1
0
mirror of https://gitlab.com/libvirt/libvirt.git synced 2024-12-23 21:34:54 +03:00
libvirt/tests/virstoragetest.c

724 lines
25 KiB
C
Raw Normal View History

/*
* Copyright (C) 2013-2014 Red Hat, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library. If not, see
* <http://www.gnu.org/licenses/>.
*
* Author: Eric Blake <eblake@redhat.com>
*/
#include <config.h>
#include <stdlib.h>
#include "testutils.h"
#include "vircommand.h"
#include "virerror.h"
#include "virfile.h"
#include "virlog.h"
#include "virstoragefile.h"
#include "virstring.h"
#define VIR_FROM_THIS VIR_FROM_NONE
VIR_LOG_INIT("tests.storagetest");
#define datadir abs_builddir "/virstoragedata"
/* This test creates the following files, all in datadir:
* raw: 1024-byte raw file
* qcow2: qcow2 file with 'raw' as backing
* wrap: qcow2 file with 'qcow2' as backing
* qed: qed file with 'raw' as backing
* sub/link1: symlink to qcow2
* sub/link2: symlink to wrap
*
* Relative names to these files are known at compile time, but absolute
* and canonical names depend on where the test is run; for convenience,
* we pre-populate the computation of these names for use during the test.
*/
static char *qemuimg;
static char *absraw;
static char *canonraw;
static char *absqcow2;
static char *canonqcow2;
static char *abswrap;
static char *absqed;
static char *absdir;
static char *abslink2;
static void
testCleanupImages(void)
{
VIR_FREE(qemuimg);
VIR_FREE(absraw);
VIR_FREE(canonraw);
VIR_FREE(absqcow2);
VIR_FREE(canonqcow2);
VIR_FREE(abswrap);
VIR_FREE(absqed);
VIR_FREE(absdir);
VIR_FREE(abslink2);
if (chdir(abs_builddir) < 0) {
fprintf(stderr, "unable to return to correct directory, refusing to "
"clean up %s\n", datadir);
return;
}
virFileDeleteTree(datadir);
}
static int
testPrepImages(void)
{
int ret = EXIT_FAILURE;
virCommandPtr cmd = NULL;
char *buf = NULL;
bool compat = false;
qemuimg = virFindFileInPath("kvm-img");
if (!qemuimg)
qemuimg = virFindFileInPath("qemu-img");
if (!qemuimg)
goto skip;
/* See if qemu-img supports '-o compat=xxx'. If so, we force the
* use of both v2 and v3 files; if not, it is v2 only but the test
* still works. */
cmd = virCommandNewArgList(qemuimg, "create", "-f", "qcow2",
"-o?", "/dev/null", NULL);
virCommandSetOutputBuffer(cmd, &buf);
if (virCommandRun(cmd, NULL) < 0)
goto skip;
if (strstr(buf, "compat "))
compat = true;
VIR_FREE(buf);
if (virAsprintf(&absraw, "%s/raw", datadir) < 0 ||
virAsprintf(&absqcow2, "%s/qcow2", datadir) < 0 ||
virAsprintf(&abswrap, "%s/wrap", datadir) < 0 ||
virAsprintf(&absqed, "%s/qed", datadir) < 0 ||
virAsprintf(&absdir, "%s/dir", datadir) < 0 ||
virAsprintf(&abslink2, "%s/sub/link2", datadir) < 0)
goto cleanup;
if (virFileMakePath(datadir "/sub") < 0) {
fprintf(stderr, "unable to create directory %s\n", datadir "/sub");
goto cleanup;
}
if (virFileMakePath(datadir "/dir") < 0) {
fprintf(stderr, "unable to create directory %s\n", datadir "/dir");
goto cleanup;
}
if (chdir(datadir) < 0) {
fprintf(stderr, "unable to test relative backing chains\n");
goto cleanup;
}
if (virAsprintf(&buf, "%1024d", 0) < 0 ||
virFileWriteStr("raw", buf, 0600) < 0) {
fprintf(stderr, "unable to create raw file\n");
goto cleanup;
}
if (!(canonraw = canonicalize_file_name(absraw))) {
virReportOOMError();
goto cleanup;
}
/* Create a qcow2 wrapping relative raw; later on, we modify its
* metadata to test other configurations */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "create", "-f", "qcow2", NULL);
virCommandAddArgFormat(cmd, "-obacking_file=raw,backing_fmt=raw%s",
compat ? ",compat=0.10" : "");
virCommandAddArg(cmd, "qcow2");
if (virCommandRun(cmd, NULL) < 0)
goto skip;
/* Make sure our later uses of 'qemu-img rebase' will work */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-F", "raw", "-b", "raw", "qcow2", NULL);
if (virCommandRun(cmd, NULL) < 0)
goto skip;
if (!(canonqcow2 = canonicalize_file_name(absqcow2))) {
virReportOOMError();
goto cleanup;
}
/* Create a second qcow2 wrapping the first, to be sure that we
* can correctly avoid insecure probing. */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "create", "-f", "qcow2", NULL);
virCommandAddArgFormat(cmd, "-obacking_file=%s,backing_fmt=qcow2%s",
absqcow2, compat ? ",compat=1.1" : "");
virCommandAddArg(cmd, "wrap");
if (virCommandRun(cmd, NULL) < 0)
goto skip;
/* Create a qed file. */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "create", "-f", "qed", NULL);
virCommandAddArgFormat(cmd, "-obacking_file=%s,backing_fmt=raw",
absraw);
virCommandAddArg(cmd, "qed");
if (virCommandRun(cmd, NULL) < 0)
goto skip;
#ifdef HAVE_SYMLINK
/* Create some symlinks in a sub-directory. */
if (symlink("../qcow2", datadir "/sub/link1") < 0 ||
symlink("../wrap", datadir "/sub/link2") < 0) {
fprintf(stderr, "unable to create symlink");
goto cleanup;
}
#endif
ret = 0;
cleanup:
VIR_FREE(buf);
virCommandFree(cmd);
if (ret)
testCleanupImages();
return ret;
skip:
fputs("qemu-img is too old; skipping this test\n", stderr);
ret = EXIT_AM_SKIP;
goto cleanup;
}
typedef struct _testFileData testFileData;
struct _testFileData
{
const char *expBackingStore;
const char *expBackingStoreRaw;
const char *expDirectory;
enum virStorageFileFormat expFormat;
bool expIsFile;
unsigned long long expCapacity;
bool expEncrypted;
};
enum {
EXP_PASS = 0,
EXP_FAIL = 1,
EXP_WARN = 2,
ALLOW_PROBE = 4,
};
struct testChainData
{
const char *start;
enum virStorageFileFormat format;
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
const testFileData *files[5];
int nfiles;
unsigned int flags;
};
static int
testStorageChain(const void *args)
{
const struct testChainData *data = args;
int ret = -1;
virStorageFileMetadataPtr meta;
virStorageFileMetadataPtr elt;
size_t i = 0;
char *broken = NULL;
meta = virStorageFileGetMetadata(data->start, data->format, -1, -1,
(data->flags & ALLOW_PROBE) != 0);
if (!meta) {
if (data->flags & EXP_FAIL) {
virResetLastError();
ret = 0;
}
goto cleanup;
} else if (data->flags & EXP_FAIL) {
fprintf(stderr, "call should have failed\n");
goto cleanup;
}
if (data->flags & EXP_WARN) {
if (!virGetLastError()) {
fprintf(stderr, "call should have warned\n");
goto cleanup;
}
virResetLastError();
if (virStorageFileChainGetBroken(meta, &broken) || !broken) {
fprintf(stderr, "call should identify broken part of chain\n");
goto cleanup;
}
} else {
if (virGetLastError()) {
fprintf(stderr, "call should not have warned\n");
goto cleanup;
}
if (virStorageFileChainGetBroken(meta, &broken) || broken) {
fprintf(stderr, "chain should not be identified as broken\n");
goto cleanup;
}
}
elt = meta;
while (elt) {
char *expect = NULL;
char *actual = NULL;
if (i == data->nfiles) {
fprintf(stderr, "probed chain was too long\n");
goto cleanup;
}
if (virAsprintf(&expect,
"store:%s\nraw:%s\ndirectory:%s\nother:%d %d %lld %d",
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
NULLSTR(data->files[i]->expBackingStore),
NULLSTR(data->files[i]->expBackingStoreRaw),
NULLSTR(data->files[i]->expDirectory),
data->files[i]->expFormat,
data->files[i]->expIsFile,
data->files[i]->expCapacity,
data->files[i]->expEncrypted) < 0 ||
virAsprintf(&actual,
"store:%s\nraw:%s\ndirectory:%s\nother:%d %d %lld %d",
NULLSTR(elt->backingStore),
NULLSTR(elt->backingStoreRaw),
NULLSTR(elt->directory),
elt->backingStoreFormat, elt->backingStoreIsFile,
elt->capacity, !!elt->encryption) < 0) {
VIR_FREE(expect);
VIR_FREE(actual);
goto cleanup;
}
if (STRNEQ(expect, actual)) {
virtTestDifference(stderr, expect, actual);
VIR_FREE(expect);
VIR_FREE(actual);
goto cleanup;
}
VIR_FREE(expect);
VIR_FREE(actual);
elt = elt->backingMeta;
i++;
}
if (i != data->nfiles) {
fprintf(stderr, "probed chain was too short\n");
goto cleanup;
}
ret = 0;
cleanup:
VIR_FREE(broken);
virStorageFileFreeMetadata(meta);
return ret;
}
static int
mymain(void)
{
int ret;
virCommandPtr cmd = NULL;
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
struct testChainData data;
/* Prep some files with qemu-img; if that is not found on PATH, or
* if it lacks support for qcow2 and qed, skip this test. */
if ((ret = testPrepImages()) != 0)
return ret;
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
#define TEST_ONE_CHAIN(id, start, format, flags, ...) \
do { \
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
size_t i; \
memset(&data, 0, sizeof(data)); \
data = (struct testChainData){ \
start, format, { __VA_ARGS__ }, 0, flags, \
}; \
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
for (i = 0; i < ARRAY_CARDINALITY(data.files); i++) \
if (data.files[i]) \
data.nfiles++; \
if (virtTestRun("Storage backing chain " id, \
testStorageChain, &data) < 0) \
ret = -1; \
} while (0)
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
#define VIR_FLATTEN_2(...) __VA_ARGS__
#define VIR_FLATTEN_1(_1) VIR_FLATTEN_2 _1
#define TEST_CHAIN(id, relstart, absstart, format, chain1, flags1, \
chain2, flags2, chain3, flags3, chain4, flags4) \
do { \
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
TEST_ONE_CHAIN(#id "a", relstart, format, flags1, \
VIR_FLATTEN_1(chain1)); \
TEST_ONE_CHAIN(#id "b", relstart, format, flags2, \
VIR_FLATTEN_1(chain2)); \
TEST_ONE_CHAIN(#id "c", absstart, format, flags3, \
VIR_FLATTEN_1(chain3)); \
TEST_ONE_CHAIN(#id "d", absstart, format, flags4, \
VIR_FLATTEN_1(chain4)); \
} while (0)
/* Expected details about files in chains */
const testFileData raw = {
.expFormat = VIR_STORAGE_FILE_NONE,
};
const testFileData qcow2_relback_relstart = {
.expBackingStore = canonraw,
.expBackingStoreRaw = "raw",
.expDirectory = ".",
.expFormat = VIR_STORAGE_FILE_RAW,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData qcow2_relback_absstart = {
.expBackingStore = canonraw,
.expBackingStoreRaw = "raw",
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_RAW,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData qcow2_absback = {
.expBackingStore = canonraw,
.expBackingStoreRaw = absraw,
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_RAW,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData qcow2_as_probe = {
.expBackingStore = canonraw,
.expBackingStoreRaw = absraw,
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_AUTO,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData qcow2_bogus = {
.expBackingStoreRaw = datadir "/bogus",
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_NONE,
.expCapacity = 1024,
};
const testFileData qcow2_protocol = {
.expBackingStore = "nbd:example.org:6000",
.expFormat = VIR_STORAGE_FILE_RAW,
.expCapacity = 1024,
};
const testFileData wrap = {
.expBackingStore = canonqcow2,
.expBackingStoreRaw = absqcow2,
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_QCOW2,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData wrap_as_raw = {
.expBackingStore = canonqcow2,
.expBackingStoreRaw = absqcow2,
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_RAW,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData wrap_as_probe = {
.expBackingStore = canonqcow2,
.expBackingStoreRaw = absqcow2,
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_AUTO,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData qed = {
.expBackingStore = canonraw,
.expBackingStoreRaw = absraw,
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_RAW,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData dir = {
.expIsFile = false,
};
const testFileData qcow2_loop1_rel = {
.expBackingStoreRaw = "qcow2",
.expDirectory = ".",
.expFormat = VIR_STORAGE_FILE_NONE,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData qcow2_loop1_abs = {
.expBackingStoreRaw = "qcow2",
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_NONE,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData qcow2_loop2_rel = {
.expBackingStoreRaw = "wrap",
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_NONE,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData qcow2_loop2_abs = {
.expBackingStoreRaw = "wrap",
.expDirectory = datadir,
.expFormat = VIR_STORAGE_FILE_NONE,
.expIsFile = true,
.expCapacity = 1024,
};
#if HAVE_SYMLINK
const testFileData link1_rel = {
.expBackingStore = canonraw,
.expBackingStoreRaw = "../raw",
.expDirectory = "sub/../sub/..",
.expFormat = VIR_STORAGE_FILE_RAW,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData link1_abs = {
.expBackingStore = canonraw,
.expBackingStoreRaw = "../raw",
.expDirectory = datadir "/sub/../sub/..",
.expFormat = VIR_STORAGE_FILE_RAW,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData link2_rel = {
.expBackingStore = canonqcow2,
.expBackingStoreRaw = "../sub/link1",
.expDirectory = "sub/../sub",
.expFormat = VIR_STORAGE_FILE_QCOW2,
.expIsFile = true,
.expCapacity = 1024,
};
const testFileData link2_abs = {
.expBackingStore = canonqcow2,
.expBackingStoreRaw = "../sub/link1",
.expDirectory = datadir "/sub/../sub",
.expFormat = VIR_STORAGE_FILE_QCOW2,
.expIsFile = true,
.expCapacity = 1024,
};
#endif
/* The actual tests, in several groups. */
/* Missing file */
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
TEST_ONE_CHAIN("0", "bogus", VIR_STORAGE_FILE_RAW, EXP_FAIL);
/* Raw image, whether with right format or no specified format */
TEST_CHAIN(1, "raw", absraw, VIR_STORAGE_FILE_RAW,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&raw), EXP_PASS,
(&raw), ALLOW_PROBE | EXP_PASS,
(&raw), EXP_PASS,
(&raw), ALLOW_PROBE | EXP_PASS);
TEST_CHAIN(2, "raw", absraw, VIR_STORAGE_FILE_AUTO,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&raw), EXP_PASS,
(&raw), ALLOW_PROBE | EXP_PASS,
(&raw), EXP_PASS,
(&raw), ALLOW_PROBE | EXP_PASS);
/* Qcow2 file with relative raw backing, format provided */
TEST_CHAIN(3, "qcow2", absqcow2, VIR_STORAGE_FILE_QCOW2,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&qcow2_relback_relstart, &raw), EXP_PASS,
(&qcow2_relback_relstart, &raw), ALLOW_PROBE | EXP_PASS,
(&qcow2_relback_absstart, &raw), EXP_PASS,
(&qcow2_relback_absstart, &raw), ALLOW_PROBE | EXP_PASS);
TEST_CHAIN(4, "qcow2", absqcow2, VIR_STORAGE_FILE_AUTO,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&raw), EXP_PASS,
(&qcow2_relback_relstart, &raw), ALLOW_PROBE | EXP_PASS,
(&raw), EXP_PASS,
(&qcow2_relback_absstart, &raw), ALLOW_PROBE | EXP_PASS);
/* Rewrite qcow2 file to use absolute backing name */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-F", "raw", "-b", absraw, "qcow2", NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
/* Qcow2 file with raw as absolute backing, backing format provided */
TEST_CHAIN(5, "qcow2", absqcow2, VIR_STORAGE_FILE_QCOW2,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&qcow2_absback, &raw), EXP_PASS,
(&qcow2_absback, &raw), ALLOW_PROBE | EXP_PASS,
(&qcow2_absback, &raw), EXP_PASS,
(&qcow2_absback, &raw), ALLOW_PROBE | EXP_PASS);
TEST_CHAIN(6, "qcow2", absqcow2, VIR_STORAGE_FILE_AUTO,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&raw), EXP_PASS,
(&qcow2_absback, &raw), ALLOW_PROBE | EXP_PASS,
(&raw), EXP_PASS,
(&qcow2_absback, &raw), ALLOW_PROBE | EXP_PASS);
/* Wrapped file access */
TEST_CHAIN(7, "wrap", abswrap, VIR_STORAGE_FILE_QCOW2,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&wrap, &qcow2_absback, &raw), EXP_PASS,
(&wrap, &qcow2_absback, &raw), ALLOW_PROBE | EXP_PASS,
(&wrap, &qcow2_absback, &raw), EXP_PASS,
(&wrap, &qcow2_absback, &raw), ALLOW_PROBE | EXP_PASS);
/* Rewrite qcow2 and wrap file to omit backing file type */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-b", absraw, "qcow2", NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-b", absqcow2, "wrap", NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
/* Qcow2 file with raw as absolute backing, backing format omitted */
TEST_CHAIN(8, "wrap", abswrap, VIR_STORAGE_FILE_QCOW2,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&wrap_as_raw, &raw), EXP_PASS,
(&wrap_as_probe, &qcow2_as_probe, &raw), ALLOW_PROBE | EXP_PASS,
(&wrap_as_raw, &raw), EXP_PASS,
(&wrap_as_probe, &qcow2_as_probe, &raw), ALLOW_PROBE | EXP_PASS);
/* Rewrite qcow2 to a missing backing file, with backing type */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-F", "qcow2", "-b", datadir "/bogus",
"qcow2", NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
/* Qcow2 file with missing backing file but specified type */
TEST_CHAIN(9, "qcow2", absqcow2, VIR_STORAGE_FILE_QCOW2,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&qcow2_bogus), EXP_WARN,
(&qcow2_bogus), ALLOW_PROBE | EXP_WARN,
(&qcow2_bogus), EXP_WARN,
(&qcow2_bogus), ALLOW_PROBE | EXP_WARN);
/* Rewrite qcow2 to a missing backing file, without backing type */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-b", datadir "/bogus", "qcow2", NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
/* Qcow2 file with missing backing file and no specified type */
TEST_CHAIN(10, "qcow2", absqcow2, VIR_STORAGE_FILE_QCOW2,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&qcow2_bogus), EXP_WARN,
(&qcow2_bogus), ALLOW_PROBE | EXP_WARN,
(&qcow2_bogus), EXP_WARN,
(&qcow2_bogus), ALLOW_PROBE | EXP_WARN);
/* Rewrite qcow2 to use an nbd: protocol as backend */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-F", "raw", "-b", "nbd:example.org:6000",
"qcow2", NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
/* Qcow2 file with backing protocol instead of file */
TEST_CHAIN(11, "qcow2", absqcow2, VIR_STORAGE_FILE_QCOW2,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&qcow2_protocol), EXP_PASS,
(&qcow2_protocol), ALLOW_PROBE | EXP_PASS,
(&qcow2_protocol), EXP_PASS,
(&qcow2_protocol), ALLOW_PROBE | EXP_PASS);
/* qed file */
TEST_CHAIN(12, "qed", absqed, VIR_STORAGE_FILE_AUTO,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&raw), EXP_PASS,
(&qed, &raw), ALLOW_PROBE | EXP_PASS,
(&raw), EXP_PASS,
(&qed, &raw), ALLOW_PROBE | EXP_PASS);
/* directory */
TEST_CHAIN(13, "dir", absdir, VIR_STORAGE_FILE_AUTO,
(&dir), EXP_PASS,
(&dir), ALLOW_PROBE | EXP_PASS,
(&dir), EXP_PASS,
(&dir), ALLOW_PROBE | EXP_PASS);
TEST_CHAIN(14, "dir", absdir, VIR_STORAGE_FILE_DIR,
(&dir), EXP_PASS,
(&dir), ALLOW_PROBE | EXP_PASS,
(&dir), EXP_PASS,
(&dir), ALLOW_PROBE | EXP_PASS);
#ifdef HAVE_SYMLINK
/* Rewrite qcow2 and wrap file to use backing names relative to a
* symlink from a different directory */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-F", "raw", "-b", "../raw", "qcow2", NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-F", "qcow2", "-b", "../sub/link1", "wrap",
NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
/* Behavior of symlinks to qcow2 with relative backing files */
TEST_CHAIN(15, "sub/link2", abslink2, VIR_STORAGE_FILE_QCOW2,
tests: refactor virstoragetest for less stack space I'm about to add fields to virStorageFileMetadata, which means also adding fields to the testFileData struct in virstoragetest. Alas, adding even one pointer on an x86_64 machine gave me a dreaded compiler error: virstoragetest.c:712:1: error: the frame size of 4208 bytes is larger than 4096 bytes [-Werror=frame-larger-than=] After some experimentation, I realized that each test was creating yet another testChainData (which contains testFileData) on the stack; forcing the reuse of one of these structures instead of creating a fresh one each time drastically reduces the size requirements. While at it, I also got rid of a lot of intermediate structs, with some macro magic that lets me directly build up the destination chains inline. For a bit more insight into what this patch does: The old code uses an intermediate variable as a fixed-size array of structs: testFileData chain[] = { a, b }; data.files = chain; In the new code, the use of VIR_FLATTEN_* allows the TEST_CHAIN() macro to still take a single argument for each chain, but now of the form '(a, b)', where it is turned into the var-args 'a, b' multiple arguments understood by TEST_ONE_CHAIN(). Thus, the new code avoids an intermediate variable, and directly provides the list of pointers to be assigned into array elements: data.files = { &a, &b }; * tests/virstoragetest.c (mymain): Rewrite TEST_ONE_CHAIN to reuse the same struct for each test, and to take the data inline rather than via intermediate variables. (testChainData): Use bounded array of pointers instead of unlimited array of struct. (testStorageChain): Reflect struct change. Signed-off-by: Eric Blake <eblake@redhat.com>
2014-04-04 06:26:59 +04:00
(&link2_rel, &link1_rel, &raw), EXP_PASS,
(&link2_rel, &link1_rel, &raw), ALLOW_PROBE | EXP_PASS,
(&link2_abs, &link1_abs, &raw), EXP_PASS,
(&link2_abs, &link1_abs, &raw), ALLOW_PROBE | EXP_PASS);
#endif
/* Rewrite qcow2 to be a self-referential loop */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-F", "qcow2", "-b", "qcow2", "qcow2", NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
/* Behavior of an infinite loop chain */
TEST_CHAIN(16, "qcow2", absqcow2, VIR_STORAGE_FILE_QCOW2,
(&qcow2_loop1_rel), EXP_WARN,
(&qcow2_loop1_rel), ALLOW_PROBE | EXP_WARN,
(&qcow2_loop1_abs), EXP_WARN,
(&qcow2_loop1_abs), ALLOW_PROBE | EXP_WARN);
/* Rewrite wrap and qcow2 to be mutually-referential loop */
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-F", "qcow2", "-b", "wrap", "qcow2", NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
virCommandFree(cmd);
cmd = virCommandNewArgList(qemuimg, "rebase", "-u", "-f", "qcow2",
"-F", "qcow2", "-b", absqcow2, "wrap", NULL);
if (virCommandRun(cmd, NULL) < 0)
ret = -1;
/* Behavior of an infinite loop chain */
TEST_CHAIN(17, "wrap", abswrap, VIR_STORAGE_FILE_QCOW2,
(&wrap, &qcow2_loop2_rel), EXP_WARN,
(&wrap, &qcow2_loop2_rel), ALLOW_PROBE | EXP_WARN,
(&wrap, &qcow2_loop2_abs), EXP_WARN,
(&wrap, &qcow2_loop2_abs), ALLOW_PROBE | EXP_WARN);
/* Final cleanup */
testCleanupImages();
virCommandFree(cmd);
return ret == 0 ? EXIT_SUCCESS : EXIT_FAILURE;
}
VIRT_TEST_MAIN(mymain)