mirror of
https://gitlab.gnome.org/GNOME/libxml2.git
synced 2025-01-07 17:17:39 +03:00
9339b74c09
* vms/build_libxml.com trionan.c: VMS patch from Craig A. Berry Daniel
911 lines
22 KiB
C
911 lines
22 KiB
C
/*************************************************************************
|
|
*
|
|
* $Id$
|
|
*
|
|
* Copyright (C) 2001 Bjorn Reese <breese@users.sourceforge.net>
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
|
|
* WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
|
|
* MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE AUTHORS AND
|
|
* CONTRIBUTORS ACCEPT NO RESPONSIBILITY IN ANY CONCEIVABLE MANNER.
|
|
*
|
|
************************************************************************
|
|
*
|
|
* Functions to handle special quantities in floating-point numbers
|
|
* (that is, NaNs and infinity). They provide the capability to detect
|
|
* and fabricate special quantities.
|
|
*
|
|
* Although written to be as portable as possible, it can never be
|
|
* guaranteed to work on all platforms, as not all hardware supports
|
|
* special quantities.
|
|
*
|
|
* The approach used here (approximately) is to:
|
|
*
|
|
* 1. Use C99 functionality when available.
|
|
* 2. Use IEEE 754 bit-patterns if possible.
|
|
* 3. Use platform-specific techniques.
|
|
*
|
|
************************************************************************/
|
|
|
|
/*
|
|
* TODO:
|
|
* o Put all the magic into trio_fpclassify_and_signbit(), and use this from
|
|
* trio_isnan() etc.
|
|
*/
|
|
|
|
/*************************************************************************
|
|
* Include files
|
|
*/
|
|
#include "triodef.h"
|
|
#include "trionan.h"
|
|
|
|
#include <math.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <float.h>
|
|
#if defined(TRIO_PLATFORM_UNIX)
|
|
# include <signal.h>
|
|
#endif
|
|
#if defined(TRIO_COMPILER_DECC)
|
|
# if defined(__linux__)
|
|
# include <cpml.h>
|
|
# else
|
|
# include <fp_class.h>
|
|
# endif
|
|
#endif
|
|
#include <assert.h>
|
|
|
|
#if defined(TRIO_DOCUMENTATION)
|
|
# include "doc/doc_nan.h"
|
|
#endif
|
|
/** @addtogroup SpecialQuantities
|
|
@{
|
|
*/
|
|
|
|
/*************************************************************************
|
|
* Definitions
|
|
*/
|
|
|
|
#define TRIO_TRUE (1 == 1)
|
|
#define TRIO_FALSE (0 == 1)
|
|
|
|
/*
|
|
* We must enable IEEE floating-point on Alpha
|
|
*/
|
|
#if defined(__alpha) && !defined(_IEEE_FP)
|
|
# if defined(TRIO_COMPILER_DECC)
|
|
# if defined(TRIO_PLATFORM_VMS)
|
|
# error "Must be compiled with option /IEEE_MODE=UNDERFLOW_TO_ZERO/FLOAT=IEEE"
|
|
# else
|
|
# if !defined(_CFE)
|
|
# error "Must be compiled with option -ieee"
|
|
# endif
|
|
# endif
|
|
# elif defined(TRIO_COMPILER_GCC) && (defined(__osf__) || defined(__linux__))
|
|
# error "Must be compiled with option -mieee"
|
|
# endif
|
|
#endif /* __alpha && ! _IEEE_FP */
|
|
|
|
/*
|
|
* In ANSI/IEEE 754-1985 64-bits double format numbers have the
|
|
* following properties (amoungst others)
|
|
*
|
|
* o FLT_RADIX == 2: binary encoding
|
|
* o DBL_MAX_EXP == 1024: 11 bits exponent, where one bit is used
|
|
* to indicate special numbers (e.g. NaN and Infinity), so the
|
|
* maximum exponent is 10 bits wide (2^10 == 1024).
|
|
* o DBL_MANT_DIG == 53: The mantissa is 52 bits wide, but because
|
|
* numbers are normalized the initial binary 1 is represented
|
|
* implicitly (the so-called "hidden bit"), which leaves us with
|
|
* the ability to represent 53 bits wide mantissa.
|
|
*/
|
|
#if (FLT_RADIX == 2) && (DBL_MAX_EXP == 1024) && (DBL_MANT_DIG == 53)
|
|
# define USE_IEEE_754
|
|
#endif
|
|
|
|
|
|
/*************************************************************************
|
|
* Constants
|
|
*/
|
|
|
|
static TRIO_CONST char rcsid[] = "@(#)$Id$";
|
|
|
|
#if defined(USE_IEEE_754)
|
|
|
|
/*
|
|
* Endian-agnostic indexing macro.
|
|
*
|
|
* The value of internalEndianMagic, when converted into a 64-bit
|
|
* integer, becomes 0x0706050403020100 (we could have used a 64-bit
|
|
* integer value instead of a double, but not all platforms supports
|
|
* that type). The value is automatically encoded with the correct
|
|
* endianess by the compiler, which means that we can support any
|
|
* kind of endianess. The individual bytes are then used as an index
|
|
* for the IEEE 754 bit-patterns and masks.
|
|
*/
|
|
#define TRIO_DOUBLE_INDEX(x) (((unsigned char *)&internalEndianMagic)[7-(x)])
|
|
|
|
static TRIO_CONST double internalEndianMagic = 7.949928895127363e-275;
|
|
|
|
/* Mask for the exponent */
|
|
static TRIO_CONST unsigned char ieee_754_exponent_mask[] = {
|
|
0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
/* Mask for the mantissa */
|
|
static TRIO_CONST unsigned char ieee_754_mantissa_mask[] = {
|
|
0x00, 0x0F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
|
|
};
|
|
|
|
/* Mask for the sign bit */
|
|
static TRIO_CONST unsigned char ieee_754_sign_mask[] = {
|
|
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
/* Bit-pattern for negative zero */
|
|
static TRIO_CONST unsigned char ieee_754_negzero_array[] = {
|
|
0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
/* Bit-pattern for infinity */
|
|
static TRIO_CONST unsigned char ieee_754_infinity_array[] = {
|
|
0x7F, 0xF0, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
/* Bit-pattern for quiet NaN */
|
|
static TRIO_CONST unsigned char ieee_754_qnan_array[] = {
|
|
0x7F, 0xF8, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
|
};
|
|
|
|
|
|
/*************************************************************************
|
|
* Functions
|
|
*/
|
|
|
|
/*
|
|
* trio_make_double
|
|
*/
|
|
TRIO_PRIVATE double
|
|
trio_make_double
|
|
TRIO_ARGS1((values),
|
|
TRIO_CONST unsigned char *values)
|
|
{
|
|
TRIO_VOLATILE double result;
|
|
int i;
|
|
|
|
for (i = 0; i < (int)sizeof(double); i++) {
|
|
((TRIO_VOLATILE unsigned char *)&result)[TRIO_DOUBLE_INDEX(i)] = values[i];
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* trio_is_special_quantity
|
|
*/
|
|
TRIO_PRIVATE int
|
|
trio_is_special_quantity
|
|
TRIO_ARGS2((number, has_mantissa),
|
|
double number,
|
|
int *has_mantissa)
|
|
{
|
|
unsigned int i;
|
|
unsigned char current;
|
|
int is_special_quantity = TRIO_TRUE;
|
|
|
|
*has_mantissa = 0;
|
|
|
|
for (i = 0; i < (unsigned int)sizeof(double); i++) {
|
|
current = ((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)];
|
|
is_special_quantity
|
|
&= ((current & ieee_754_exponent_mask[i]) == ieee_754_exponent_mask[i]);
|
|
*has_mantissa |= (current & ieee_754_mantissa_mask[i]);
|
|
}
|
|
return is_special_quantity;
|
|
}
|
|
|
|
/*
|
|
* trio_is_negative
|
|
*/
|
|
TRIO_PRIVATE int
|
|
trio_is_negative
|
|
TRIO_ARGS1((number),
|
|
double number)
|
|
{
|
|
unsigned int i;
|
|
int is_negative = TRIO_FALSE;
|
|
|
|
for (i = 0; i < (unsigned int)sizeof(double); i++) {
|
|
is_negative |= (((unsigned char *)&number)[TRIO_DOUBLE_INDEX(i)]
|
|
& ieee_754_sign_mask[i]);
|
|
}
|
|
return is_negative;
|
|
}
|
|
|
|
#endif /* USE_IEEE_754 */
|
|
|
|
|
|
/**
|
|
Generate negative zero.
|
|
|
|
@return Floating-point representation of negative zero.
|
|
*/
|
|
TRIO_PUBLIC double
|
|
trio_nzero(TRIO_NOARGS)
|
|
{
|
|
#if defined(USE_IEEE_754)
|
|
return trio_make_double(ieee_754_negzero_array);
|
|
#else
|
|
TRIO_VOLATILE double zero = 0.0;
|
|
|
|
return -zero;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
Generate positive infinity.
|
|
|
|
@return Floating-point representation of positive infinity.
|
|
*/
|
|
TRIO_PUBLIC double
|
|
trio_pinf(TRIO_NOARGS)
|
|
{
|
|
/* Cache the result */
|
|
static double result = 0.0;
|
|
|
|
if (result == 0.0) {
|
|
|
|
#if defined(INFINITY) && defined(__STDC_IEC_559__)
|
|
result = (double)INFINITY;
|
|
|
|
#elif defined(USE_IEEE_754)
|
|
result = trio_make_double(ieee_754_infinity_array);
|
|
|
|
#else
|
|
/*
|
|
* If HUGE_VAL is different from DBL_MAX, then HUGE_VAL is used
|
|
* as infinity. Otherwise we have to resort to an overflow
|
|
* operation to generate infinity.
|
|
*/
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
|
|
# endif
|
|
|
|
result = HUGE_VAL;
|
|
if (HUGE_VAL == DBL_MAX) {
|
|
/* Force overflow */
|
|
result += HUGE_VAL;
|
|
}
|
|
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
signal(SIGFPE, signal_handler);
|
|
# endif
|
|
|
|
#endif
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
Generate negative infinity.
|
|
|
|
@return Floating-point value of negative infinity.
|
|
*/
|
|
TRIO_PUBLIC double
|
|
trio_ninf(TRIO_NOARGS)
|
|
{
|
|
static double result = 0.0;
|
|
|
|
if (result == 0.0) {
|
|
/*
|
|
* Negative infinity is calculated by negating positive infinity,
|
|
* which can be done because it is legal to do calculations on
|
|
* infinity (for example, 1 / infinity == 0).
|
|
*/
|
|
result = -trio_pinf();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
Generate NaN.
|
|
|
|
@return Floating-point representation of NaN.
|
|
*/
|
|
TRIO_PUBLIC double
|
|
trio_nan(TRIO_NOARGS)
|
|
{
|
|
/* Cache the result */
|
|
static double result = 0.0;
|
|
|
|
if (result == 0.0) {
|
|
|
|
#if defined(TRIO_COMPILER_SUPPORTS_C99)
|
|
result = nan("");
|
|
|
|
#elif defined(NAN) && defined(__STDC_IEC_559__)
|
|
result = (double)NAN;
|
|
|
|
#elif defined(USE_IEEE_754)
|
|
result = trio_make_double(ieee_754_qnan_array);
|
|
|
|
#else
|
|
/*
|
|
* There are several ways to generate NaN. The one used here is
|
|
* to divide infinity by infinity. I would have preferred to add
|
|
* negative infinity to positive infinity, but that yields wrong
|
|
* result (infinity) on FreeBSD.
|
|
*
|
|
* This may fail if the hardware does not support NaN, or if
|
|
* the Invalid Operation floating-point exception is unmasked.
|
|
*/
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
|
|
# endif
|
|
|
|
result = trio_pinf() / trio_pinf();
|
|
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
signal(SIGFPE, signal_handler);
|
|
# endif
|
|
|
|
#endif
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
Check for NaN.
|
|
|
|
@param number An arbitrary floating-point number.
|
|
@return Boolean value indicating whether or not the number is a NaN.
|
|
*/
|
|
TRIO_PUBLIC int
|
|
trio_isnan
|
|
TRIO_ARGS1((number),
|
|
double number)
|
|
{
|
|
#if (defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isnan)) \
|
|
|| defined(TRIO_COMPILER_SUPPORTS_UNIX95)
|
|
/*
|
|
* C99 defines isnan() as a macro. UNIX95 defines isnan() as a
|
|
* function. This function was already present in XPG4, but this
|
|
* is a bit tricky to detect with compiler defines, so we choose
|
|
* the conservative approach and only use it for UNIX95.
|
|
*/
|
|
return isnan(number);
|
|
|
|
#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
|
|
/*
|
|
* Microsoft Visual C++ and Borland C++ Builder have an _isnan()
|
|
* function.
|
|
*/
|
|
return _isnan(number) ? TRIO_TRUE : TRIO_FALSE;
|
|
|
|
#elif defined(USE_IEEE_754)
|
|
/*
|
|
* Examine IEEE 754 bit-pattern. A NaN must have a special exponent
|
|
* pattern, and a non-empty mantissa.
|
|
*/
|
|
int has_mantissa;
|
|
int is_special_quantity;
|
|
|
|
is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
|
|
|
|
return (is_special_quantity && has_mantissa);
|
|
|
|
#else
|
|
/*
|
|
* Fallback solution
|
|
*/
|
|
int status;
|
|
double integral, fraction;
|
|
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
|
|
# endif
|
|
|
|
status = (/*
|
|
* NaN is the only number which does not compare to itself
|
|
*/
|
|
((TRIO_VOLATILE double)number != (TRIO_VOLATILE double)number) ||
|
|
/*
|
|
* Fallback solution if NaN compares to NaN
|
|
*/
|
|
((number != 0.0) &&
|
|
(fraction = modf(number, &integral),
|
|
integral == fraction)));
|
|
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
signal(SIGFPE, signal_handler);
|
|
# endif
|
|
|
|
return status;
|
|
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
Check for infinity.
|
|
|
|
@param number An arbitrary floating-point number.
|
|
@return 1 if positive infinity, -1 if negative infinity, 0 otherwise.
|
|
*/
|
|
TRIO_PUBLIC int
|
|
trio_isinf
|
|
TRIO_ARGS1((number),
|
|
double number)
|
|
{
|
|
#if defined(TRIO_COMPILER_DECC) && !defined(__linux__)
|
|
/*
|
|
* DECC has an isinf() macro, but it works differently than that
|
|
* of C99, so we use the fp_class() function instead.
|
|
*/
|
|
return ((fp_class(number) == FP_POS_INF)
|
|
? 1
|
|
: ((fp_class(number) == FP_NEG_INF) ? -1 : 0));
|
|
|
|
#elif defined(isinf)
|
|
/*
|
|
* C99 defines isinf() as a macro.
|
|
*/
|
|
return isinf(number)
|
|
? ((number > 0.0) ? 1 : -1)
|
|
: 0;
|
|
|
|
#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
|
|
/*
|
|
* Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
|
|
* function that can be used to detect infinity.
|
|
*/
|
|
return ((_fpclass(number) == _FPCLASS_PINF)
|
|
? 1
|
|
: ((_fpclass(number) == _FPCLASS_NINF) ? -1 : 0));
|
|
|
|
#elif defined(USE_IEEE_754)
|
|
/*
|
|
* Examine IEEE 754 bit-pattern. Infinity must have a special exponent
|
|
* pattern, and an empty mantissa.
|
|
*/
|
|
int has_mantissa;
|
|
int is_special_quantity;
|
|
|
|
is_special_quantity = trio_is_special_quantity(number, &has_mantissa);
|
|
|
|
return (is_special_quantity && !has_mantissa)
|
|
? ((number < 0.0) ? -1 : 1)
|
|
: 0;
|
|
|
|
#else
|
|
/*
|
|
* Fallback solution.
|
|
*/
|
|
int status;
|
|
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
void (*signal_handler)(int) = signal(SIGFPE, SIG_IGN);
|
|
# endif
|
|
|
|
double infinity = trio_pinf();
|
|
|
|
status = ((number == infinity)
|
|
? 1
|
|
: ((number == -infinity) ? -1 : 0));
|
|
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
signal(SIGFPE, signal_handler);
|
|
# endif
|
|
|
|
return status;
|
|
|
|
#endif
|
|
}
|
|
|
|
#if 0
|
|
/* Temporary fix - this routine is not used anywhere */
|
|
/**
|
|
Check for finity.
|
|
|
|
@param number An arbitrary floating-point number.
|
|
@return Boolean value indicating whether or not the number is a finite.
|
|
*/
|
|
TRIO_PUBLIC int
|
|
trio_isfinite
|
|
TRIO_ARGS1((number),
|
|
double number)
|
|
{
|
|
#if defined(TRIO_COMPILER_SUPPORTS_C99) && defined(isfinite)
|
|
/*
|
|
* C99 defines isfinite() as a macro.
|
|
*/
|
|
return isfinite(number);
|
|
|
|
#elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
|
|
/*
|
|
* Microsoft Visual C++ and Borland C++ Builder use _finite().
|
|
*/
|
|
return _finite(number);
|
|
|
|
#elif defined(USE_IEEE_754)
|
|
/*
|
|
* Examine IEEE 754 bit-pattern. For finity we do not care about the
|
|
* mantissa.
|
|
*/
|
|
int dummy;
|
|
|
|
return (! trio_is_special_quantity(number, &dummy));
|
|
|
|
#else
|
|
/*
|
|
* Fallback solution.
|
|
*/
|
|
return ((trio_isinf(number) == 0) && (trio_isnan(number) == 0));
|
|
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
/*
|
|
* The sign of NaN is always false
|
|
*/
|
|
TRIO_PUBLIC int
|
|
trio_fpclassify_and_signbit
|
|
TRIO_ARGS2((number, is_negative),
|
|
double number,
|
|
int *is_negative)
|
|
{
|
|
#if defined(fpclassify) && defined(signbit)
|
|
/*
|
|
* C99 defines fpclassify() and signbit() as a macros
|
|
*/
|
|
*is_negative = signbit(number);
|
|
switch (fpclassify(number)) {
|
|
case FP_NAN:
|
|
return TRIO_FP_NAN;
|
|
case FP_INFINITE:
|
|
return TRIO_FP_INFINITE;
|
|
case FP_SUBNORMAL:
|
|
return TRIO_FP_SUBNORMAL;
|
|
case FP_ZERO:
|
|
return TRIO_FP_ZERO;
|
|
default:
|
|
return TRIO_FP_NORMAL;
|
|
}
|
|
|
|
#else
|
|
# if defined(TRIO_COMPILER_DECC)
|
|
/*
|
|
* DECC has an fp_class() function.
|
|
*/
|
|
# define TRIO_FPCLASSIFY(n) fp_class(n)
|
|
# define TRIO_QUIET_NAN FP_QNAN
|
|
# define TRIO_SIGNALLING_NAN FP_SNAN
|
|
# define TRIO_POSITIVE_INFINITY FP_POS_INF
|
|
# define TRIO_NEGATIVE_INFINITY FP_NEG_INF
|
|
# define TRIO_POSITIVE_SUBNORMAL FP_POS_DENORM
|
|
# define TRIO_NEGATIVE_SUBNORMAL FP_NEG_DENORM
|
|
# define TRIO_POSITIVE_ZERO FP_POS_ZERO
|
|
# define TRIO_NEGATIVE_ZERO FP_NEG_ZERO
|
|
# define TRIO_POSITIVE_NORMAL FP_POS_NORM
|
|
# define TRIO_NEGATIVE_NORMAL FP_NEG_NORM
|
|
|
|
# elif defined(TRIO_COMPILER_MSVC) || defined(TRIO_COMPILER_BCB)
|
|
/*
|
|
* Microsoft Visual C++ and Borland C++ Builder have an _fpclass()
|
|
* function.
|
|
*/
|
|
# define TRIO_FPCLASSIFY(n) _fpclass(n)
|
|
# define TRIO_QUIET_NAN _FPCLASS_QNAN
|
|
# define TRIO_SIGNALLING_NAN _FPCLASS_SNAN
|
|
# define TRIO_POSITIVE_INFINITY _FPCLASS_PINF
|
|
# define TRIO_NEGATIVE_INFINITY _FPCLASS_NINF
|
|
# define TRIO_POSITIVE_SUBNORMAL _FPCLASS_PD
|
|
# define TRIO_NEGATIVE_SUBNORMAL _FPCLASS_ND
|
|
# define TRIO_POSITIVE_ZERO _FPCLASS_PZ
|
|
# define TRIO_NEGATIVE_ZERO _FPCLASS_NZ
|
|
# define TRIO_POSITIVE_NORMAL _FPCLASS_PN
|
|
# define TRIO_NEGATIVE_NORMAL _FPCLASS_NN
|
|
|
|
# elif defined(FP_PLUS_NORM)
|
|
/*
|
|
* HP-UX 9.x and 10.x have an fpclassify() function, that is different
|
|
* from the C99 fpclassify() macro supported on HP-UX 11.x.
|
|
*
|
|
* AIX has class() for C, and _class() for C++, which returns the
|
|
* same values as the HP-UX fpclassify() function.
|
|
*/
|
|
# if defined(TRIO_PLATFORM_AIX)
|
|
# if defined(__cplusplus)
|
|
# define TRIO_FPCLASSIFY(n) _class(n)
|
|
# else
|
|
# define TRIO_FPCLASSIFY(n) class(n)
|
|
# endif
|
|
# else
|
|
# define TRIO_FPCLASSIFY(n) fpclassify(n)
|
|
# endif
|
|
# define TRIO_QUIET_NAN FP_QNAN
|
|
# define TRIO_SIGNALLING_NAN FP_SNAN
|
|
# define TRIO_POSITIVE_INFINITY FP_PLUS_INF
|
|
# define TRIO_NEGATIVE_INFINITY FP_MINUS_INF
|
|
# define TRIO_POSITIVE_SUBNORMAL FP_PLUS_DENORM
|
|
# define TRIO_NEGATIVE_SUBNORMAL FP_MINUS_DENORM
|
|
# define TRIO_POSITIVE_ZERO FP_PLUS_ZERO
|
|
# define TRIO_NEGATIVE_ZERO FP_MINUS_ZERO
|
|
# define TRIO_POSITIVE_NORMAL FP_PLUS_NORM
|
|
# define TRIO_NEGATIVE_NORMAL FP_MINUS_NORM
|
|
# endif
|
|
|
|
# if defined(TRIO_FPCLASSIFY)
|
|
switch (TRIO_FPCLASSIFY(number)) {
|
|
case TRIO_QUIET_NAN:
|
|
case TRIO_SIGNALLING_NAN:
|
|
*is_negative = TRIO_FALSE; /* NaN has no sign */
|
|
return TRIO_FP_NAN;
|
|
case TRIO_POSITIVE_INFINITY:
|
|
*is_negative = TRIO_FALSE;
|
|
return TRIO_FP_INFINITE;
|
|
case TRIO_NEGATIVE_INFINITY:
|
|
*is_negative = TRIO_TRUE;
|
|
return TRIO_FP_INFINITE;
|
|
case TRIO_POSITIVE_SUBNORMAL:
|
|
*is_negative = TRIO_FALSE;
|
|
return TRIO_FP_SUBNORMAL;
|
|
case TRIO_NEGATIVE_SUBNORMAL:
|
|
*is_negative = TRIO_TRUE;
|
|
return TRIO_FP_SUBNORMAL;
|
|
case TRIO_POSITIVE_ZERO:
|
|
*is_negative = TRIO_FALSE;
|
|
return TRIO_FP_ZERO;
|
|
case TRIO_NEGATIVE_ZERO:
|
|
*is_negative = TRIO_TRUE;
|
|
return TRIO_FP_ZERO;
|
|
case TRIO_POSITIVE_NORMAL:
|
|
*is_negative = TRIO_FALSE;
|
|
return TRIO_FP_NORMAL;
|
|
case TRIO_NEGATIVE_NORMAL:
|
|
*is_negative = TRIO_TRUE;
|
|
return TRIO_FP_NORMAL;
|
|
default:
|
|
/* Just in case... */
|
|
*is_negative = (number < 0.0);
|
|
return TRIO_FP_NORMAL;
|
|
}
|
|
|
|
# else
|
|
/*
|
|
* Fallback solution.
|
|
*/
|
|
int rc;
|
|
|
|
if (number == 0.0) {
|
|
/*
|
|
* In IEEE 754 the sign of zero is ignored in comparisons, so we
|
|
* have to handle this as a special case by examining the sign bit
|
|
* directly.
|
|
*/
|
|
# if defined(USE_IEEE_754)
|
|
*is_negative = trio_is_negative(number);
|
|
# else
|
|
*is_negative = TRIO_FALSE; /* FIXME */
|
|
# endif
|
|
return TRIO_FP_ZERO;
|
|
}
|
|
if (trio_isnan(number)) {
|
|
*is_negative = TRIO_FALSE;
|
|
return TRIO_FP_NAN;
|
|
}
|
|
if ((rc = trio_isinf(number))) {
|
|
*is_negative = (rc == -1);
|
|
return TRIO_FP_INFINITE;
|
|
}
|
|
if ((number > 0.0) && (number < DBL_MIN)) {
|
|
*is_negative = TRIO_FALSE;
|
|
return TRIO_FP_SUBNORMAL;
|
|
}
|
|
if ((number < 0.0) && (number > -DBL_MIN)) {
|
|
*is_negative = TRIO_TRUE;
|
|
return TRIO_FP_SUBNORMAL;
|
|
}
|
|
*is_negative = (number < 0.0);
|
|
return TRIO_FP_NORMAL;
|
|
|
|
# endif
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
Examine the sign of a number.
|
|
|
|
@param number An arbitrary floating-point number.
|
|
@return Boolean value indicating whether or not the number has the
|
|
sign bit set (i.e. is negative).
|
|
*/
|
|
TRIO_PUBLIC int
|
|
trio_signbit
|
|
TRIO_ARGS1((number),
|
|
double number)
|
|
{
|
|
int is_negative;
|
|
|
|
(void)trio_fpclassify_and_signbit(number, &is_negative);
|
|
return is_negative;
|
|
}
|
|
|
|
#if 0
|
|
/* Temporary fix - this routine is not used in libxml */
|
|
/**
|
|
Examine the class of a number.
|
|
|
|
@param number An arbitrary floating-point number.
|
|
@return Enumerable value indicating the class of @p number
|
|
*/
|
|
TRIO_PUBLIC int
|
|
trio_fpclassify
|
|
TRIO_ARGS1((number),
|
|
double number)
|
|
{
|
|
int dummy;
|
|
|
|
return trio_fpclassify_and_signbit(number, &dummy);
|
|
}
|
|
|
|
#endif
|
|
|
|
/** @} SpecialQuantities */
|
|
|
|
/*************************************************************************
|
|
* For test purposes.
|
|
*
|
|
* Add the following compiler option to include this test code.
|
|
*
|
|
* Unix : -DSTANDALONE
|
|
* VMS : /DEFINE=(STANDALONE)
|
|
*/
|
|
#if defined(STANDALONE)
|
|
# include <stdio.h>
|
|
|
|
static TRIO_CONST char *
|
|
getClassification
|
|
TRIO_ARGS1((type),
|
|
int type)
|
|
{
|
|
switch (type) {
|
|
case TRIO_FP_INFINITE:
|
|
return "FP_INFINITE";
|
|
case TRIO_FP_NAN:
|
|
return "FP_NAN";
|
|
case TRIO_FP_NORMAL:
|
|
return "FP_NORMAL";
|
|
case TRIO_FP_SUBNORMAL:
|
|
return "FP_SUBNORMAL";
|
|
case TRIO_FP_ZERO:
|
|
return "FP_ZERO";
|
|
default:
|
|
return "FP_UNKNOWN";
|
|
}
|
|
}
|
|
|
|
static void
|
|
print_class
|
|
TRIO_ARGS2((prefix, number),
|
|
TRIO_CONST char *prefix,
|
|
double number)
|
|
{
|
|
printf("%-6s: %s %-15s %g\n",
|
|
prefix,
|
|
trio_signbit(number) ? "-" : "+",
|
|
getClassification(TRIO_FPCLASSIFY(number)),
|
|
number);
|
|
}
|
|
|
|
int main(TRIO_NOARGS)
|
|
{
|
|
double my_nan;
|
|
double my_pinf;
|
|
double my_ninf;
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
void (*signal_handler) TRIO_PROTO((int));
|
|
# endif
|
|
|
|
my_nan = trio_nan();
|
|
my_pinf = trio_pinf();
|
|
my_ninf = trio_ninf();
|
|
|
|
print_class("Nan", my_nan);
|
|
print_class("PInf", my_pinf);
|
|
print_class("NInf", my_ninf);
|
|
print_class("PZero", 0.0);
|
|
print_class("NZero", -0.0);
|
|
print_class("PNorm", 1.0);
|
|
print_class("NNorm", -1.0);
|
|
print_class("PSub", 1.01e-307 - 1.00e-307);
|
|
print_class("NSub", 1.00e-307 - 1.01e-307);
|
|
|
|
printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
|
|
my_nan,
|
|
((unsigned char *)&my_nan)[0],
|
|
((unsigned char *)&my_nan)[1],
|
|
((unsigned char *)&my_nan)[2],
|
|
((unsigned char *)&my_nan)[3],
|
|
((unsigned char *)&my_nan)[4],
|
|
((unsigned char *)&my_nan)[5],
|
|
((unsigned char *)&my_nan)[6],
|
|
((unsigned char *)&my_nan)[7],
|
|
trio_isnan(my_nan), trio_isinf(my_nan));
|
|
printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
|
|
my_pinf,
|
|
((unsigned char *)&my_pinf)[0],
|
|
((unsigned char *)&my_pinf)[1],
|
|
((unsigned char *)&my_pinf)[2],
|
|
((unsigned char *)&my_pinf)[3],
|
|
((unsigned char *)&my_pinf)[4],
|
|
((unsigned char *)&my_pinf)[5],
|
|
((unsigned char *)&my_pinf)[6],
|
|
((unsigned char *)&my_pinf)[7],
|
|
trio_isnan(my_pinf), trio_isinf(my_pinf));
|
|
printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
|
|
my_ninf,
|
|
((unsigned char *)&my_ninf)[0],
|
|
((unsigned char *)&my_ninf)[1],
|
|
((unsigned char *)&my_ninf)[2],
|
|
((unsigned char *)&my_ninf)[3],
|
|
((unsigned char *)&my_ninf)[4],
|
|
((unsigned char *)&my_ninf)[5],
|
|
((unsigned char *)&my_ninf)[6],
|
|
((unsigned char *)&my_ninf)[7],
|
|
trio_isnan(my_ninf), trio_isinf(my_ninf));
|
|
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
signal_handler = signal(SIGFPE, SIG_IGN);
|
|
# endif
|
|
|
|
my_pinf = DBL_MAX + DBL_MAX;
|
|
my_ninf = -my_pinf;
|
|
my_nan = my_pinf / my_pinf;
|
|
|
|
# if defined(TRIO_PLATFORM_UNIX)
|
|
signal(SIGFPE, signal_handler);
|
|
# endif
|
|
|
|
printf("NaN : %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
|
|
my_nan,
|
|
((unsigned char *)&my_nan)[0],
|
|
((unsigned char *)&my_nan)[1],
|
|
((unsigned char *)&my_nan)[2],
|
|
((unsigned char *)&my_nan)[3],
|
|
((unsigned char *)&my_nan)[4],
|
|
((unsigned char *)&my_nan)[5],
|
|
((unsigned char *)&my_nan)[6],
|
|
((unsigned char *)&my_nan)[7],
|
|
trio_isnan(my_nan), trio_isinf(my_nan));
|
|
printf("PInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
|
|
my_pinf,
|
|
((unsigned char *)&my_pinf)[0],
|
|
((unsigned char *)&my_pinf)[1],
|
|
((unsigned char *)&my_pinf)[2],
|
|
((unsigned char *)&my_pinf)[3],
|
|
((unsigned char *)&my_pinf)[4],
|
|
((unsigned char *)&my_pinf)[5],
|
|
((unsigned char *)&my_pinf)[6],
|
|
((unsigned char *)&my_pinf)[7],
|
|
trio_isnan(my_pinf), trio_isinf(my_pinf));
|
|
printf("NInf: %4g 0x%02x%02x%02x%02x%02x%02x%02x%02x (%2d, %2d)\n",
|
|
my_ninf,
|
|
((unsigned char *)&my_ninf)[0],
|
|
((unsigned char *)&my_ninf)[1],
|
|
((unsigned char *)&my_ninf)[2],
|
|
((unsigned char *)&my_ninf)[3],
|
|
((unsigned char *)&my_ninf)[4],
|
|
((unsigned char *)&my_ninf)[5],
|
|
((unsigned char *)&my_ninf)[6],
|
|
((unsigned char *)&my_ninf)[7],
|
|
trio_isnan(my_ninf), trio_isinf(my_ninf));
|
|
|
|
return 0;
|
|
}
|
|
#endif
|