1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-06 17:18:29 +03:00
lvm2/base/data-struct/radix-tree-simple.c

300 lines
5.5 KiB
C
Raw Permalink Normal View History

// Copyright (C) 2018 Red Hat, Inc. All rights reserved.
//
// This file is part of LVM2.
//
// This copyrighted material is made available to anyone wishing to use,
// modify, copy, or redistribute it subject to the terms and conditions
// of the GNU Lesser General Public License v.2.1.
//
// You should have received a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#include "radix-tree.h"
#include "base/memory/container_of.h"
#include "base/memory/zalloc.h"
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
//----------------------------------------------------------------
// This implementation is based around nested binary trees. Very
// simple (and hopefully correct).
struct node {
struct node *left;
struct node *right;
uint8_t key;
struct node *center;
bool has_value;
union radix_value value;
};
struct radix_tree {
radix_value_dtr dtr;
void *dtr_context;
unsigned nr_entries;
struct node *root;
};
struct radix_tree *radix_tree_create(radix_value_dtr dtr, void *dtr_context)
{
struct radix_tree *rt = zalloc(sizeof(*rt));
if (rt) {
rt->dtr = dtr;
rt->dtr_context = dtr_context;
}
return rt;
}
// Returns the number of entries in the tree
static unsigned _destroy_tree(struct node *n, radix_value_dtr dtr, void *context)
{
unsigned r;
if (!n)
return 0;
r = _destroy_tree(n->left, dtr, context);
r += _destroy_tree(n->right, dtr, context);
r += _destroy_tree(n->center, dtr, context);
if (n->has_value) {
if (dtr)
dtr(context, n->value);
r++;
}
free(n);
return r;
}
void radix_tree_destroy(struct radix_tree *rt)
{
_destroy_tree(rt->root, rt->dtr, rt->dtr_context);
free(rt);
}
static unsigned _count(struct node *n)
{
unsigned r;
if (!n)
return 0;
r = _count(n->left);
r += _count(n->right);
r += _count(n->center);
if (n->has_value)
r++;
return r;
}
unsigned radix_tree_size(struct radix_tree *rt)
{
return _count(rt->root);
}
static struct node **_lookup(struct node **pn, const uint8_t *kb, const uint8_t *ke)
{
struct node *n = *pn;
if (!n || (kb == ke))
return pn;
if (*kb < n->key)
return _lookup(&n->left, kb, ke);
else if (*kb > n->key)
return _lookup(&n->right, kb, ke);
else
return _lookup(&n->center, kb + 1, ke);
}
static bool _insert(struct node **pn, const uint8_t *kb, const uint8_t *ke, union radix_value v)
{
struct node *n = *pn;
if (!n) {
n = zalloc(sizeof(*n));
if (!n)
return false;
n->key = *kb;
*pn = n;
}
if (kb == ke) {
n->has_value = true;
n->value = v;
return true;
}
if (*kb < n->key)
return _insert(&n->left, kb, ke, v);
else if (*kb > n->key)
return _insert(&n->right, kb, ke, v);
else
return _insert(&n->center, kb + 1, ke, v);
}
bool radix_tree_insert(struct radix_tree *rt, const void *key, size_t keylen,
union radix_value v)
{
const uint8_t *kb = key;
const uint8_t *ke = kb + keylen;
if (!_insert(&rt->root, kb, ke, v))
return false;
rt->nr_entries++;
return true;
}
bool radix_tree_remove(struct radix_tree *rt, const void *key, size_t keylen)
{
const uint8_t *kb = key;
const uint8_t *ke = kb + keylen;
struct node **pn = _lookup(&rt->root, kb, ke);
struct node *n = *pn;
if (!n || !n->has_value)
return false;
rt->nr_entries--;
if (rt->dtr)
rt->dtr(rt->dtr_context, n->value);
if (n->left || n->center || n->right) {
n->has_value = false;
return true;
}
// FIXME: delete parent if this was the last entry
free(n);
*pn = NULL;
return true;
}
unsigned radix_tree_remove_prefix(struct radix_tree *rt, const void *key, size_t keylen)
{
const uint8_t *kb = key;
const uint8_t *ke = kb + keylen;
struct node **pn;
unsigned count;
pn = _lookup(&rt->root, kb, ke);
if (*pn) {
count = _destroy_tree(*pn, rt->dtr, rt->dtr_context);
*pn = NULL;
}
return count;
}
bool radix_tree_lookup(struct radix_tree *rt, const void *key, size_t keylen,
union radix_value *result)
{
const uint8_t *kb = key;
const uint8_t *ke = kb + keylen;
struct node **pn = _lookup(&rt->root, kb, ke);
struct node *n = *pn;
if (n && n->has_value) {
*result = n->value;
return true;
}
return false;
}
static void _iterate(struct node *n, struct radix_tree_iterator *it)
{
if (!n)
return;
_iterate(n->left, it);
if (n->has_value)
// FIXME: fill out the key
it->visit(it, NULL, 0, n->value);
_iterate(n->center, it);
_iterate(n->right, it);
}
void radix_tree_iterate(struct radix_tree *rt, const void *key, size_t keylen,
struct radix_tree_iterator *it)
{
const uint8_t *kb = key;
const uint8_t *ke = kb + keylen;
if (kb == ke)
_iterate(rt->root, it);
else {
struct node **pn = _lookup(&rt->root, kb, ke);
struct node *n = *pn;
if (n) {
if (n->has_value)
it->visit(it, NULL, 0, n->value);
_iterate(n->center, it);
}
}
}
bool radix_tree_is_well_formed(struct radix_tree *rt)
{
return true;
}
static void _dump(FILE *out, struct node *n, unsigned indent)
{
unsigned i;
if (!n)
return;
_dump(out, n->left, indent + 1);
for (i = 0; i < 2 * indent; i++)
fprintf(out, " ");
if (n->has_value) {
fprintf(out, "value: %llu\n", n->value.n);
} else {
fprintf(out, "key: '%c' [0x%02x] %u\n",
isprint(n->key) ? n->key : ' ', n->key, indent);
}
_dump(out, n->center, indent + 1);
_dump(out, n->right, indent + 1);
}
void radix_tree_dump(struct radix_tree *rt, FILE *out)
{
_dump(out, rt->root, 0);
}
//----------------------------------------------------------------