new version number in map <map> for atomic replacement. <map> is
the #<id> or the <file> returned by "show map". The new version number is
shown in response after "New version created:". This number will then be
usable to prepare additions of new entries into the map which will then
atomically replace the current ones once committed. It is reported as
"next_ver" in "show map". There is no impact of allocating new versions, as
unused versions will automatically be removed once a more recent version is
committed. Version numbers are unsigned 32-bit values which wrap at the end,
so care must be taken when comparing them in an external program.
prompt
Toggle the prompt at the beginning of the line and enter or leave interactive
mode. In interactive mode, the connection is not closed after a command
completes. Instead, the prompt will appear again, indicating the user that
the interpreter is waiting for a new command. The prompt consists in a right
angle bracket followed by a space "> ". This mode is particularly convenient
when one wants to periodically check information such as stats or errors.
It is also a good idea to enter interactive mode before issuing a "help"
command.
quit
Close the connection when in interactive mode.
set anon [on|off] [<key>]
This command enables or disables the "anonymized mode" for the current CLI
session, which replaces certain fields considered sensitive or confidential
in command outputs with hashes that preserve sufficient consistency between
elements to help developers identify relations between elements when trying
to spot bugs, but a low enough bit count (24) to make them non-reversible due
to the high number of possible matches. When turned on, if no key is
specified, the global key will be used (either specified in the configuration
file by "anonkey" or set via the CLI command "set anon global-key"). If no such
key was set, a random one will be generated. Otherwise it's possible to
specify the 32-bit key to be used for the current session, for example, to
reuse the key that was used in a previous dump to help compare outputs.
Developers will never need this key and it's recommended never to share it as
it could allow to confirm/infirm some guesses about what certain hashes could
be hiding.
set dynamic-cookie-key backend <backend> <value>
Modify the secret key used to generate the dynamic persistent cookies.
This will break the existing sessions.
set anon global-key <key>
This sets the global anonymizing key to <key>, which must be a 32-bit
integer between 0 and 4294967295 (0 disables the global key). This command
requires admin privilege.
set map <map> [<key>|#<ref>] <value>
Modify the value corresponding to each key <key> in a map <map>. <map> is the
#<id> or <file> returned by "show map". If the <ref> is used in place of
<key>, only the entry pointed by <ref> is changed. The new value is <value>.
set maxconn frontend <frontend> <value>
Dynamically change the specified frontend's maxconn setting. Any positive
value is allowed including zero, but setting values larger than the global
maxconn does not make much sense. If the limit is increased and connections
were pending, they will immediately be accepted. If it is lowered to a value
below the current number of connections, new connections acceptation will be
delayed until the threshold is reached. The frontend might be specified by
either its name or its numeric ID prefixed with a sharp ('#').
set maxconn server <backend/server> <value>
Dynamically change the specified server's maxconn setting. Any positive
value is allowed including zero, but setting values larger than the global
maxconn does not make much sense.
set maxconn global <maxconn>
Dynamically change the global maxconn setting within the range defined by the
initial global maxconn setting. If it is increased and connections were
pending, they will immediately be accepted. If it is lowered to a value below
the current number of connections, new connections acceptation will be
delayed until the threshold is reached. A value of zero restores the initial
setting.
set profiling { tasks | memory } { auto | on | off }
Enables or disables CPU or memory profiling for the indicated subsystem. This
is equivalent to setting or clearing the "profiling" settings in the "global"
section of the configuration file. Please also see "show profiling". Note
that manually setting the tasks profiling to "on" automatically resets the
scheduler statistics, thus allows to check activity over a given interval.
The memory profiling is limited to certain operating systems (known to work
on the linux-glibc target), and requires USE_MEMORY_PROFILING to be set at
compile time.
set rate-limit connections global <value>
Change the process-wide connection rate limit, which is set by the global
'maxconnrate' setting. A value of zero disables the limitation. This limit
applies to all frontends and the change has an immediate effect. The value
is passed in number of connections per second.
set rate-limit http-compression global <value>
Change the maximum input compression rate, which is set by the global
'maxcomprate' setting. A value of zero disables the limitation. The value is
passed in number of kilobytes per second. The value is available in the "show
info" on the line "CompressBpsRateLim" in bytes.
set rate-limit sessions global <value>
Change the process-wide session rate limit, which is set by the global
'maxsessrate' setting. A value of zero disables the limitation. This limit
applies to all frontends and the change has an immediate effect. The value
is passed in number of sessions per second.
set rate-limit ssl-sessions global <value>
Change the process-wide SSL session rate limit, which is set by the global
'maxsslrate' setting. A value of zero disables the limitation. This limit
applies to all frontends and the change has an immediate effect. The value
is passed in number of sessions per second sent to the SSL stack. It applies
before the handshake in order to protect the stack against handshake abuses.
set server <backend>/<server> addr <ip4 or ip6 address> [port <port>]
Replace the current IP address of a server by the one provided.
Optionally, the port can be changed using the 'port' parameter.
Note that changing the port also support switching from/to port mapping
(notation with +X or -Y), only if a port is configured for the health check.
set server <backend>/<server> agent [ up | down ]
Force a server's agent to a new state. This can be useful to immediately
switch a server's state regardless of some slow agent checks for example.
Note that the change is propagated to tracking servers if any.
set server <backend>/<server> agent-addr <addr> [port <port>]
Change addr for servers agent checks. Allows to migrate agent-checks to
another address at runtime. You can specify both IP and hostname, it will be
resolved.
Optionally, change the port agent.
set server <backend>/<server> agent-port <port>
Change the port used for agent checks.
set server <backend>/<server> agent-send <value>
Change agent string sent to agent check target. Allows to update string while
changing server address to keep those two matching.
set server <backend>/<server> health [ up | stopping | down ]
Force a server's health to a new state. This can be useful to immediately
switch a server's state regardless of some slow health checks for example.
Note that the change is propagated to tracking servers if any.
set server <backend>/<server> check-addr <ip4 | ip6> [port <port>]
Change the IP address used for server health checks.
Optionally, change the port used for server health checks.
set server <backend>/<server> check-port <port>
Change the port used for health checking to <port>
set server <backend>/<server> state [ ready | drain | maint ]
Force a server's administrative state to a new state. This can be useful to
disable load balancing and/or any traffic to a server. Setting the state to
"ready" puts the server in normal mode, and the command is the equivalent of
the "enable server" command. Setting the state to "maint" disables any traffic
to the server as well as any health checks. This is the equivalent of the
"disable server" command. Setting the mode to "drain" only removes the server
from load balancing but still allows it to be checked and to accept new
persistent connections. Changes are propagated to tracking servers if any.
set server <backend>/<server> weight <weight>[%]
Change a server's weight to the value passed in argument. This is the exact
equivalent of the "set weight" command below.
set server <backend>/<server> fqdn <FQDN>
Change a server's FQDN to the value passed in argument. This requires the
internal run-time DNS resolver to be configured and enabled for this server.
set server <backend>/<server> ssl [ on | off ] (deprecated)
This option configures SSL ciphering on outgoing connections to the server.
When switch off, all traffic becomes plain text; health check path is not
changed.
This command is deprecated, create a new server dynamically with or without
SSL instead, using the "add server" command.
set severity-output [ none | number | string ]
Change the severity output format of the stats socket connected to for the
duration of the current session.
set ssl ca-file <cafile> <payload>
this command is part of a transaction system, the "commit ssl ca-file" and
"abort ssl ca-file" commands could be required.
if there is no on-going transaction, it will create a ca file tree entry into
which the certificates contained in the payload will be stored. the ca file
entry will not be stored in the ca file tree and will only be kept in a
temporary transaction. if a transaction with the same filename already exists,
the previous ca file entry will be deleted and replaced by the new one.
once the modifications are done, you have to commit the transaction through
a "commit ssl ca-file" call. If you want to add multiple certificates
separately, you can use the "add ssl ca-file" command
Example:
echo -e "set ssl ca-file cafile.pem <<\n$(cat rootCA.crt)\n" | \
socat /var/run/haproxy.stat -
echo "commit ssl ca-file cafile.pem" | socat /var/run/haproxy.stat -
set ssl cert <filename> <payload>
This command is part of a transaction system, the "commit ssl cert" and
"abort ssl cert" commands could be required.
This whole transaction system works on any certificate displayed by the
"show ssl cert" command, so on any frontend or backend certificate.
If there is no on-going transaction, it will duplicate the certificate
<filename> in memory to a temporary transaction, then update this
transaction with the PEM file in the payload. If a transaction exists with
the same filename, it will update this transaction. It's also possible to
update the files linked to a certificate (.issuer, .sctl, .oscp etc.)
Once the modification are done, you have to "commit ssl cert" the
transaction.
Injection of files over the CLI must be done with caution since an empty line
is used to notify the end of the payload. It is recommended to inject a PEM
file which has been sanitized. A simple method would be to remove every empty
line and only leave what are in the PEM sections. It could be achieved with a
sed command.
Example:
# With some simple sanitizing
echo -e "set ssl cert localhost.pem <<\n$(sed -n '/^$/d;/-BEGIN/,/-END/p' 127.0.0.1.pem)\n" | \
socat /var/run/haproxy.stat -
# Complete example with commit
echo -e "set ssl cert localhost.pem <<\n$(cat 127.0.0.1.pem)\n" | \
socat /var/run/haproxy.stat -
echo -e \
"set ssl cert localhost.pem.issuer <<\n $(cat 127.0.0.1.pem.issuer)\n" | \
socat /var/run/haproxy.stat -
echo -e \
"set ssl cert localhost.pem.ocsp <<\n$(base64 -w 1000 127.0.0.1.pem.ocsp)\n" | \
socat /var/run/haproxy.stat -
echo "commit ssl cert localhost.pem" | socat /var/run/haproxy.stat -
set ssl crl-file <crlfile> <payload>
This command is part of a transaction system, the "commit ssl crl-file" and
"abort ssl crl-file" commands could be required.
If there is no on-going transaction, it will create a CRL file tree entry into
which the Revocation Lists contained in the payload will be stored. The CRL
file entry will not be stored in the CRL file tree and will only be kept in a
temporary transaction. If a transaction with the same filename already exists,
the previous CRL file entry will be deleted and replaced by the new one.
Once the modifications are done, you have to commit the transaction through
a "commit ssl crl-file" call.
Example:
echo -e "set ssl crl-file crlfile.pem <<\n$(cat rootCRL.pem)\n" | \
socat /var/run/haproxy.stat -
echo "commit ssl crl-file crlfile.pem" | socat /var/run/haproxy.stat -
set ssl ocsp-response <response | payload>
This command is used to update an OCSP Response for a certificate (see "crt"
on "bind" lines). Same controls are performed as during the initial loading of
the response. The <response> must be passed as a base64 encoded string of the
DER encoded response from the OCSP server. This command is not supported with
BoringSSL.
Example:
openssl ocsp -issuer issuer.pem -cert server.pem \
-host ocsp.issuer.com:80 -respout resp.der
echo "set ssl ocsp-response $(base64 -w 10000 resp.der)" | \
socat stdio /var/run/haproxy.stat
using the payload syntax:
echo -e "set ssl ocsp-response <<\n$(base64 resp.der)\n" | \
socat stdio /var/run/haproxy.stat
set ssl tls-key <id> <tlskey>
Set the next TLS key for the <id> listener to <tlskey>. This key becomes the
ultimate key, while the penultimate one is used for encryption (others just
decrypt). The oldest TLS key present is overwritten. <id> is either a numeric
#<id> or <file> returned by "show tls-keys". <tlskey> is a base64 encoded 48
or 80 bits TLS ticket key (ex. openssl rand 80 | openssl base64 -A).
set table <table> key <key> [data.<data_type> <value>]*
Create or update a stick-table entry in the table. If the key is not present,
an entry is inserted. See stick-table in section 4.2 to find all possible
values for <data_type>. The most likely use consists in dynamically entering
entries for source IP addresses, with a flag in gpc0 to dynamically block an
IP address or affect its quality of service. It is possible to pass multiple
data_types in a single call.
set timeout cli <delay>
Change the CLI interface timeout for current connection. This can be useful
during long debugging sessions where the user needs to constantly inspect
some indicators without being disconnected. The delay is passed in seconds.
set var <name> <expression>
set var <name> expr <expression>
set var <name> fmt <format>
Allows to set or overwrite the process-wide variable 'name' with the result
of expression <expression> or format string <format>. Only process-wide
variables may be used, so the name must begin with 'proc.' otherwise no
variable will be set. The <expression> and <format> may only involve
"internal" sample fetch keywords and converters even though the most likely
useful ones will be str('something'), int(), simple strings or references to
other variables. Note that the command line parser doesn't know about quotes,
so any space in the expression must be preceded by a backslash. This command
requires levels "operator" or "admin". This command is only supported on a
CLI connection running in experimental mode (see "experimental-mode on").
set weight <backend>/<server> <weight>[%]
Change a server's weight to the value passed in argument. If the value ends
with the '%' sign, then the new weight will be relative to the initially
configured weight. Absolute weights are permitted between 0 and 256.
Relative weights must be positive with the resulting absolute weight is
capped at 256. Servers which are part of a farm running a static
load-balancing algorithm have stricter limitations because the weight
cannot change once set. Thus for these servers, the only accepted values
are 0 and 100% (or 0 and the initial weight). Changes take effect
immediately, though certain LB algorithms require a certain amount of
requests to consider changes. A typical usage of this command is to
disable a server during an update by setting its weight to zero, then to
enable it again after the update by setting it back to 100%. This command
is restricted and can only be issued on sockets configured for level
"admin". Both the backend and the server may be specified either by their
name or by their numeric ID, prefixed with a sharp ('#').
show acl [[@<ver>] <acl>]
Dump info about acl converters. Without argument, the list of all available
acls is returned. If a <acl> is specified, its contents are dumped. <acl> is
the #<id> or <file>. By default the current version of the ACL is shown (the
version currently being matched against and reported as 'curr_ver' in the ACL
list). It is possible to instead dump other versions by prepending '@<ver>'
before the ACL's identifier. The version works as a filter and non-existing
versions will simply report no result. The dump format is the same as for the
maps even for the sample values. The data returned are not a list of
available ACL, but are the list of all patterns composing any ACL. Many of
these patterns can be shared with maps. The 'entry_cnt' value represents the
count of all the ACL entries, not just the active ones, which means that it
also includes entries currently being added.
show anon
Display the current state of the anonymized mode (enabled or disabled) and
the current session's key.
show backend
Dump the list of backends available in the running process
show cli level
Display the CLI level of the current CLI session. The result could be
'admin', 'operator' or 'user'. See also the 'operator' and 'user' commands.
Example :
$ socat /tmp/sock1 readline
prompt
> operator
> show cli level
operator
> user
> show cli level
user
> operator
Permission denied
operator
Decrease the CLI level of the current CLI session to operator. It can't be
increased. It also drops expert and experimental mode. See also "show cli
level".
user
Decrease the CLI level of the current CLI session to user. It can't be
increased. It also drops expert and experimental mode. See also "show cli
level".
show activity [-1 | 0 | thread_num]
Reports some counters about internal events that will help developers and
more generally people who know haproxy well enough to narrow down the causes
of reports of abnormal behaviours. A typical example would be a properly
running process never sleeping and eating 100% of the CPU. The output fields
will be made of one line per metric, and per-thread counters on the same
line. These counters are 32-bit and will wrap during the process's life, which
is not a problem since calls to this command will typically be performed
twice. The fields are purposely not documented so that their exact meaning is
verified in the code where the counters are fed. These values are also reset
by the "clear counters" command. On multi-threaded deployments, the first
column will indicate the total (or average depending on the nature of the
metric) for all threads, and the list of all threads' values will be
represented between square brackets in the thread order. Optionally the
thread number to be dumped may be specified in argument. The special value
"0" will report the aggregated value (first column), and "-1", which is the
default, will display all the columns. Note that just like in single-threaded
mode, there will be no brackets when a single column is requested.
show cli sockets
List CLI sockets. The output format is composed of 3 fields separated by
spaces. The first field is the socket address, it can be a unix socket, a
ipv4 address:port couple or a ipv6 one. Socket of other types won't be dump.
The second field describe the level of the socket: 'admin', 'user' or
'operator'. The last field list the processes on which the socket is bound,
separated by commas, it can be numbers or 'all'.
Example :
$ echo 'show cli sockets' | socat stdio /tmp/sock1
# socket lvl processes
/tmp/sock1 admin all
127.0.0.1:9999 user 2,3,4
127.0.0.2:9969 user 2
[::1]:9999 operator 2
show cache
List the configured caches and the objects stored in each cache tree.
$ echo 'show cache' | socat stdio /tmp/sock1
0x7f6ac6c5b03a: foobar (shctx:0x7f6ac6c5b000, available blocks:3918)
1 2 3 4
1. pointer to the cache structure
2. cache name
3. pointer to the mmap area (shctx)
4. number of blocks available for reuse in the shctx
0x7f6ac6c5b4cc hash:286881868 vary:0x0011223344556677 size:39114 (39 blocks), refcount:9, expire:237
1 2 3 4 5 6 7
1. pointer to the cache entry
2. first 32 bits of the hash
3. secondary hash of the entry in case of vary
4. size of the object in bytes
5. number of blocks used for the object
6. number of transactions using the entry
7. expiration time, can be negative if already expired
show env [<name>]
Dump one or all environment variables known by the process. Without any
argument, all variables are dumped. With an argument, only the specified
variable is dumped if it exists. Otherwise "Variable not found" is emitted.
Variables are dumped in the same format as they are stored or returned by the
"env" utility, that is, "<name>=<value>". This can be handy when debugging
certain configuration files making heavy use of environment variables to
ensure that they contain the expected values. This command is restricted and
can only be issued on sockets configured for levels "operator" or "admin".
show errors [<iid>|<proxy>] [request|response]
Dump last known request and response errors collected by frontends and
backends. If <iid> is specified, the limit the dump to errors concerning
either frontend or backend whose ID is <iid>. Proxy ID "-1" will cause
all instances to be dumped. If a proxy name is specified instead, its ID
will be used as the filter. If "request" or "response" is added after the
proxy name or ID, only request or response errors will be dumped. This
command is restricted and can only be issued on sockets configured for
levels "operator" or "admin".
The errors which may be collected are the last request and response errors
caused by protocol violations, often due to invalid characters in header
names. The report precisely indicates what exact character violated the
protocol. Other important information such as the exact date the error was
detected, frontend and backend names, the server name (when known), the
internal session ID and the source address which has initiated the session
are reported too.
All characters are returned, and non-printable characters are encoded. The
most common ones (\t = 9, \n = 10, \r = 13 and \e = 27) are encoded as one
letter following a backslash. The backslash itself is encoded as '\\' to
avoid confusion. Other non-printable characters are encoded '\xNN' where
NN is the two-digits hexadecimal representation of the character's ASCII
code.
Lines are prefixed with the position of their first character, starting at 0
for the beginning of the buffer. At most one input line is printed per line,
and large lines will be broken into multiple consecutive output lines so that
the output never goes beyond 79 characters wide. It is easy to detect if a
line was broken, because it will not end with '\n' and the next line's offset
will be followed by a '+' sign, indicating it is a continuation of previous
line.
Example :
$ echo "show errors -1 response" | socat stdio /tmp/sock1
>>> [04/Mar/2009:15:46:56.081] backend http-in (#2) : invalid response
src 127.0.0.1, session #54, frontend fe-eth0 (#1), server s2 (#1)
response length 213 bytes, error at position 23:
00000 HTTP/1.0 200 OK\r\n
00017 header/bizarre:blah\r\n
00038 Location: blah\r\n
00054 Long-line: this is a very long line which should b
00104+ e broken into multiple lines on the output buffer,
00154+ otherwise it would be too large to print in a ter
00204+ minal\r\n
00211 \r\n
In the example above, we see that the backend "http-in" which has internal
ID 2 has blocked an invalid response from its server s2 which has internal
ID 1. The request was on session 54 initiated by source 127.0.0.1 and
received by frontend fe-eth0 whose ID is 1. The total response length was
213 bytes when the error was detected, and the error was at byte 23. This
is the slash ('/') in header name "header/bizarre", which is not a valid
HTTP character for a header name.
show events [<sink>] [-w] [-n]
With no option, this lists all known event sinks and their types. With an
option, it will dump all available events in the designated sink if it is of
type buffer. If option "-w" is passed after the sink name, then once the end
of the buffer is reached, the command will wait for new events and display
them. It is possible to stop the operation by entering any input (which will
be discarded) or by closing the session. Finally, option "-n" is used to
directly seek to the end of the buffer, which is often convenient when
combined with "-w" to only report new events. For convenience, "-wn" or "-nw"
may be used to enable both options at once.
show fd [<fd>]
Dump the list of either all open file descriptors or just the one number <fd>
if specified. This is only aimed at developers who need to observe internal
states in order to debug complex issues such as abnormal CPU usages. One fd
is reported per lines, and for each of them, its state in the poller using
upper case letters for enabled flags and lower case for disabled flags, using
"P" for "polled", "R" for "ready", "A" for "active", the events status using
"H" for "hangup", "E" for "error", "O" for "output", "P" for "priority" and
"I" for "input", a few other flags like "N" for "new" (just added into the fd
cache), "U" for "updated" (received an update in the fd cache), "L" for
"linger_risk", "C" for "cloned", then the cached entry position, the pointer
to the internal owner, the pointer to the I/O callback and its name when
known. When the owner is a connection, the connection flags, and the target
are reported (frontend, proxy or server). When the owner is a listener, the
listener's state and its frontend are reported. There is no point in using
this command without a good knowledge of the internals. It's worth noting
that the output format may evolve over time so this output must not be parsed
by tools designed to be durable. Some internal structure states may look
suspicious to the function listing them, in this case the output line will be
suffixed with an exclamation mark ('!'). This may help find a starting point
when trying to diagnose an incident.
show info [typed|json] [desc] [float]
Dump info about haproxy status on current process. If "typed" is passed as an
optional argument, field numbers, names and types are emitted as well so that
external monitoring products can easily retrieve, possibly aggregate, then
report information found in fields they don't know. Each field is dumped on
its own line. If "json" is passed as an optional argument then
information provided by "typed" output is provided in JSON format as a
list of JSON objects. By default, the format contains only two columns
delimited by a colon (':'). The left one is the field name and the right
one is the value. It is very important to note that in typed output
format, the dump for a single object is contiguous so that there is no
need for a consumer to store everything at once. If "float" is passed as an
optional argument, some fields usually emitted as integers may switch to
floats for higher accuracy. It is purposely unspecified which ones are
concerned as this might evolve over time. Using this option implies that the
consumer is able to process floats. The output format used is sprintf("%f").
When using the typed output format, each line is made of 4 columns delimited
by colons (':'). The first column is a dot-delimited series of 3 elements. The
first element is the numeric position of the field in the list (starting at
zero). This position shall not change over time, but holes are to be expected,
depending on build options or if some fields are deleted in the future. The
second element is the field name as it appears in the default "show info"
output. The third element is the relative process number starting at 1.
The rest of the line starting after the first colon follows the "typed output
format" described in the section above. In short, the second column (after the
first ':') indicates the origin, nature and scope of the variable. The third
column indicates the type of the field, among "s32", "s64", "u32", "u64" and
"str". Then the fourth column is the value itself, which the consumer knows
how to parse thanks to column 3 and how to process thanks to column 2.
Thus the overall line format in typed mode is :
<field_pos>.<field_name>.<process_num>:<tags>:<type>:<value>
When "desc" is appended to the command, one extra colon followed by a quoted
string is appended with a description for the metric. At the time of writing,
this is only supported for the "typed" and default output formats.
Example :
> show info
Name: HAProxy
Version: 1.7-dev1-de52ea-146
Release_date: 2016/03/11
Nbproc: 1
Process_num: 1
Pid: 28105
Uptime: 0d 0h00m04s
Uptime_sec: 4
Memmax_MB: 0
PoolAlloc_MB: 0
PoolUsed_MB: 0
PoolFailed: 0
(...)
> show info typed
0.Name.1:POS:str:HAProxy
1.Version.1:POS:str:1.7-dev1-de52ea-146
2.Release_date.1:POS:str:2016/03/11
3.Nbproc.1:CGS:u32:1
4.Process_num.1:KGP:u32:1
5.Pid.1:SGP:u32:28105
6.Uptime.1:MDP:str:0d 0h00m08s
7.Uptime_sec.1:MDP:u32:8
8.Memmax_MB.1:CLP:u32:0
9.PoolAlloc_MB.1:MGP:u32:0
10.PoolUsed_MB.1:MGP:u32:0
11.PoolFailed.1:MCP:u32:0
(...)
In the typed format, the presence of the process ID at the end of the
first column makes it very easy to visually aggregate outputs from
multiple processes.
Example :
$ ( echo show info typed | socat /var/run/haproxy.sock1 ; \
echo show info typed | socat /var/run/haproxy.sock2 ) | \
sort -t . -k 1,1n -k 2,2 -k 3,3n
0.Name.1:POS:str:HAProxy
0.Name.2:POS:str:HAProxy
1.Version.1:POS:str:1.7-dev1-868ab3-148
1.Version.2:POS:str:1.7-dev1-868ab3-148
2.Release_date.1:POS:str:2016/03/11
2.Release_date.2:POS:str:2016/03/11
3.Nbproc.1:CGS:u32:2
3.Nbproc.2:CGS:u32:2
4.Process_num.1:KGP:u32:1
4.Process_num.2:KGP:u32:2
5.Pid.1:SGP:u32:30120
5.Pid.2:SGP:u32:30121
6.Uptime.1:MDP:str:0d 0h01m28s
6.Uptime.2:MDP:str:0d 0h01m28s
(...)
The format of JSON output is described in a schema which may be output
using "show schema json".
The JSON output contains no extra whitespace in order to reduce the
volume of output. For human consumption passing the output through a
pretty printer may be helpful. Example :
$ echo "show info json" | socat /var/run/haproxy.sock stdio | \
python -m json.tool
The JSON output contains no extra whitespace in order to reduce the
volume of output. For human consumption passing the output through a
pretty printer may be helpful. Example :
$ echo "show info json" | socat /var/run/haproxy.sock stdio | \
python -m json.tool
show libs
Dump the list of loaded shared dynamic libraries and object files, on systems
that support it. When available, for each shared object the range of virtual
addresses will be indicated, the size and the path to the object. This can be
used for example to try to estimate what library provides a function that
appears in a dump. Note that on many systems, addresses will change upon each
restart (address space randomization), so that this list would need to be
retrieved upon startup if it is expected to be used to analyse a core file.
This command may only be issued on sockets configured for levels "operator"
or "admin". Note that the output format may vary between operating systems,
architectures and even haproxy versions, and ought not to be relied on in
scripts.
show map [[@<ver>] <map>]
Dump info about map converters. Without argument, the list of all available
maps is returned. If a <map> is specified, its contents are dumped. <map> is
the #<id> or <file>. By default the current version of the map is shown (the
version currently being matched against and reported as 'curr_ver' in the map
list). It is possible to instead dump other versions by prepending '@<ver>'
before the map's identifier. The version works as a filter and non-existing
versions will simply report no result. The 'entry_cnt' value represents the
count of all the map entries, not just the active ones, which means that it
also includes entries currently being added.
In the output, the first column is a unique entry identifier, which is usable
as a reference for operations "del map" and "set map". The second column is
the pattern and the third column is the sample if available. The data returned
are not directly a list of available maps, but are the list of all patterns
composing any map. Many of these patterns can be shared with ACL.
show peers [dict|-] [<peers section>]
Dump info about the peers configured in "peers" sections. Without argument,
the list of the peers belonging to all the "peers" sections are listed. If
<peers section> is specified, only the information about the peers belonging
to this "peers" section are dumped. When "dict" is specified before the peers
section name, the entire Tx/Rx dictionary caches will also be dumped (very
large). Passing "-" may be required to dump a peers section called "dict".
Here are two examples of outputs where hostA, hostB and hostC peers belong to
"sharedlb" peers sections. Only hostA and hostB are connected. Only hostA has
sent data to hostB.
$ echo "show peers" | socat - /tmp/hostA
0x55deb0224320: [15/Apr/2019:11:28:01] id=sharedlb state=0 flags=0x3 \
resync_timeout=<PAST> task_calls=45122
0x55deb022b540: id=hostC(remote) addr=127.0.0.12:10002 status=CONN \
reconnect=4s confirm=0
flags=0x0
0x55deb022a440: id=hostA(local) addr=127.0.0.10:10000 status=NONE \
reconnect=<NEVER> confirm=0
flags=0x0
0x55deb0227d70: id=hostB(remote) addr=127.0.0.11:10001 status=ESTA
reconnect=2s confirm=0
flags=0x20000200 appctx:0x55deb028fba0 st0=7 st1=0 task_calls=14456 \
state=EST
xprt=RAW src=127.0.0.1:37257 addr=127.0.0.10:10000
remote_table:0x55deb0224a10 id=stkt local_id=1 remote_id=1
last_local_table:0x55deb0224a10 id=stkt local_id=1 remote_id=1
shared tables:
0x55deb0224a10 local_id=1 remote_id=1 flags=0x0 remote_data=0x65
last_acked=0 last_pushed=3 last_get=0 teaching_origin=0 update=3
table:0x55deb022d6a0 id=stkt update=3 localupdate=3 \
commitupdate=3 syncing=0
$ echo "show peers" | socat - /tmp/hostB
0x55871b5ab320: [15/Apr/2019:11:28:03] id=sharedlb state=0 flags=0x3 \
resync_timeout=<PAST> task_calls=3
0x55871b5b2540: id=hostC(remote) addr=127.0.0.12:10002 status=CONN \
reconnect=3s confirm=0
flags=0x0
0x55871b5b1440: id=hostB(local) addr=127.0.0.11:10001 status=NONE \
reconnect=<NEVER> confirm=0
flags=0x0
0x55871b5aed70: id=hostA(remote) addr=127.0.0.10:10000 status=ESTA \
reconnect=2s confirm=0
flags=0x20000200 appctx:0x7fa46800ee00 st0=7 st1=0 task_calls=62356 \
state=EST
remote_table:0x55871b5ab960 id=stkt local_id=1 remote_id=1
last_local_table:0x55871b5ab960 id=stkt local_id=1 remote_id=1
shared tables:
0x55871b5ab960 local_id=1 remote_id=1 flags=0x0 remote_data=0x65
last_acked=3 last_pushed=0 last_get=3 teaching_origin=0 update=0
table:0x55871b5b46a0 id=stkt update=1 localupdate=0 \
commitupdate=0 syncing=0
show pools
Dump the status of internal memory pools. This is useful to track memory
usage when suspecting a memory leak for example. It does exactly the same
as the SIGQUIT when running in foreground except that it does not flush
the pools.
show profiling [{all | status | tasks | memory}] [byaddr|bytime|aggr|<max_lines>]*
Dumps the current profiling settings, one per line, as well as the command
needed to change them. When tasks profiling is enabled, some per-function
statistics collected by the scheduler will also be emitted, with a summary
covering the number of calls, total/avg CPU time and total/avg latency. When
memory profiling is enabled, some information such as the number of
allocations/releases and their sizes will be reported. It is possible to
limit the dump to only the profiling status, the tasks, or the memory
profiling by specifying the respective keywords; by default all profiling
information are dumped. It is also possible to limit the number of lines
of output of each category by specifying a numeric limit. If is possible to
request that the output is sorted by address or by total execution time
instead of usage, e.g. to ease comparisons between subsequent calls or to
check what needs to be optimized, and to aggregate task activity by called
function instead of seeing the details. Please note that profiling is
essentially aimed at developers since it gives hints about where CPU cycles
or memory are wasted in the code. There is nothing useful to monitor there.
show resolvers [<resolvers section id>]
Dump statistics for the given resolvers section, or all resolvers sections
if no section is supplied.
For each name server, the following counters are reported:
sent: number of DNS requests sent to this server
valid: number of DNS valid responses received from this server
update: number of DNS responses used to update the server's IP address
cname: number of CNAME responses
cname_error: CNAME errors encountered with this server
any_err: number of empty response (IE: server does not support ANY type)
nx: non existent domain response received from this server
timeout: how many time this server did not answer in time
refused: number of requests refused by this server
other: any other DNS errors
invalid: invalid DNS response (from a protocol point of view)
too_big: too big response
outdated: number of response arrived too late (after an other name server)
show servers conn [<backend>]
Dump the current and idle connections state of the servers belonging to the
designated backend (or all backends if none specified). A backend name or
identifier may be used.
The output consists in a header line showing the fields titles, then one
server per line with for each, the backend name and ID, server name and ID,
the address, port and a series or values. The number of fields varies
depending on thread count.
Given the threaded nature of idle connections, it's important to understand
that some values may change once read, and that as such, consistency within a
line isn't granted. This output is mostly provided as a debugging tool and is
not relevant to be routinely monitored nor graphed.
show servers state [<backend>]
Dump the state of the servers found in the running configuration. A backend
name or identifier may be provided to limit the output to this backend only.
The dump has the following format:
- first line contains the format version (1 in this specification);
- second line contains the column headers, prefixed by a sharp ('#');
- third line and next ones contain data;
- each line starting by a sharp ('#') is considered as a comment.
Since multiple versions of the output may co-exist, below is the list of
fields and their order per file format version :
1:
be_id: Backend unique id.
be_name: Backend label.
srv_id: Server unique id (in the backend).
srv_name: Server label.
srv_addr: Server IP address.
srv_op_state: Server operational state (UP/DOWN/...).
0 = SRV_ST_STOPPED
The server is down.
1 = SRV_ST_STARTING
The server is warming up (up but
throttled).
2 = SRV_ST_RUNNING
The server is fully up.
3 = SRV_ST_STOPPING
The server is up but soft-stopping
(eg: 404).
srv_admin_state: Server administrative state (MAINT/DRAIN/...).
The state is actually a mask of values :
0x01 = SRV_ADMF_FMAINT
The server was explicitly forced into
maintenance.
0x02 = SRV_ADMF_IMAINT
The server has inherited the maintenance
status from a tracked server.
0x04 = SRV_ADMF_CMAINT
The server is in maintenance because of
the configuration.
0x08 = SRV_ADMF_FDRAIN
The server was explicitly forced into
drain state.
0x10 = SRV_ADMF_IDRAIN
The server has inherited the drain status
from a tracked server.
0x20 = SRV_ADMF_RMAINT
The server is in maintenance because of an
IP address resolution failure.
0x40 = SRV_ADMF_HMAINT
The server FQDN was set from stats socket.
srv_uweight: User visible server's weight.
srv_iweight: Server's initial weight.
srv_time_since_last_change: Time since last operational change.
srv_check_status: Last health check status.
srv_check_result: Last check result (FAILED/PASSED/...).
0 = CHK_RES_UNKNOWN
Initialized to this by default.
1 = CHK_RES_NEUTRAL
Valid check but no status information.
2 = CHK_RES_FAILED
Check failed.
3 = CHK_RES_PASSED
Check succeeded and server is fully up
again.
4 = CHK_RES_CONDPASS
Check reports the server doesn't want new
sessions.
srv_check_health: Checks rise / fall current counter.
srv_check_state: State of the check (ENABLED/PAUSED/...).
The state is actually a mask of values :
0x01 = CHK_ST_INPROGRESS
A check is currently running.
0x02 = CHK_ST_CONFIGURED
This check is configured and may be
enabled.
0x04 = CHK_ST_ENABLED
This check is currently administratively
enabled.
0x08 = CHK_ST_PAUSED
Checks are paused because of maintenance
(health only).
srv_agent_state: State of the agent check (ENABLED/PAUSED/...).
This state uses the same mask values as
"srv_check_state", adding this specific one :
0x10 = CHK_ST_AGENT
Check is an agent check (otherwise it's a
health check).
bk_f_forced_id: Flag to know if the backend ID is forced by
configuration.
srv_f_forced_id: Flag to know if the server's ID is forced by
configuration.
srv_fqdn: Server FQDN.
srv_port: Server port.
srvrecord: DNS SRV record associated to this SRV.
srv_use_ssl: use ssl for server connections.
srv_check_port: Server health check port.
srv_check_addr: Server health check address.
srv_agent_addr: Server health agent address.
srv_agent_port: Server health agent port.
show sess
Dump all known sessions. Avoid doing this on slow connections as this can
be huge. This command is restricted and can only be issued on sockets
configured for levels "operator" or "admin". Note that on machines with
quickly recycled connections, it is possible that this output reports less
entries than really exist because it will dump all existing sessions up to
the last one that was created before the command was entered; those which
die in the mean time will not appear.
show sess <id>
Display a lot of internal information about the specified session identifier.
This identifier is the first field at the beginning of the lines in the dumps
of "show sess" (it corresponds to the session pointer). Those information are
useless to most users but may be used by haproxy developers to troubleshoot a
complex bug. The output format is intentionally not documented so that it can
freely evolve depending on demands. You may find a description of all fields
returned in src/dumpstats.c
The special id "all" dumps the states of all sessions, which must be avoided
as much as possible as it is highly CPU intensive and can take a lot of time.
show stat [domain <dns|proxy>] [{<iid>|<proxy>} <type> <sid>] [typed|json] \
[desc] [up|no-maint]
Dump statistics. The domain is used to select which statistics to print; dns
and proxy are available for now. By default, the CSV format is used; you can
activate the extended typed output format described in the section above if
"typed" is passed after the other arguments; or in JSON if "json" is passed
after the other arguments. By passing <id>, <type> and <sid>, it is possible
to dump only selected items :
- <iid> is a proxy ID, -1 to dump everything. Alternatively, a proxy name
<proxy> may be specified. In this case, this proxy's ID will be used as
the ID selector.
- <type> selects the type of dumpable objects : 1 for frontends, 2 for
backends, 4 for servers, -1 for everything. These values can be ORed,
for example:
1 + 2 = 3 -> frontend + backend.
1 + 2 + 4 = 7 -> frontend + backend + server.
- <sid> is a server ID, -1 to dump everything from the selected proxy.
Example :
$ echo "show info;show stat" | socat stdio unix-connect:/tmp/sock1
>>> Name: HAProxy
Version: 1.4-dev2-49
Release_date: 2009/09/23
Nbproc: 1
Process_num: 1
(...)
# pxname,svname,qcur,qmax,scur,smax,slim,stot,bin,bout,dreq, (...)
stats,FRONTEND,,,0,0,1000,0,0,0,0,0,0,,,,,OPEN,,,,,,,,,1,1,0, (...)
stats,BACKEND,0,0,0,0,1000,0,0,0,0,0,,0,0,0,0,UP,0,0,0,,0,250,(...)
(...)
www1,BACKEND,0,0,0,0,1000,0,0,0,0,0,,0,0,0,0,UP,1,1,0,,0,250, (...)
$
In this example, two commands have been issued at once. That way it's easy to
find which process the stats apply to in multi-process mode. This is not
needed in the typed output format as the process number is reported on each
line. Notice the empty line after the information output which marks the end
of the first block. A similar empty line appears at the end of the second
block (stats) so that the reader knows the output has not been truncated.
When "typed" is specified, the output format is more suitable to monitoring
tools because it provides numeric positions and indicates the type of each
output field. Each value stands on its own line with process number, element
number, nature, origin and scope. This same format is available via the HTTP
stats by passing ";typed" after the URI. It is very important to note that in
typed output format, the dump for a single object is contiguous so that there
is no need for a consumer to store everything at once.
The "up" modifier will result in listing only servers which reportedly up or
not checked. Those down, unresolved, or in maintenance will not be listed.
This is analogous to the ";up" option on the HTTP stats. Similarly, the
"no-maint" modifier will act like the ";no-maint" HTTP modifier and will
result in disabled servers not to be listed. The difference is that those
which are enabled but down will not be evicted.
When using the typed output format, each line is made of 4 columns delimited
by colons (':'). The first column is a dot-delimited series of 5 elements. The
first element is a letter indicating the type of the object being described.
At the moment the following object types are known : 'F' for a frontend, 'B'
for a backend, 'L' for a listener, and 'S' for a server. The second element
The second element is a positive integer representing the unique identifier of
the proxy the object belongs to. It is equivalent to the "iid" column of the
CSV output and matches the value in front of the optional "id" directive found
in the frontend or backend section. The third element is a positive integer
containing the unique object identifier inside the proxy, and corresponds to
the "sid" column of the CSV output. ID 0 is reported when dumping a frontend
or a backend. For a listener or a server, this corresponds to their respective
ID inside the proxy. The fourth element is the numeric position of the field
in the list (starting at zero). This position shall not change over time, but
holes are to be expected, depending on build options or if some fields are
deleted in the future. The fifth element is the field name as it appears in
the CSV output. The sixth element is a positive integer and is the relative
process number starting at 1.
The rest of the line starting after the first colon follows the "typed output
format" described in the section above. In short, the second column (after the
first ':') indicates the origin, nature and scope of the variable. The third
column indicates the field type, among "s32", "s64", "u32", "u64", "flt' and
"str". Then the fourth column is the value itself, which the consumer knows
how to parse thanks to column 3 and how to process thanks to column 2.
When "desc" is appended to the command, one extra colon followed by a quoted
string is appended with a description for the metric. At the time of writing,
this is only supported for the "typed" output format.
Thus the overall line format in typed mode is :
<obj>.<px_id>.<id>.<fpos>.<fname>.<process_num>:<tags>:<type>:<value>
Here's an example of typed output format :
$ echo "show stat typed" | socat stdio unix-connect:/tmp/sock1
F.2.0.0.pxname.1:MGP:str:private-frontend
F.2.0.1.svname.1:MGP:str:FRONTEND
F.2.0.8.bin.1:MGP:u64:0
F.2.0.9.bout.1:MGP:u64:0
F.2.0.40.hrsp_2xx.1:MGP:u64:0
L.2.1.0.pxname.1:MGP:str:private-frontend
L.2.1.1.svname.1:MGP:str:sock-1
L.2.1.17.status.1:MGP:str:OPEN
L.2.1.73.addr.1:MGP:str:0.0.0.0:8001
S.3.13.60.rtime.1:MCP:u32:0
S.3.13.61.ttime.1:MCP:u32:0
S.3.13.62.agent_status.1:MGP:str:L4TOUT
S.3.13.64.agent_duration.1:MGP:u64:2001
S.3.13.65.check_desc.1:MCP:str:Layer4 timeout
S.3.13.66.agent_desc.1:MCP:str:Layer4 timeout
S.3.13.67.check_rise.1:MCP:u32:2
S.3.13.68.check_fall.1:MCP:u32:3
S.3.13.69.check_health.1:SGP:u32:0
S.3.13.70.agent_rise.1:MaP:u32:1
S.3.13.71.agent_fall.1:SGP:u32:1
S.3.13.72.agent_health.1:SGP:u32:1
S.3.13.73.addr.1:MCP:str:1.255.255.255:8888
S.3.13.75.mode.1:MAP:str:http
B.3.0.0.pxname.1:MGP:str:private-backend
B.3.0.1.svname.1:MGP:str:BACKEND
B.3.0.2.qcur.1:MGP:u32:0
B.3.0.3.qmax.1:MGP:u32:0
B.3.0.4.scur.1:MGP:u32:0
B.3.0.5.smax.1:MGP:u32:0
B.3.0.6.slim.1:MGP:u32:1000
B.3.0.55.lastsess.1:MMP:s32:-1
(...)
In the typed format, the presence of the process ID at the end of the
first column makes it very easy to visually aggregate outputs from
multiple processes, as show in the example below where each line appears
for each process :
$ ( echo show stat typed | socat /var/run/haproxy.sock1 - ; \
echo show stat typed | socat /var/run/haproxy.sock2 - ) | \
sort -t . -k 1,1 -k 2,2n -k 3,3n -k 4,4n -k 5,5 -k 6,6n
B.3.0.0.pxname.1:MGP:str:private-backend
B.3.0.0.pxname.2:MGP:str:private-backend
B.3.0.1.svname.1:MGP:str:BACKEND
B.3.0.1.svname.2:MGP:str:BACKEND
B.3.0.2.qcur.1:MGP:u32:0
B.3.0.2.qcur.2:MGP:u32:0
B.3.0.3.qmax.1:MGP:u32:0
B.3.0.3.qmax.2:MGP:u32:0
B.3.0.4.scur.1:MGP:u32:0
B.3.0.4.scur.2:MGP:u32:0
B.3.0.5.smax.1:MGP:u32:0
B.3.0.5.smax.2:MGP:u32:0
B.3.0.6.slim.1:MGP:u32:1000
B.3.0.6.slim.2:MGP:u32:1000
(...)
The format of JSON output is described in a schema which may be output
using "show schema json".
The JSON output contains no extra whitespace in order to reduce the
volume of output. For human consumption passing the output through a
pretty printer may be helpful. Example :
$ echo "show stat json" | socat /var/run/haproxy.sock stdio | \
python -m json.tool
The JSON output contains no extra whitespace in order to reduce the
volume of output. For human consumption passing the output through a
pretty printer may be helpful. Example :
$ echo "show stat json" | socat /var/run/haproxy.sock stdio | \
python -m json.tool
show ssl ca-file [<cafile>[:<index>]]
Display the list of CA files used by HAProxy and their respective certificate
counts. If a filename is prefixed by an asterisk, it is a transaction which
is not committed yet. If a <cafile> is specified without <index>, it will show
the status of the CA file ("Used"/"Unused") followed by details about all the
certificates contained in the CA file. The details displayed for every
certificate are the same as the ones displayed by a "show ssl cert" command.
If a <cafile> is specified followed by an <index>, it will only display the
details of the certificate having the specified index. Indexes start from 1.
If the index is invalid (too big for instance), nothing will be displayed.
This command can be useful to check if a CA file was properly updated.
You can also display the details of an ongoing transaction by prefixing the
filename by an asterisk.
Example :
$ echo "show ssl ca-file" | socat /var/run/haproxy.master -
# transaction
*cafile.crt - 2 certificate(s)
# filename
cafile.crt - 1 certificate(s)
$ echo "show ssl ca-file cafile.crt" | socat /var/run/haproxy.master -
Filename: /home/tricot/work/haproxy/reg-tests/ssl/set_cafile_ca2.crt
Status: Used
Certificate #1:
Serial: 11A4D2200DC84376E7D233CAFF39DF44BF8D1211
notBefore: Apr 1 07:40:53 2021 GMT
notAfter: Aug 17 07:40:53 2048 GMT
Subject Alternative Name:
Algorithm: RSA4096
SHA1 FingerPrint: A111EF0FEFCDE11D47FE3F33ADCA8435EBEA4864
Subject: /C=FR/ST=Some-State/O=HAProxy Technologies/CN=HAProxy Technologies CA
Issuer: /C=FR/ST=Some-State/O=HAProxy Technologies/CN=HAProxy Technologies CA
$ echo "show ssl ca-file *cafile.crt:2" | socat /var/run/haproxy.master -
Filename: */home/tricot/work/haproxy/reg-tests/ssl/set_cafile_ca2.crt
Status: Unused
Certificate #2:
Serial: 587A1CE5ED855040A0C82BF255FF300ADB7C8136
[...]
show ssl cert [<filename>]
Display the list of certificates used on frontends and backends.
If a filename is prefixed by an asterisk, it is a transaction which is not
committed yet. If a filename is specified, it will show details about the
certificate. This command can be useful to check if a certificate was well
updated. You can also display details on a transaction by prefixing the
filename by an asterisk.
This command can also be used to display the details of a certificate's OCSP
response by suffixing the filename with a ".ocsp" extension. It works for
committed certificates as well as for ongoing transactions. On a committed
certificate, this command is equivalent to calling "show ssl ocsp-response"
with the certificate's corresponding OCSP response ID.
Example :
$ echo "@1 show ssl cert" | socat /var/run/haproxy.master -
# transaction
*test.local.pem
# filename
test.local.pem
$ echo "@1 show ssl cert test.local.pem" | socat /var/run/haproxy.master -
Filename: test.local.pem
Serial: 03ECC19BA54B25E85ABA46EE561B9A10D26F
notBefore: Sep 13 21:20:24 2019 GMT
notAfter: Dec 12 21:20:24 2019 GMT
Issuer: /C=US/O=Let's Encrypt/CN=Let's Encrypt Authority X3
Subject: /CN=test.local
Subject Alternative Name: DNS:test.local, DNS:imap.test.local
Algorithm: RSA2048
SHA1 FingerPrint: 417A11CAE25F607B24F638B4A8AEE51D1E211477
$ echo "@1 show ssl cert *test.local.pem" | socat /var/run/haproxy.master -
Filename: *test.local.pem
[...]
show ssl crl-file [<crlfile>[:<index>]]
Display the list of CRL files used by HAProxy.
If a filename is prefixed by an asterisk, it is a transaction which is not
committed yet. If a <crlfile> is specified without <index>, it will show the
status of the CRL file ("Used"/"Unused") followed by details about all the
Revocation Lists contained in the CRL file. The details displayed for every
list are based on the output of "openssl crl -text -noout -in <file>".
If a <crlfile> is specified followed by an <index>, it will only display the
details of the list having the specified index. Indexes start from 1.
If the index is invalid (too big for instance), nothing will be displayed.
This command can be useful to check if a CRL file was properly updated.
You can also display the details of an ongoing transaction by prefixing the
filename by an asterisk.
Example :
$ echo "show ssl crl-file" | socat /var/run/haproxy.master -
# transaction
*crlfile.pem
# filename
crlfile.pem
$ echo "show ssl crl-file crlfile.pem" | socat /var/run/haproxy.master -
Filename: /home/tricot/work/haproxy/reg-tests/ssl/crlfile.pem
Status: Used
Certificate Revocation List #1:
Version 1
Signature Algorithm: sha256WithRSAEncryption
Issuer: /C=FR/O=HAProxy Technologies/CN=Intermediate CA2
Last Update: Apr 23 14:45:39 2021 GMT
Next Update: Sep 8 14:45:39 2048 GMT
Revoked Certificates:
Serial Number: 1008
Revocation Date: Apr 23 14:45:36 2021 GMT
Certificate Revocation List #2:
Version 1
Signature Algorithm: sha256WithRSAEncryption
Issuer: /C=FR/O=HAProxy Technologies/CN=Root CA
Last Update: Apr 23 14:30:44 2021 GMT
Next Update: Sep 8 14:30:44 2048 GMT
No Revoked Certificates.
show ssl crt-list [-n] [<filename>]
Display the list of crt-list and directories used in the HAProxy
configuration. If a filename is specified, dump the content of a crt-list or
a directory. Once dumped the output can be used as a crt-list file.
The '-n' option can be used to display the line number, which is useful when
combined with the 'del ssl crt-list' option when a entry is duplicated. The
output with the '-n' option is not compatible with the crt-list format and
not loadable by haproxy.
Example:
echo "show ssl crt-list -n localhost.crt-list" | socat /tmp/sock1 -
# localhost.crt-list
common.pem:1 !not.test1.com *.test1.com !localhost
common.pem:2
ecdsa.pem:3 [verify none allow-0rtt ssl-min-ver TLSv1.0 ssl-max-ver TLSv1.3] localhost !www.test1.com
ecdsa.pem:4 [verify none allow-0rtt ssl-min-ver TLSv1.0 ssl-max-ver TLSv1.3]
show ssl ocsp-response [<id>]
Display the IDs of the OCSP tree entries corresponding to all the OCSP
responses used in HAProxy, as well as the issuer's name and key hash and the
serial number of the certificate for which the OCSP response was built.
If a valid <id> is provided, display the contents of the corresponding OCSP
response. The information displayed is the same as in an "openssl ocsp -respin
<ocsp-response> -text" call.
Example :
$ echo "show ssl ocsp-response" | socat /var/run/haproxy.master -
# Certificate IDs
Certificate ID key : 303b300906052b0e03021a050004148a83e0060faff709ca7e9b95522a2e81635fda0a0414f652b0e435d5ea923851508f0adbe92d85de007a0202100a
Certificate ID:
Issuer Name Hash: 8A83E0060FAFF709CA7E9B95522A2E81635FDA0A
Issuer Key Hash: F652B0E435D5EA923851508F0ADBE92D85DE007A
Serial Number: 100A
$ echo "show ssl ocsp-response 303b300906052b0e03021a050004148a83e0060faff709ca7e9b95522a2e81635fda0a0414f652b0e435d5ea923851508f0adbe92d85de007a0202100a" | socat /var/run/haproxy.master -
OCSP Response Data:
OCSP Response Status: successful (0x0)
Response Type: Basic OCSP Response
Version: 1 (0x0)
Responder Id: C = FR, O = HAProxy Technologies, CN = ocsp.haproxy.com
Produced At: May 27 15:43:38 2021 GMT
Responses:
Certificate ID:
Hash Algorithm: sha1
Issuer Name Hash: 8A83E0060FAFF709CA7E9B95522A2E81635FDA0A
Issuer Key Hash: F652B0E435D5EA923851508F0ADBE92D85DE007A
Serial Number: 100A
Cert Status: good
This Update: May 27 15:43:38 2021 GMT
Next Update: Oct 12 15:43:38 2048 GMT
[...]
show ssl providers
Display the names of the providers loaded by OpenSSL during init. Provider
loading can indeed be configured via the OpenSSL configuration file and this
option allows to check that the right providers were loaded. This command is
only available with OpenSSL v3.
Example :
$ echo "show ssl providers" | socat /var/run/haproxy.master -
Loaded providers :
- fips
- base
show startup-logs
Dump all messages emitted during the startup of the current haproxy process,
each startup-logs buffer is unique to its haproxy worker.
show table
Dump general information on all known stick-tables. Their name is returned
(the name of the proxy which holds them), their type (currently zero, always
IP), their size in maximum possible number of entries, and the number of
entries currently in use.
Example :
$ echo "show table" | socat stdio /tmp/sock1
>>> # table: front_pub, type: ip, size:204800, used:171454
>>> # table: back_rdp, type: ip, size:204800, used:0
show table <name> [ data.<type> <operator> <value> [data.<type> ...]] | [ key <key> ]
Dump contents of stick-table <name>. In this mode, a first line of generic
information about the table is reported as with "show table", then all
entries are dumped. Since this can be quite heavy, it is possible to specify
a filter in order to specify what entries to display.
When the "data." form is used the filter applies to the stored data (see
"stick-table" in section 4.2). A stored data type must be specified
in <type>, and this data type must be stored in the table otherwise an
error is reported. The data is compared according to <operator> with the
64-bit integer <value>. Operators are the same as with the ACLs :
- eq : match entries whose data is equal to this value
- ne : match entries whose data is not equal to this value
- le : match entries whose data is less than or equal to this value
- ge : match entries whose data is greater than or equal to this value
- lt : match entries whose data is less than this value
- gt : match entries whose data is greater than this value
In this form, you can use multiple data filter entries, up to a maximum
defined during build time (4 by default).
When the key form is used the entry <key> is shown. The key must be of the
same type as the table, which currently is limited to IPv4, IPv6, integer,
and string.
Example :
$ echo "show table http_proxy" | socat stdio /tmp/sock1
>>> # table: http_proxy, type: ip, size:204800, used:2
>>> 0x80e6a4c: key=127.0.0.1 use=0 exp=3594729 gpc0=0 conn_rate(30000)=1 \
bytes_out_rate(60000)=187
>>> 0x80e6a80: key=127.0.0.2 use=0 exp=3594740 gpc0=1 conn_rate(30000)=10 \
bytes_out_rate(60000)=191
$ echo "show table http_proxy data.gpc0 gt 0" | socat stdio /tmp/sock1
>>> # table: http_proxy, type: ip, size:204800, used:2
>>> 0x80e6a80: key=127.0.0.2 use=0 exp=3594740 gpc0=1 conn_rate(30000)=10 \
bytes_out_rate(60000)=191
$ echo "show table http_proxy data.conn_rate gt 5" | \
socat stdio /tmp/sock1
>>> # table: http_proxy, type: ip, size:204800, used:2
>>> 0x80e6a80: key=127.0.0.2 use=0 exp=3594740 gpc0=1 conn_rate(30000)=10 \
bytes_out_rate(60000)=191
$ echo "show table http_proxy key 127.0.0.2" | \
socat stdio /tmp/sock1
>>> # table: http_proxy, type: ip, size:204800, used:2
>>> 0x80e6a80: key=127.0.0.2 use=0 exp=3594740 gpc0=1 conn_rate(30000)=10 \
bytes_out_rate(60000)=191
When the data criterion applies to a dynamic value dependent on time such as
a bytes rate, the value is dynamically computed during the evaluation of the
entry in order to decide whether it has to be dumped or not. This means that
such a filter could match for some time then not match anymore because as
time goes, the average event rate drops.
It is possible to use this to extract lists of IP addresses abusing the
service, in order to monitor them or even blacklist them in a firewall.
Example :
$ echo "show table http_proxy data.gpc0 gt 0" \
| socat stdio /tmp/sock1 \
| fgrep 'key=' | cut -d' ' -f2 | cut -d= -f2 > abusers-ip.txt
( or | awk '/key/{ print a[split($2,a,"=")]; }' )
show tasks
Dumps the number of tasks currently in the run queue, with the number of
occurrences for each function, and their average latency when it's known
(for pure tasks with task profiling enabled). The dump is a snapshot of the
instant it's done, and there may be variations depending on what tasks are
left in the queue at the moment it happens, especially in mono-thread mode
as there's less chance that I/Os can refill the queue (unless the queue is
full). This command takes exclusive access to the process and can cause
minor but measurable latencies when issued on a highly loaded process, so
it must not be abused by monitoring bots.
show threads
Dumps some internal states and structures for each thread, that may be useful
to help developers understand a problem. The output tries to be readable by
showing one block per thread. When haproxy is built with USE_THREAD_DUMP=1,
an advanced dump mechanism involving thread signals is used so that each
thread can dump its own state in turn. Without this option, the thread
processing the command shows all its details but the other ones are less
detailed. A star ('*') is displayed in front of the thread handling the
command. A right angle bracket ('>') may also be displayed in front of
threads which didn't make any progress since last invocation of this command,
indicating a bug in the code which must absolutely be reported. When this
happens between two threads it usually indicates a deadlock. If a thread is
alone, it's a different bug like a corrupted list. In all cases the process
needs is not fully functional anymore and needs to be restarted.
The output format is purposely not documented so that it can easily evolve as
new needs are identified, without having to maintain any form of backwards
compatibility, and just like with "show activity", the values are meaningless
without the code at hand.
show tls-keys [id|*]
Dump all loaded TLS ticket keys references. The TLS ticket key reference ID
and the file from which the keys have been loaded is shown. Both of those
can be used to update the TLS keys using "set ssl tls-key". If an ID is
specified as parameter, it will dump the tickets, using * it will dump every
keys from every references.
show schema json
Dump the schema used for the output of "show info json" and "show stat json".
The contains no extra whitespace in order to reduce the volume of output.
For human consumption passing the output through a pretty printer may be
helpful. Example :
$ echo "show schema json" | socat /var/run/haproxy.sock stdio | \
python -m json.tool
The schema follows "JSON Schema" (json-schema.org) and accordingly
verifiers may be used to verify the output of "show info json" and "show
stat json" against the schema.
show trace [<source>]
Show the current trace status. For each source a line is displayed with a
single-character status indicating if the trace is stopped, waiting, or
running. The output sink used by the trace is indicated (or "none" if none
was set), as well as the number of dropped events in this sink, followed by a
brief description of the source. If a source name is specified, a detailed
list of all events supported by the source, and their status for each action
(report, start, pause, stop), indicated by a "+" if they are enabled, or a
"-" otherwise. All these events are independent and an event might trigger
a start without being reported and conversely.
show version
Show the version of the current HAProxy process. This is available from
master and workers CLI.
Example:
$ echo "show version" | socat /var/run/haproxy.sock stdio
2.4.9
$ echo "show version" | socat /var/run/haproxy-master.sock stdio
2.5.0
shutdown frontend <frontend>
Completely delete the specified frontend. All the ports it was bound to will
be released. It will not be possible to enable the frontend anymore after
this operation. This is intended to be used in environments where stopping a
proxy is not even imaginable but a misconfigured proxy must be fixed. That
way it's possible to release the port and bind it into another process to
restore operations. The frontend will not appear at all on the stats page
once it is terminated.
The frontend may be specified either by its name or by its numeric ID,
prefixed with a sharp ('#').
This command is restricted and can only be issued on sockets configured for
level "admin".
shutdown session <id>
Immediately terminate the session matching the specified session identifier.
This identifier is the first field at the beginning of the lines in the dumps
of "show sess" (it corresponds to the session pointer). This can be used to
terminate a long-running session without waiting for a timeout or when an
endless transfer is ongoing. Such terminated sessions are reported with a 'K'
flag in the logs.
shutdown sessions server <backend>/<server>
Immediately terminate all the sessions attached to the specified server. This
can be used to terminate long-running sessions after a server is put into
maintenance mode, for instance. Such terminated sessions are reported with a
'K' flag in the logs.
trace
The "trace" command alone lists the trace sources, their current status, and
their brief descriptions. It is only meant as a menu to enter next levels,
see other "trace" commands below.
trace 0
Immediately stops all traces. This is made to be used as a quick solution
to terminate a debugging session or as an emergency action to be used in case
complex traces were enabled on multiple sources and impact the service.
trace <source> event [ [+|-|!]<name> ]
Without argument, this will list all the events supported by the designated
source. They are prefixed with a "-" if they are not enabled, or a "+" if
they are enabled. It is important to note that a single trace may be labelled
with multiple events, and as long as any of the enabled events matches one of
the events labelled on the trace, the event will be passed to the trace
subsystem. For example, receiving an HTTP/2 frame of type HEADERS may trigger
a frame event and a stream event since the frame creates a new stream. If
either the frame event or the stream event are enabled for this source, the
frame will be passed to the trace framework.
With an argument, it is possible to toggle the state of each event and
individually enable or disable them. Two special keywords are supported,
"none", which matches no event, and is used to disable all events at once,
and "any" which matches all events, and is used to enable all events at
once. Other events are specific to the event source. It is possible to
enable one event by specifying its name, optionally prefixed with '+' for
better readability. It is possible to disable one event by specifying its
name prefixed by a '-' or a '!'.
One way to completely disable a trace source is to pass "event none", and
this source will instantly be totally ignored.
trace <source> level [<level>]
Without argument, this will list all trace levels for this source, and the
current one will be indicated by a star ('*') prepended in front of it. With
an argument, this will change the trace level to the specified level. Detail
levels are a form of filters that are applied before reporting the events.
These filters are used to selectively include or exclude events depending on
their level of importance. For example a developer might need to know
precisely where in the code an HTTP header was considered invalid while the
end user may not even care about this header's validity at all. There are
currently 5 distinct levels for a trace :
user this will report information that are suitable for use by a
regular haproxy user who wants to observe his traffic.
Typically some HTTP requests and responses will be reported
without much detail. Most sources will set this as the
default level to ease operations.
proto in addition to what is reported at the "user" level, it also
displays protocol-level updates. This can for example be the
frame types or HTTP headers after decoding.
state in addition to what is reported at the "proto" level, it
will also display state transitions (or failed transitions)
which happen in parsers, so this will show attempts to
perform an operation while the "proto" level only shows
the final operation.
data in addition to what is reported at the "state" level, it
will also include data transfers between the various layers.
developer it reports everything available, which can include advanced
information such as "breaking out of this loop" that are
only relevant to a developer trying to understand a bug that
only happens once in a while in field. Function names are
only reported at this level.
It is highly recommended to always use the "user" level only and switch to
other levels only if instructed to do so by a developer. Also it is a good
idea to first configure the events before switching to higher levels, as it
may save from dumping many lines if no filter is applied.
trace <source> lock [criterion]
Without argument, this will list all the criteria supported by this source
for lock-on processing, and display the current choice by a star ('*') in
front of it. Lock-on means that the source will focus on the first matching
event and only stick to the criterion which triggered this event, and ignore
all other ones until the trace stops. This allows for example to take a trace
on a single connection or on a single stream. The following criteria are
supported by some traces, though not necessarily all, since some of them
might not be available to the source :
backend lock on the backend that started the trace
connection lock on the connection that started the trace
frontend lock on the frontend that started the trace
listener lock on the listener that started the trace
nothing do not lock on anything
server lock on the server that started the trace
session lock on the session that started the trace
thread lock on the thread that started the trace
In addition to this, each source may provide up to 4 specific criteria such
as internal states or connection IDs. For example in HTTP/2 it is possible
to lock on the H2 stream and ignore other streams once a strace starts.
When a criterion is passed in argument, this one is used instead of the
other ones and any existing tracking is immediately terminated so that it can
restart with the new criterion. The special keyword "nothing" is supported by
all sources to permanently disable tracking.
trace <source> { pause | start | stop } [ [+|-|!]event]
Without argument, this will list the events enabled to automatically pause,
start, or stop a trace for this source. These events are specific to each
trace source. With an argument, this will either enable the event for the
specified action (if optionally prefixed by a '+') or disable it (if
prefixed by a '-' or '!'). The special keyword "now" is not an event and
requests to take the action immediately. The keywords "none" and "any" are
supported just like in "trace event".
The 3 supported actions are respectively "pause", "start" and "stop". The
"pause" action enumerates events which will cause a running trace to stop and
wait for a new start event to restart it. The "start" action enumerates the
events which switch the trace into the waiting mode until one of the start
events appears. And the "stop" action enumerates the events which definitely
stop the trace until it is manually enabled again. In practice it makes sense
to manually start a trace using "start now" without caring about events, and
to stop it using "stop now". In order to capture more subtle event sequences,
setting "start" to a normal event (like receiving an HTTP request) and "stop"
to a very rare event like emitting a certain error, will ensure that the last
captured events will match the desired criteria. And the pause event is
useful to detect the end of a sequence, disable the lock-on and wait for
another opportunity to take a capture. In this case it can make sense to
enable lock-on to spot only one specific criterion (e.g. a stream), and have
"start" set to anything that starts this criterion (e.g. all events which
create a stream), "stop" set to the expected anomaly, and "pause" to anything
that ends that criterion (e.g. any end of stream event). In this case the
trace log will contain complete sequences of perfectly clean series affecting
a single object, until the last sequence containing everything from the
beginning to the anomaly.
trace <source> sink [<sink>]
Without argument, this will list all event sinks available for this source,
and the currently configured one will have a star ('*') prepended in front
of it. Sink "none" is always available and means that all events are simply
dropped, though their processing is not ignored (e.g. lock-on does occur).
Other sinks are available depending on configuration and build options, but
typically "stdout" and "stderr" will be usable in debug mode, and in-memory
ring buffers should be available as well. When a name is specified, the sink
instantly changes for the specified source. Events are not changed during a
sink change. In the worst case some may be lost if an invalid sink is used
(or "none"), but operations do continue to a different destination.
trace <source> verbosity [<level>]
Without argument, this will list all verbosity levels for this source, and the
current one will be indicated by a star ('*') prepended in front of it. With
an argument, this will change the verbosity level to the specified one.
Verbosity levels indicate how far the trace decoder should go to provide
detailed information. It depends on the trace source, since some sources will
not even provide a specific decoder. Level "quiet" is always available and
disables any decoding. It can be useful when trying to figure what's
happening before trying to understand the details, since it will have a very
low impact on performance and trace size. When no verbosity levels are
declared by a source, level "default" is available and will cause a decoder
to be called when specified in the traces. It is an opportunistic decoding.
When the source declares some verbosity levels, these ones are listed with
a description of what they correspond to. In this case the trace decoder
provided by the source will be as accurate as possible based on the
information available at the trace point. The first level above "quiet" is
set by default.
9.4. Master CLI
---------------
The master CLI is a socket bound to the master process in master-worker mode.
This CLI gives access to the unix socket commands in every running or leaving
processes and allows a basic supervision of those processes.
The master CLI is configurable only from the haproxy program arguments with
the -S option. This option also takes bind options separated by commas.
Example:
# haproxy -W -S 127.0.0.1:1234 -f test1.cfg
# haproxy -Ws -S /tmp/master-socket,uid,1000,gid,1000,mode,600 -f test1.cfg
# haproxy -W -S /tmp/master-socket,level,user -f test1.cfg
9.4.1. Master CLI commands
--------------------------
@<[!]pid>
The master CLI uses a special prefix notation to access the multiple
processes. This notation is easily identifiable as it begins by a @.
A @ prefix can be followed by a relative process number or by an exclamation
point and a PID. (e.g. @1 or @!1271). A @ alone could be use to specify the
master. Leaving processes are only accessible with the PID as relative process
number are only usable with the current processes.
Examples:
$ socat /var/run/haproxy-master.sock readline
prompt
master> @1 show info; @2 show info
[...]
Process_num: 1
Pid: 1271
[...]
Process_num: 2
Pid: 1272
[...]
master>
$ echo '@!1271 show info; @!1272 show info' | socat /var/run/haproxy-master.sock -
[...]
A prefix could be use as a command, which will send every next commands to
the specified process.
Examples:
$ socat /var/run/haproxy-master.sock readline
prompt
master> @1
1271> show info
[...]
1271> show stat
[...]
1271> @
master>
$ echo '@1; show info; show stat; @2; show info; show stat' | socat /var/run/haproxy-master.sock -
[...]
expert-mode [on|off]
This command activates the "expert-mode" for every worker accessed from the
master CLI. Combined with "mcli-debug-mode" it also activates the command on
the master. Display the flag "e" in the master CLI prompt.
See also "expert-mode" in Section 9.3 and "mcli-debug-mode" in 9.4.1.
experimental-mode [on|off]
This command activates the "experimental-mode" for every worker accessed from
the master CLI. Combined with "mcli-debug-mode" it also activates the command on
the master. Display the flag "x" in the master CLI prompt.
See also "experimental-mode" in Section 9.3 and "mcli-debug-mode" in 9.4.1.
mcli-debug-mode [on|off]
This keyword allows a special mode in the master CLI which enables every
keywords that were meant for a worker CLI on the master CLI, allowing to debug
the master process. Once activated, you list the new available keywords with
"help". Combined with "experimental-mode" or "expert-mode" it enables even
more keywords. Display the flag "d" in the master CLI prompt.
prompt
When the prompt is enabled (via the "prompt" command), the context the CLI is
working on is displayed in the prompt. The master is identified by the "master"
string, and other processes are identified with their PID. In case the last
reload failed, the master prompt will be changed to "master[ReloadFailed]>" so
that it becomes visible that the process is still running on the previous
configuration and that the new configuration is not operational.
The prompt of the master CLI is able to display several flags which are the
enable modes. "d" for mcli-debug-mode, "e" for expert-mode, "x" for
experimental-mode.
Example:
$ socat /var/run/haproxy-master.sock -
prompt
master> expert-mode on
master(e)> experimental-mode on
master(xe)> mcli-debug-mode on
master(xed)> @1
95191(xed)>
reload
You can also reload the HAProxy master process with the "reload" command which
does the same as a `kill -USR2` on the master process, provided that the user
has at least "operator" or "admin" privileges.
This command allows you to perform a synchronous reload, the command will
return a reload status, once the reload was performed. Be careful with the
timeout if a tool is used to parse it, it is only returned once the
configuration is parsed and the new worker is forked. The "socat" command uses
a timeout of 0.5s by default so it will quits before showing the message if
the reload is too long. "ncat" does not have a timeout by default.
When compiled with USE_SHM_OPEN=1, the reload command is also able to dump
the startup-logs of the master.
Example:
$ echo "reload" | socat -t300 /var/run/haproxy-master.sock stdin
Success=1
--
[NOTICE] (482713) : haproxy version is 2.7-dev7-4827fb-69
[NOTICE] (482713) : path to executable is ./haproxy
[WARNING] (482713) : config : 'http-request' rules ignored for proxy 'frt1' as they require HTTP mode.
[NOTICE] (482713) : New worker (482720) forked
[NOTICE] (482713) : Loading success.
$ echo "reload" | socat -t300 /var/run/haproxy-master.sock stdin
Success=0
--
[NOTICE] (482886) : haproxy version is 2.7-dev7-4827fb-69
[NOTICE] (482886) : path to executable is ./haproxy
[ALERT] (482886) : config : parsing [test3.cfg:1]: unknown keyword 'Aglobal' out of section.
[ALERT] (482886) : config : Fatal errors found in configuration.
[WARNING] (482886) : Loading failure!
$
The reload command is the last executed on the master CLI, every other
command after it are ignored. Once the reload command returns its status, it
will close the connection to the CLI.
Note that a reload will close all connections to the master CLI.
show proc
The master CLI introduces a 'show proc' command to surpervise the
processe.
Example:
$ echo 'show proc' | socat /var/run/haproxy-master.sock -
#<PID> <type> <reloads> <uptime> <version>
1162 master 5 [failed: 0] 0d00h02m07s 2.5-dev13
# workers
1271 worker 1 0d00h00m00s 2.5-dev13
# old workers
1233 worker 3 0d00h00m43s 2.0-dev3-6019f6-289
# programs
1244 foo 0 0d00h00m00s -
1255 bar 0 0d00h00m00s -
In this example, the master has been reloaded 5 times but one of the old
worker is still running and survived 3 reloads. You could access the CLI of
this worker to understand what's going on.
10. Tricks for easier configuration management
----------------------------------------------
It is very common that two HAProxy nodes constituting a cluster share exactly
the same configuration modulo a few addresses. Instead of having to maintain a
duplicate configuration for each node, which will inevitably diverge, it is
possible to include environment variables in the configuration. Thus multiple
configuration may share the exact same file with only a few different system
wide environment variables. This started in version 1.5 where only addresses
were allowed to include environment variables, and 1.6 goes further by
supporting environment variables everywhere. The syntax is the same as in the
UNIX shell, a variable starts with a dollar sign ('$'), followed by an opening
curly brace ('{'), then the variable name followed by the closing brace ('}').
Except for addresses, environment variables are only interpreted in arguments
surrounded with double quotes (this was necessary not to break existing setups
using regular expressions involving the dollar symbol).
Environment variables also make it convenient to write configurations which are
expected to work on various sites where only the address changes. It can also
permit to remove passwords from some configs. Example below where the the file
"site1.env" file is sourced by the init script upon startup :
$ cat site1.env
LISTEN=192.168.1.1
CACHE_PFX=192.168.11
SERVER_PFX=192.168.22
LOGGER=192.168.33.1
STATSLP=admin:pa$$w0rd
ABUSERS=/etc/haproxy/abuse.lst
TIMEOUT=10s
$ cat haproxy.cfg
global
log "${LOGGER}:514" local0
defaults
mode http
timeout client "${TIMEOUT}"
timeout server "${TIMEOUT}"
timeout connect 5s
frontend public
bind "${LISTEN}:80"
http-request reject if { src -f "${ABUSERS}" }
stats uri /stats
stats auth "${STATSLP}"
use_backend cache if { path_end .jpg .css .ico }
default_backend server
backend cache
server cache1 "${CACHE_PFX}.1:18080" check
server cache2 "${CACHE_PFX}.2:18080" check
backend server
server cache1 "${SERVER_PFX}.1:8080" check
server cache2 "${SERVER_PFX}.2:8080" check
11. Well-known traps to avoid
-----------------------------
Once in a while, someone reports that after a system reboot, the haproxy
service wasn't started, and that once they start it by hand it works. Most
often, these people are running a clustered IP address mechanism such as
keepalived, to assign the service IP address to the master node only, and while
it used to work when they used to bind haproxy to address 0.0.0.0, it stopped
working after they bound it to the virtual IP address. What happens here is
that when the service starts, the virtual IP address is not yet owned by the
local node, so when HAProxy wants to bind to it, the system rejects this
because it is not a local IP address. The fix doesn't consist in delaying the
haproxy service startup (since it wouldn't stand a restart), but instead to
properly configure the system to allow binding to non-local addresses. This is
easily done on Linux by setting the net.ipv4.ip_nonlocal_bind sysctl to 1. This
is also needed in order to transparently intercept the IP traffic that passes
through HAProxy for a specific target address.
Multi-process configurations involving source port ranges may apparently seem
to work but they will cause some random failures under high loads because more
than one process may try to use the same source port to connect to the same
server, which is not possible. The system will report an error and a retry will
happen, picking another port. A high value in the "retries" parameter may hide
the effect to a certain extent but this also comes with increased CPU usage and
processing time. Logs will also report a certain number of retries. For this
reason, port ranges should be avoided in multi-process configurations.
Since HAProxy uses SO_REUSEPORT and supports having multiple independent
processes bound to the same IP:port, during troubleshooting it can happen that
an old process was not stopped before a new one was started. This provides
absurd test results which tend to indicate that any change to the configuration
is ignored. The reason is that in fact even the new process is restarted with a
new configuration, the old one also gets some incoming connections and
processes them, returning unexpected results. When in doubt, just stop the new
process and try again. If it still works, it very likely means that an old
process remains alive and has to be stopped. Linux's "netstat -lntp" is of good
help here.
When adding entries to an ACL from the command line (eg: when blacklisting a
source address), it is important to keep in mind that these entries are not
synchronized to the file and that if someone reloads the configuration, these
updates will be lost. While this is often the desired effect (for blacklisting)
it may not necessarily match expectations when the change was made as a fix for
a problem. See the "add acl" action of the CLI interface.
12. Debugging and performance issues
------------------------------------
When HAProxy is started with the "-d" option, it will stay in the foreground
and will print one line per event, such as an incoming connection, the end of a
connection, and for each request or response header line seen. This debug
output is emitted before the contents are processed, so they don't consider the
local modifications. The main use is to show the request and response without
having to run a network sniffer. The output is less readable when multiple
connections are handled in parallel, though the "debug2ansi" and "debug2html"
scripts found in the examples/ directory definitely help here by coloring the
output.
If a request or response is rejected because HAProxy finds it is malformed, the
best thing to do is to connect to the CLI and issue "show errors", which will
report the last captured faulty request and response for each frontend and
backend, with all the necessary information to indicate precisely the first
character of the input stream that was rejected. This is sometimes needed to
prove to customers or to developers that a bug is present in their code. In
this case it is often possible to relax the checks (but still keep the
captures) using "option accept-invalid-http-request" or its equivalent for
responses coming from the server "option accept-invalid-http-response". Please
see the configuration manual for more details.
Example :
> show errors
Total events captured on [13/Oct/2015:13:43:47.169] : 1
[13/Oct/2015:13:43:40.918] frontend HAProxyLocalStats (#2): invalid request
backend <NONE> (#-1), server <NONE> (#-1), event #0
src 127.0.0.1:51981, session #0, session flags 0x00000080
HTTP msg state 26, msg flags 0x00000000, tx flags 0x00000000
HTTP chunk len 0 bytes, HTTP body len 0 bytes
buffer flags 0x00808002, out 0 bytes, total 31 bytes
pending 31 bytes, wrapping at 8040, error at position 13:
00000 GET /invalid request HTTP/1.1\r\n
The output of "show info" on the CLI provides a number of useful information
regarding the maximum connection rate ever reached, maximum SSL key rate ever
reached, and in general all information which can help to explain temporary
issues regarding CPU or memory usage. Example :
> show info
Name: HAProxy
Version: 1.6-dev7-e32d18-17
Release_date: 2015/10/12
Nbproc: 1
Process_num: 1
Pid: 7949
Uptime: 0d 0h02m39s
Uptime_sec: 159
Memmax_MB: 0
Ulimit-n: 120032
Maxsock: 120032
Maxconn: 60000
Hard_maxconn: 60000
CurrConns: 0
CumConns: 3
CumReq: 3
MaxSslConns: 0
CurrSslConns: 0
CumSslConns: 0
Maxpipes: 0
PipesUsed: 0
PipesFree: 0
ConnRate: 0
ConnRateLimit: 0
MaxConnRate: 1
SessRate: 0
SessRateLimit: 0
MaxSessRate: 1
SslRate: 0
SslRateLimit: 0
MaxSslRate: 0
SslFrontendKeyRate: 0
SslFrontendMaxKeyRate: 0
SslFrontendSessionReuse_pct: 0
SslBackendKeyRate: 0
SslBackendMaxKeyRate: 0
SslCacheLookups: 0
SslCacheMisses: 0
CompressBpsIn: 0
CompressBpsOut: 0
CompressBpsRateLim: 0
ZlibMemUsage: 0
MaxZlibMemUsage: 0
Tasks: 5
Run_queue: 1
Idle_pct: 100
node: wtap
description:
When an issue seems to randomly appear on a new version of HAProxy (eg: every
second request is aborted, occasional crash, etc), it is worth trying to enable
memory poisoning so that each call to malloc() is immediately followed by the
filling of the memory area with a configurable byte. By default this byte is
0x50 (ASCII for 'P'), but any other byte can be used, including zero (which
will have the same effect as a calloc() and which may make issues disappear).
Memory poisoning is enabled on the command line using the "-dM" option. It
slightly hurts performance and is not recommended for use in production. If
an issue happens all the time with it or never happens when poisoning uses
byte zero, it clearly means you've found a bug and you definitely need to
report it. Otherwise if there's no clear change, the problem it is not related.
When debugging some latency issues, it is important to use both strace and
tcpdump on the local machine, and another tcpdump on the remote system. The
reason for this is that there are delays everywhere in the processing chain and
it is important to know which one is causing latency to know where to act. In
practice, the local tcpdump will indicate when the input data come in. Strace
will indicate when haproxy receives these data (using recv/recvfrom). Warning,
openssl uses read()/write() syscalls instead of recv()/send(). Strace will also
show when haproxy sends the data, and tcpdump will show when the system sends
these data to the interface. Then the external tcpdump will show when the data
sent are really received (since the local one only shows when the packets are
queued). The benefit of sniffing on the local system is that strace and tcpdump
will use the same reference clock. Strace should be used with "-tts200" to get
complete timestamps and report large enough chunks of data to read them.
Tcpdump should be used with "-nvvttSs0" to report full packets, real sequence
numbers and complete timestamps.
In practice, received data are almost always immediately received by haproxy
(unless the machine has a saturated CPU or these data are invalid and not
delivered). If these data are received but not sent, it generally is because
the output buffer is saturated (ie: recipient doesn't consume the data fast
enough). This can be confirmed by seeing that the polling doesn't notify of
the ability to write on the output file descriptor for some time (it's often
easier to spot in the strace output when the data finally leave and then roll
back to see when the write event was notified). It generally matches an ACK
received from the recipient, and detected by tcpdump. Once the data are sent,
they may spend some time in the system doing nothing. Here again, the TCP
congestion window may be limited and not allow these data to leave, waiting for
an ACK to open the window. If the traffic is idle and the data take 40 ms or
200 ms to leave, it's a different issue (which is not an issue), it's the fact
that the Nagle algorithm prevents empty packets from leaving immediately, in
hope that they will be merged with subsequent data. HAProxy automatically
disables Nagle in pure TCP mode and in tunnels. However it definitely remains
enabled when forwarding an HTTP body (and this contributes to the performance
improvement there by reducing the number of packets). Some HTTP non-compliant
applications may be sensitive to the latency when delivering incomplete HTTP
response messages. In this case you will have to enable "option http-no-delay"
to disable Nagle in order to work around their design, keeping in mind that any
other proxy in the chain may similarly be impacted. If tcpdump reports that data
leave immediately but the other end doesn't see them quickly, it can mean there
is a congested WAN link, a congested LAN with flow control enabled and
preventing the data from leaving, or more commonly that HAProxy is in fact
running in a virtual machine and that for whatever reason the hypervisor has
decided that the data didn't need to be sent immediately. In virtualized
environments, latency issues are almost always caused by the virtualization
layer, so in order to save time, it's worth first comparing tcpdump in the VM
and on the external components. Any difference has to be credited to the
hypervisor and its accompanying drivers.
When some TCP SACK segments are seen in tcpdump traces (using -vv), it always
means that the side sending them has got the proof of a lost packet. While not
seeing them doesn't mean there are no losses, seeing them definitely means the
network is lossy. Losses are normal on a network, but at a rate where SACKs are
not noticeable at the naked eye. If they appear a lot in the traces, it is
worth investigating exactly what happens and where the packets are lost. HTTP
doesn't cope well with TCP losses, which introduce huge latencies.
The "netstat -i" command will report statistics per interface. An interface
where the Rx-Ovr counter grows indicates that the system doesn't have enough
resources to receive all incoming packets and that they're lost before being
processed by the network driver. Rx-Drp indicates that some received packets
were lost in the network stack because the application doesn't process them
fast enough. This can happen during some attacks as well. Tx-Drp means that
the output queues were full and packets had to be dropped. When using TCP it
should be very rare, but will possibly indicate a saturated outgoing link.
13. Security considerations
---------------------------
HAProxy is designed to run with very limited privileges. The standard way to
use it is to isolate it into a chroot jail and to drop its privileges to a
non-root user without any permissions inside this jail so that if any future
vulnerability were to be discovered, its compromise would not affect the rest
of the system.
In order to perform a chroot, it first needs to be started as a root user. It is
pointless to build hand-made chroots to start the process there, these ones are
painful to build, are never properly maintained and always contain way more
bugs than the main file-system. And in case of compromise, the intruder can use
the purposely built file-system. Unfortunately many administrators confuse
"start as root" and "run as root", resulting in the uid change to be done prior
to starting haproxy, and reducing the effective security restrictions.
HAProxy will need to be started as root in order to :
- adjust the file descriptor limits
- bind to privileged port numbers
- bind to a specific network interface
- transparently listen to a foreign address
- isolate itself inside the chroot jail
- drop to another non-privileged UID
HAProxy may require to be run as root in order to :
- bind to an interface for outgoing connections
- bind to privileged source ports for outgoing connections
- transparently bind to a foreign address for outgoing connections
Most users will never need the "run as root" case. But the "start as root"
covers most usages.
A safe configuration will have :
- a chroot statement pointing to an empty location without any access
permissions. This can be prepared this way on the UNIX command line :
# mkdir /var/empty && chmod 0 /var/empty || echo "Failed"
and referenced like this in the HAProxy configuration's global section :
chroot /var/empty
- both a uid/user and gid/group statements in the global section :
user haproxy
group haproxy
- a stats socket whose mode, uid and gid are set to match the user and/or
group allowed to access the CLI so that nobody may access it :
stats socket /var/run/haproxy.stat uid hatop gid hatop mode 600