1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-05 13:18:20 +03:00
lvm2/lib/device/dev-type.h

106 lines
3.5 KiB
C
Raw Permalink Normal View History

/*
* Copyright (C) 2013 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _LVM_DEV_TYPE_H
#define _LVM_DEV_TYPE_H
#include "lib/device/device.h"
#include "lib/display/display.h"
#include "lib/label/label.h"
#define NUMBER_OF_MAJORS 4096
#ifdef __linux__
# include "libdm/misc/kdev_t.h"
#else
# define MAJOR(x) major((x))
# define MINOR(x) minor((x))
# define MKDEV(x,y) makedev((x),(y))
#endif
#define PARTITION_SCSI_DEVICE (1 << 0)
struct dev_type_def {
int max_partitions; /* 0 means LVM won't use this major number. */
int flags;
};
struct dev_types {
int md_major;
int blkext_major;
int drbd_major;
int device_mapper_major;
int emcpower_major;
int vxdmp_major;
int power2_major;
int dasd_major;
int loop_major;
struct dev_type_def dev_type_array[NUMBER_OF_MAJORS];
};
struct dev_types *create_dev_types(const char *proc_dir, const struct dm_config_node *cn);
/* Subsystems */
int dev_subsystem_part_major(struct dev_types *dt, struct device *dev);
const char *dev_subsystem_name(struct dev_types *dt, struct device *dev);
int major_is_scsi_device(struct dev_types *dt, int major);
/* Signature/superblock recognition with position returned where found. */
int dev_is_md_component(struct device *dev, uint64_t *sb, int full);
int dev_is_swap(struct device *dev, uint64_t *signature, int full);
int dev_is_luks(struct device *dev, uint64_t *signature, int full);
int dasd_is_cdl_formatted(struct device *dev);
int udev_dev_is_mpath_component(struct device *dev);
int udev_dev_is_md_component(struct device *dev);
2018-05-01 22:32:15 +03:00
int dev_is_lvm1(struct device *dev, char *buf, int buflen);
int dev_is_pool(struct device *dev, char *buf, int buflen);
/* Signature wiping. */
#define TYPE_LVM1_MEMBER 0x001
#define TYPE_LVM2_MEMBER 0x002
#define TYPE_DM_SNAPSHOT_COW 0x004
int wipe_known_signatures(struct cmd_context *cmd, struct device *dev, const char *name,
uint32_t types_to_exclude, uint32_t types_no_prompt,
int yes, force_t force, int *wiped);
/* Type-specific device properties */
unsigned long dev_md_stripe_width(struct dev_types *dt, struct device *dev);
int dev_is_md_with_end_superblock(struct dev_types *dt, struct device *dev);
/* Partitioning */
int major_max_partitions(struct dev_types *dt, int major);
int dev_is_partitioned(struct dev_types *dt, struct device *dev);
int dev_get_primary_dev(struct dev_types *dt, struct device *dev, dev_t *result);
device usage based on devices file The devices file /etc/lvm/devices/system.devices is a list of devices that lvm can use. This is the default system devices file, which is specified in lvm.conf devices/devicesfile. The command option --devicesfile <filename> allows lvm to be used with a different set of devices. This allows different applications to use lvm on different sets of devices, e.g. system devices do not need to be exposed to an application using lvm on its own devices, and application devices do not need to be exposed to the system. In most cases (with limited exceptions), lvm will not read or use a device not listed in the devices file. When the devices file is used, the regex filter is not used, and the filter settings in lvm.conf are ignored. filter-deviceid is used when the devices file is enabled, and rejects any device that does not match an entry in the devices file. Set use_devicesfile=0 in lvm.conf or set --devicesfile "" on the command line to disable the use of a devices file. When disabled, lvm will see and use any device on the system that passes the regex filter (and other standard filters.) A device ID, e.g. wwid or serial number from sysfs, is a unique ID that identifies a device. The device ID is generally independent of the device content, and lvm can get the device ID without reading the device. The device ID is used in the devices file as the primary method of identifying device entries, and is also included in VG metadata for PVs. Each device_id has a device_id_type which indicates where the device_id comes from, e.g. "sys_wwid" means the device_id comes from the sysfs wwid file. Others are sys_serial, mpath_uuid, loop_file, md_uuid, devname. (devname is the device path, which is a fallback when no other proper device_id_type is available.) filter-deviceid permits lvm to use only devices on the system that have a device_id matching a devices file entry. Using the device_id, lvm can determine the set of devices to use without reading any devices, so the devices file will constrain lvm in two ways: 1. it limits the devices that lvm will read. 2. it limits the devices that lvm will use. In some uncommon cases, e.g. when devices have no unique ID and device_id has to fall back to using the devname, lvm may need to read all devices on the system to determine which ones correspond to the devices file entries. In this case, the devices file does not limit the devices that lvm reads, but it does limit the devices that lvm uses. pvcreate/vgcreate/vgextend are not constrained by the devices file, and will look outside it to find the new PV. They assign the new PV a device_id and add it to the devices file. It is also possible to explicitly add new PVs to the devices file before using them in pvcreate/etc, in which case these commands would not need to look outside the devices file for the new device. vgimportdevices VG looks at all devices on the system to find an existing VG and add its devices to the devices file. The command is not limited by an existing devices file. The command will also add device_ids to the VG metadata if the VG does not yet include device_ids. vgimportdevices -a imports devices for all accessible VGs. Since vgimportdevices does not limit itself to devices in an existing devices file, the lvm.conf regex filter applies. Adding --foreign will import devices for foreign VGs, but device_ids are not added to foreign VGs. Incomplete VGs are not imported. The lvmdevices command manages the devices file. The primary purpose is to edit the devices file, but it will read PV headers to find/check PVIDs. (It does not read, process or modify VG metadata.) lvmdevices . Displays devices file entries. lvmdevices --check . Checks devices file entries. lvmdevices --update . Updates devices file entries. lvmdevices --adddev <devname> . Adds devices_file entry (reads pv header). lvmdevices --deldev <devname> . Removes devices file entry. lvmdevices --addpvid <pvid> . Reads pv header of all devices to find <pvid>, and if found adds devices file entry. lvmdevices --delpvid <pvid> . Removes devices file entry. The vgimportclone command has a new option --importdevices that does the equivalent of vgimportdevices with the cloned devices that are being imported. The devices are "uncloned" (new vgname and pvids) while at the same time adding the devices to the devices file. This allows cloned PVs to be imported without duplicate PVs ever appearing on the system. The command option --devices <devnames> allows a specific list of devices to be exposed to the lvm command, overriding the devices file.
2020-06-23 21:25:41 +03:00
int dev_get_partition_number(struct device *dev, int *num);
/* Various device properties */
unsigned long dev_alignment_offset(struct dev_types *dt, struct device *dev);
unsigned long dev_minimum_io_size(struct dev_types *dt, struct device *dev);
unsigned long dev_optimal_io_size(struct dev_types *dt, struct device *dev);
unsigned long dev_discard_max_bytes(struct dev_types *dt, struct device *dev);
unsigned long dev_discard_granularity(struct dev_types *dt, struct device *dev);
int dev_is_rotational(struct dev_types *dt, struct device *dev);
int dev_is_pmem(struct device *dev);
int dev_is_nvme(struct dev_types *dt, struct device *dev);
int dev_is_lv(struct device *dev);
Allow dm-integrity to be used for raid images dm-integrity stores checksums of the data written to an LV, and returns an error if data read from the LV does not match the previously saved checksum. When used on raid images, dm-raid will correct the error by reading the block from another image, and the device user sees no error. The integrity metadata (checksums) are stored on an internal LV allocated by lvm for each linear image. The internal LV is allocated on the same PV as the image. Create a raid LV with an integrity layer over each raid image (for raid levels 1,4,5,6,10): lvcreate --type raidN --raidintegrity y [options] Add an integrity layer to images of an existing raid LV: lvconvert --raidintegrity y LV Remove the integrity layer from images of a raid LV: lvconvert --raidintegrity n LV Settings Use --raidintegritymode journal|bitmap (journal is default) to configure the method used by dm-integrity to ensure crash consistency. Initialization When integrity is added to an LV, the kernel needs to initialize the integrity metadata/checksums for all blocks in the LV. The data corruption checking performed by dm-integrity will only operate on areas of the LV that are already initialized. The progress of integrity initialization is reported by the "syncpercent" LV reporting field (and under the Cpy%Sync lvs column.) Example: create a raid1 LV with integrity: $ lvcreate --type raid1 -m1 --raidintegrity y -n rr -L1G foo Creating integrity metadata LV rr_rimage_0_imeta with size 12.00 MiB. Logical volume "rr_rimage_0_imeta" created. Creating integrity metadata LV rr_rimage_1_imeta with size 12.00 MiB. Logical volume "rr_rimage_1_imeta" created. Logical volume "rr" created. $ lvs -a foo LV VG Attr LSize Origin Cpy%Sync rr foo rwi-a-r--- 1.00g 4.93 [rr_rimage_0] foo gwi-aor--- 1.00g [rr_rimage_0_iorig] 41.02 [rr_rimage_0_imeta] foo ewi-ao---- 12.00m [rr_rimage_0_iorig] foo -wi-ao---- 1.00g [rr_rimage_1] foo gwi-aor--- 1.00g [rr_rimage_1_iorig] 39.45 [rr_rimage_1_imeta] foo ewi-ao---- 12.00m [rr_rimage_1_iorig] foo -wi-ao---- 1.00g [rr_rmeta_0] foo ewi-aor--- 4.00m [rr_rmeta_1] foo ewi-aor--- 4.00m
2019-11-21 01:07:27 +03:00
int get_fs_block_size(struct device *dev, uint32_t *fs_block_size);
#endif