2002-02-11 23:50:53 +03:00
/*
2004-03-30 23:35:44 +04:00
* Copyright ( C ) 2001 - 2004 Sistina Software , Inc . All rights reserved .
2009-02-23 00:14:37 +03:00
* Copyright ( C ) 2004 - 2009 Red Hat , Inc . All rights reserved .
2002-02-11 23:50:53 +03:00
*
2004-03-30 23:35:44 +04:00
* This file is part of LVM2 .
2002-02-11 23:50:53 +03:00
*
2004-03-30 23:35:44 +04:00
* This copyrighted material is made available to anyone wishing to use ,
* modify , copy , or redistribute it subject to the terms and conditions
2007-08-21 00:55:30 +04:00
* of the GNU Lesser General Public License v .2 .1 .
2004-03-30 23:35:44 +04:00
*
2007-08-21 00:55:30 +04:00
* You should have received a copy of the GNU Lesser General Public License
2004-03-30 23:35:44 +04:00
* along with this program ; if not , write to the Free Software Foundation ,
2016-01-21 13:49:46 +03:00
* Inc . , 51 Franklin Street , Fifth Floor , Boston , MA 02110 - 1301 USA
2002-02-11 23:50:53 +03:00
*/
# ifndef _LVM_TOOLCONTEXT_H
# define _LVM_TOOLCONTEXT_H
2018-05-14 12:30:20 +03:00
# include "lib/device/dev-cache.h"
# include "lib/device/dev-type.h"
2002-02-11 23:50:53 +03:00
2002-11-18 17:01:16 +03:00
# include <limits.h>
/*
* Config options that can be changed while commands are processed
*/
struct config_info {
int debug ;
2013-01-08 02:25:19 +04:00
int debug_classes ;
2002-11-18 17:01:16 +03:00
int verbose ;
config: add silent mode
Accept -q as the short form of --quiet.
Suppress non-essential standard output if -q is given twice.
Treat log/silent in lvm.conf as equivalent to -qq.
Review all log_print messages and change some to
log_print_unless_silent.
When silent, the following commands still produce output:
dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck, pvdisplay,
pvs, version, vgcfgrestore -l, vgdisplay, vgs.
[Needs checking.]
Non-essential messages are shifted from log level 4 to log level 5
for syslog and lvm2_log_fn purposes.
2012-08-25 23:35:48 +04:00
int silent ;
2002-11-18 17:01:16 +03:00
int test ;
int syslog ;
int activation ;
2002-12-12 23:55:49 +03:00
int suffix ;
2002-11-18 17:01:16 +03:00
int archive ; /* should we archive ? */
int backup ; /* should we backup ? */
2007-11-09 19:51:54 +03:00
int read_ahead ; /* DM_READ_AHEAD_NONE or _AUTO */
2010-01-07 22:54:21 +03:00
int udev_rules ;
2009-08-04 19:36:13 +04:00
int udev_sync ;
2011-06-17 18:50:53 +04:00
int udev_fallback ;
2008-04-03 01:23:39 +04:00
int cache_vgmetadata ;
2005-04-06 17:47:41 +04:00
const char * msg_prefix ;
2010-04-29 05:38:12 +04:00
const char * fmt_name ;
2018-02-10 01:38:02 +03:00
const char * dmeventd_executable ;
2005-04-06 17:47:41 +04:00
uint64_t unit_factor ;
int cmd_name ; /* Show command name? */
2002-11-18 17:01:16 +03:00
mode_t umask ;
2005-04-06 17:47:41 +04:00
char unit_type ;
char _padding [ 1 ] ;
2002-11-18 17:01:16 +03:00
} ;
2011-08-30 18:55:15 +04:00
struct dm_config_tree ;
2013-06-25 14:27:04 +04:00
struct profile_params ;
2005-05-17 17:46:38 +04:00
struct archive_params ;
struct backup_params ;
2010-11-11 20:29:05 +03:00
struct arg_values ;
2004-05-04 22:28:15 +04:00
2011-08-30 18:55:15 +04:00
struct config_tree_list {
struct dm_list list ;
struct dm_config_tree * cft ;
} ;
2015-07-30 10:59:39 +03:00
struct cmd_context_initialized_parts {
unsigned config : 1 ; /* used to reinitialize config if previous init was not successful */
2015-07-30 11:34:10 +03:00
unsigned filters : 1 ;
unsigned connections : 1 ;
2015-07-30 10:59:39 +03:00
} ;
2016-08-03 16:37:14 +03:00
struct cmd_report {
int log_only ;
dm_report_group_type_t report_group_type ;
struct dm_report_group * report_group ;
struct dm_report * log_rh ;
const char * log_name ;
log_report_t saved_log_report_state ;
} ;
2002-11-18 17:01:16 +03:00
/* FIXME Split into tool & library contexts */
2002-02-11 23:50:53 +03:00
/* command-instance-related variables needed by library */
struct cmd_context {
2015-07-30 17:01:02 +03:00
/*
* Memory handlers .
*/
struct dm_pool * libmem ; /* for permanent config data */
struct dm_pool * mem ; /* transient: cleared between each command */
2002-02-11 23:50:53 +03:00
2015-07-30 17:01:02 +03:00
/*
* Command line and arguments .
*/
2009-07-13 23:49:48 +04:00
const char * cmd_line ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
const char * name ; /* needed before cmd->command is set */
2017-01-14 00:08:51 +03:00
struct command_name * cname ;
2002-02-11 23:50:53 +03:00
struct command * command ;
2003-05-06 16:00:51 +04:00
char * * argv ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
struct arg_values * opt_arg_values ;
2010-11-11 20:29:05 +03:00
struct dm_list arg_value_groups ;
2018-07-23 19:08:12 +03:00
int opt_count ; /* total number of options (beginning with - or --) */
2015-07-30 10:59:39 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* Position args remaining after command name
* and - - options are removed from original argc / argv .
*/
int position_argc ;
char * * position_argv ;
2015-07-30 17:01:02 +03:00
/*
* Format handlers .
*/
const struct format_type * fmt ; /* current format to use by default */
struct format_type * fmt_backup ; /* format to use for backups */
struct dm_list formats ; /* available formats */
struct dm_list segtypes ; /* available segment types */
/*
* Machine and system identification .
*/
const char * system_id ;
const char * hostname ;
const char * kernel_vsn ;
/*
* Device identification .
*/
struct dev_types * dev_types ; /* recognized extra device types. */
/*
* Initialization state .
*/
2015-07-30 10:59:39 +03:00
struct cmd_context_initialized_parts initialized ;
2015-07-30 17:01:02 +03:00
/*
* Switches .
*/
unsigned is_long_lived : 1 ; /* optimises persistent_filter handling */
2016-05-20 15:23:43 +03:00
unsigned is_interactive : 1 ;
2016-01-22 15:20:21 +03:00
unsigned check_pv_dev_sizes : 1 ;
2008-09-19 10:42:00 +04:00
unsigned handles_missing_pvs : 1 ;
2009-10-16 21:41:49 +04:00
unsigned handles_unknown_segments : 1 ;
2011-11-29 00:37:51 +04:00
unsigned use_linear_target : 1 ;
2008-09-19 11:12:45 +04:00
unsigned partial_activation : 1 ;
activation: Add "degraded" activation mode
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
2014-07-10 07:56:11 +04:00
unsigned degraded_activation : 1 ;
2013-07-12 11:27:17 +04:00
unsigned auto_set_activation_skip : 1 ;
2009-09-28 20:23:44 +04:00
unsigned si_unit_consistency : 1 ;
2014-07-02 15:16:32 +04:00
unsigned report_binary_values_as_numeric : 1 ;
2016-01-13 17:21:05 +03:00
unsigned report_mark_hidden_devices : 1 ;
2010-10-25 15:20:54 +04:00
unsigned metadata_read_only : 1 ;
2015-07-30 17:01:02 +03:00
unsigned threaded : 1 ; /* set if running within a thread e.g. clvmd */
2014-10-24 21:29:04 +04:00
unsigned unknown_system_id : 1 ;
2016-03-01 17:22:48 +03:00
unsigned include_historical_lvs : 1 ; /* also process/report/display historical LVs */
2016-03-01 17:25:14 +03:00
unsigned record_historical_lvs : 1 ; /* record historical LVs */
2015-07-30 17:01:02 +03:00
unsigned include_foreign_vgs : 1 ; /* report/display cmds can reveal foreign VGs */
unsigned include_shared_vgs : 1 ; /* report/display cmds can reveal lockd VGs */
unsigned include_active_foreign_vgs : 1 ; /* cmd should process foreign VGs with active LVs */
unsigned vg_read_print_access_error : 1 ; /* print access errors from vg_read */
2018-06-13 23:30:28 +03:00
unsigned force_access_clustered : 1 ;
2015-03-05 23:00:44 +03:00
unsigned lockd_gl_disable : 1 ;
unsigned lockd_vg_disable : 1 ;
unsigned lockd_lv_disable : 1 ;
2015-08-10 21:04:11 +03:00
unsigned lockd_gl_removed : 1 ;
2015-03-05 23:00:44 +03:00
unsigned lockd_vg_default_sh : 1 ;
vgchange/lvchange: enforce the shared VG lock from lvmlockd
The vgchange/lvchange activation commands read the VG, and
don't write it, so they acquire a shared VG lock from lvmlockd.
When other commands fail to acquire a shared VG lock from
lvmlockd, a warning is printed and they continue without it.
(Without it, the VG metadata they display from lvmetad may
not be up to date.)
vgchange/lvchange -a shouldn't continue without the shared
lock for a couple reasons:
. Usually they will just continue on and fail to acquire the
LV locks for activation, so continuing is pointless.
. More importantly, without the sh VG lock, the VG metadata
used by the command may be stale, and the LV locks shown
in the VG metadata may no longer be current. In the
case of sanlock, this would result in odd, unpredictable
errors when lvmlockd doesn't find the expected lock on
disk. In the case of dlm, the invalid LV lock could be
granted for the non-existing LV.
The solution is to not continue after the shared lock fails,
in the same way that a command fails if an exclusive lock fails.
2015-07-17 23:13:22 +03:00
unsigned lockd_vg_enforce_sh : 1 ;
2017-09-19 19:52:36 +03:00
unsigned lockd_lv_sh : 1 ;
2016-02-22 18:42:03 +03:00
unsigned vg_notify : 1 ;
unsigned lv_notify : 1 ;
unsigned pv_notify : 1 ;
2018-02-28 19:16:17 +03:00
unsigned activate_component : 1 ; /* command activates component LV */
unsigned process_component_lvs : 1 ; /* command processes also component LVs */
2018-03-29 22:10:58 +03:00
unsigned mirror_warn_printed : 1 ; /* command already printed warning about non-monitored mirrors */
2018-02-07 22:58:40 +03:00
unsigned pvscan_cache_single : 1 ;
2018-04-19 00:29:42 +03:00
unsigned can_use_one_scan : 1 ;
2018-04-25 23:08:54 +03:00
unsigned is_clvmd : 1 ;
2018-05-04 01:12:07 +03:00
unsigned use_full_md_check : 1 ;
Rework lock-override options and locking_type settings
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
2018-06-07 23:33:02 +03:00
unsigned is_activating : 1 ;
2018-04-19 00:29:42 +03:00
2014-10-02 14:00:57 +04:00
/*
2015-07-30 17:01:02 +03:00
* Filtering .
2014-10-02 14:00:57 +04:00
*/
2015-07-30 17:01:02 +03:00
struct dev_filter * lvmetad_filter ; /* pre-lvmetad filter chain */
struct dev_filter * filter ; /* post-lvmetad filter chain */
struct dev_filter * full_filter ; /* lvmetad_filter + filter */
2013-06-26 16:53:57 +04:00
2015-07-30 17:01:02 +03:00
/*
* Configuration .
*/
struct dm_list config_files ; /* master lvm config + any existing tag configs */
struct profile_params * profile_params ; /* profile handling params including loaded profile configs */
struct dm_config_tree * cft ; /* the whole cascade: CONFIG_STRING -> CONFIG_PROFILE -> CONFIG_FILE/CONFIG_MERGED_FILES */
struct dm_hash_table * cft_def_hash ; /* config definition hash used for validity check (item type + item recognized) */
struct config_info default_settings ; /* selected settings with original default/configured value which can be changed during cmd processing */
struct config_info current_settings ; /* may contain changed values compared to default_settings */
2013-06-25 14:27:04 +04:00
2015-07-30 17:01:02 +03:00
/*
* Archives and backups .
*/
2005-05-17 17:46:38 +04:00
struct archive_params * archive_params ;
struct backup_params * backup_params ;
2008-09-19 10:42:00 +04:00
const char * stripe_filler ;
2005-05-17 17:46:38 +04:00
2015-07-30 17:01:02 +03:00
/*
* Host tags .
*/
struct dm_list tags ; /* list of defined tags */
2004-05-04 22:28:15 +04:00
int hosttags ;
2004-03-08 21:13:22 +03:00
2015-07-30 17:01:02 +03:00
/*
* Paths .
*/
const char * lib_dir ; /* cache value global/library_dir */
2009-02-23 00:14:37 +03:00
char system_dir [ PATH_MAX ] ;
2002-11-18 17:01:16 +03:00
char dev_dir [ PATH_MAX ] ;
char proc_dir [ PATH_MAX ] ;
2015-07-30 17:01:02 +03:00
2016-05-20 16:30:58 +03:00
/*
2016-08-03 16:37:14 +03:00
* Reporting .
2016-05-20 16:30:58 +03:00
*/
2016-08-03 16:37:14 +03:00
struct cmd_report cmd_report ;
2016-05-20 16:30:58 +03:00
2015-07-30 17:01:02 +03:00
/*
* Buffers .
*/
char display_buffer [ NAME_LEN * 10 ] ; /* ring buffer for upto 10 longest vg/lv names */
unsigned display_lvname_idx ; /* index to ring buffer */
char * linebuffer ;
/*
* Others - unsorted .
*/
2015-07-30 17:14:10 +03:00
const char * report_list_item_separator ;
2015-07-30 17:01:02 +03:00
const char * time_format ;
unsigned rand_seed ;
2016-06-06 23:20:55 +03:00
struct dm_list unused_duplicate_devs ; /* save preferences between lvmcache instances */
2002-02-11 23:50:53 +03:00
} ;
2009-02-23 00:14:37 +03:00
/*
* system_dir may be NULL to use the default value .
* The environment variable LVM_SYSTEM_DIR always takes precedence .
*/
2018-05-03 00:58:49 +03:00
struct cmd_context * create_toolcontext ( unsigned is_clvmd ,
2011-05-07 17:50:11 +04:00
const char * system_dir ,
2011-12-09 01:24:08 +04:00
unsigned set_buffering ,
2015-07-30 11:34:10 +03:00
unsigned threaded ,
unsigned set_connections ,
unsigned set_filters ) ;
2002-11-18 17:01:16 +03:00
void destroy_toolcontext ( struct cmd_context * cmd ) ;
2004-03-08 21:13:22 +03:00
int refresh_toolcontext ( struct cmd_context * cmd ) ;
2009-11-24 19:10:25 +03:00
int refresh_filters ( struct cmd_context * cmd ) ;
2014-03-17 19:03:53 +04:00
int process_profilable_config ( struct cmd_context * cmd ) ;
2004-05-04 22:28:15 +04:00
int config_files_changed ( struct cmd_context * cmd ) ;
2008-04-08 16:49:21 +04:00
int init_lvmcache_orphans ( struct cmd_context * cmd ) ;
2015-07-30 11:34:10 +03:00
int init_filters ( struct cmd_context * cmd , unsigned load_persistent_cache ) ;
int init_connections ( struct cmd_context * cmd ) ;
2017-01-23 16:21:56 +03:00
int init_run_by_dmeventd ( struct cmd_context * cmd ) ;
2002-11-18 17:01:16 +03:00
2016-05-17 19:54:13 +03:00
/*
* A config context is a very light weight cmd struct that
* is only used for reading config settings from lvm . conf ,
* which are at cmd - > cft .
*/
struct cmd_context * create_config_context ( void ) ;
void destroy_config_context ( struct cmd_context * cmd ) ;
2010-04-29 05:38:12 +04:00
struct format_type * get_format_by_name ( struct cmd_context * cmd , const char * format ) ;
2015-02-24 02:03:52 +03:00
const char * system_id_from_string ( struct cmd_context * cmd , const char * str ) ;
2014-10-24 21:29:04 +04:00
2002-02-11 23:50:53 +03:00
# endif