1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-18 10:04:20 +03:00
lvm2/test/shell/pvmove-basic.sh

358 lines
10 KiB
Bash
Raw Normal View History

#!/bin/sh
# Copyright (C) 2008-2013 Red Hat, Inc. All rights reserved.
# Copyright (C) 2007 NEC Corporation
#
# This copyrighted material is made available to anyone wishing to use,
# modify, copy, or redistribute it subject to the terms and conditions
# of the GNU General Public License v.2.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software Foundation,
# Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
test_description="ensure that pvmove works with basic options"
. lib/inittest
which md5sum || skip
# ---------------------------------------------------------------------
# Utilities
create_vg_() {
vgcreate -c n -s 128k $vg $(cat DEVICES)
}
# ---------------------------------------------------------------------
# Common environment setup/cleanup for each sub testcases
prepare_lvs_() {
lvcreate -l2 -n $lv1 $vg "$dev1"
check lv_on $vg $lv1 "$dev1"
lvcreate -l9 -i3 -n $lv2 $vg "$dev2" "$dev3" "$dev4"
check lv_on $vg $lv2 "$dev2" "$dev3" "$dev4"
lvextend -l+2 $vg/$lv1 "$dev2"
check lv_on $vg $lv1 "$dev1" "$dev2"
lvextend -l+2 $vg/$lv1 "$dev3"
lvextend -l+2 $vg/$lv1 "$dev1"
check lv_on $vg $lv1 "$dev1" "$dev2" "$dev3"
lvcreate -l1 -n $lv3 $vg "$dev2"
check lv_on $vg $lv3 "$dev2"
aux mkdev_md5sum $vg $lv1
aux mkdev_md5sum $vg $lv2
aux mkdev_md5sum $vg $lv3
get lv_devices "$vg/$lv1" > "${lv1}_devs"
get lv_devices "$vg/$lv2" > "${lv2}_devs"
get lv_devices "$vg/$lv3" > "${lv3}_devs"
lvs -a -o name,size,seg_pe_ranges $vg
vgcfgbackup -f bak-$$ $vg
}
# Restore metadata content, since data are pvmove-ed
# original content should be preserved
restore_lvs_() {
vgcfgrestore -f bak-$$ $vg
vgchange -ay $vg
}
lvs_not_changed_() {
for i in "${@}"; do
get lv_devices "$vg/$i" | tee out
diff "${i}_devs" out || \
(cat "${i}_devs"; die "Devices for LV $vg/$i differs!")
done
}
check_and_cleanup_lvs_() {
check dev_md5sum $vg $lv1
check dev_md5sum $vg $lv2
check dev_md5sum $vg $lv3
get lv_field $vg name >out
not grep ^pvmove out
vgchange -an $vg
lvremove -ff $vg
(dm_table | not grep $vg) || \
die "ERROR: lvremove did leave some mappings in DM behind!"
}
# ---------------------------------------------------------------------
# Initialize PVs and VGs
aux prepare_pvs 5 5
create_vg_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
for mode in "--atomic" ""
do
#COMM "check environment setup/cleanup"
prepare_lvs_
check_and_cleanup_lvs_
# ---------------------------------------------------------------------
# pvmove tests
# ---
# filter by LV
#COMM "only specified LV is moved: from pv2 to pv5 only for lv1"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i1 -n $vg/$lv1 "$dev2" "$dev5"
check lv_on $vg $lv1 "$dev1" "$dev5" "$dev3"
lvs_not_changed_ $lv2 $lv3
check_and_cleanup_lvs_
# ---
# segments in a LV
#COMM "the 1st seg of 3-segs LV is moved: from pv1 of lv1 to pv4"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 -n $vg/$lv1 "$dev1" "$dev4"
check lv_on $vg $lv1 "$dev4" "$dev2" "$dev3"
lvs_not_changed_ $lv2 $lv3
check_and_cleanup_lvs_
#COMM "the 2nd seg of 3-segs LV is moved: from pv2 of lv1 to pv4"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 -n $vg/$lv1 "$dev2" "$dev4"
check lv_on $vg $lv1 "$dev1" "$dev4" "$dev3"
lvs_not_changed_ $lv2 $lv3
check_and_cleanup_lvs_
#COMM "the 3rd seg of 3-segs LV is moved: from pv3 of lv1 to pv4"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 -n $vg/$lv1 "$dev3" "$dev4"
check lv_on $vg $lv1 "$dev1" "$dev2" "$dev4"
lvs_not_changed_ $lv2 $lv3
check_and_cleanup_lvs_
# ---
# multiple LVs matching
#COMM "1 out of 3 LVs is moved: from pv4 to pv5"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 "$dev4" "$dev5"
check lv_on $vg $lv2 "$dev2" "$dev3" "$dev5"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
#COMM "2 out of 3 LVs are moved: from pv3 to pv5"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 "$dev3" "$dev5"
check lv_on $vg $lv1 "$dev1" "$dev2" "$dev5"
check lv_on $vg $lv2 "$dev2" "$dev5" "$dev4"
lvs_not_changed_ $lv3
check_and_cleanup_lvs_
#COMM "3 out of 3 LVs are moved: from pv2 to pv5"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 "$dev2" "$dev5"
check lv_on $vg $lv1 "$dev1" "$dev5" "$dev3"
check lv_on $vg $lv2 "$dev5" "$dev3" "$dev4"
check lv_on $vg $lv3 "$dev5"
check_and_cleanup_lvs_
# ---
# areas of striping
#COMM "move the 1st stripe: from pv2 of lv2 to pv1"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 -n $vg/$lv2 "$dev2" "$dev1"
check lv_on $vg $lv2 "$dev1" "$dev3" "$dev4"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
#COMM "move the 2nd stripe: from pv3 of lv2 to pv1"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 -n $vg/$lv2 "$dev3" "$dev1"
check lv_on $vg $lv2 "$dev2" "$dev1" "$dev4"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
#COMM "move the 3rd stripe: from pv4 of lv2 to pv1"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 -n $vg/$lv2 "$dev4" "$dev1"
check lv_on $vg $lv2 "$dev2" "$dev3" "$dev1"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
# ---
# partial segment match (source segment splitted)
#COMM "match to the start of segment:from pv2:0-0 to pv5"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 "$dev2":0-0 "$dev5"
check lv_on $vg $lv2 "$dev5" "$dev2" "$dev3" "$dev4"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
#exit 0
#COMM "match to the middle of segment: from pv2:1-1 to pv5"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 "$dev2":1-1 "$dev5"
check lv_on $vg $lv2 "$dev2" "$dev3" "$dev4" "$dev5"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
#COMM "match to the end of segment: from pv2:2-2 to pv5"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 "$dev2":2-2 "$dev5"
check lv_on $vg $lv2 "$dev2" "$dev5" "$dev3" "$dev4"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
# ---
# destination segment splitted
#COMM "no destination split: from pv2:0-2 to pv5"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 "$dev2":0-2 "$dev5"
check lv_on $vg $lv2 "$dev5" "$dev3" "$dev4"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
#COMM "destination split into 2: from pv2:0-2 to pv5:5-5 and pv4:5-6"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 --alloc anywhere "$dev2":0-2 "$dev5":5-5 "$dev4":5-6
check lv_on $vg $lv2 "$dev5" "$dev4" "$dev3"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
#COMM "destination split into 3: from pv2:0-2 to {pv3,4,5}:5-5"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 --alloc anywhere "$dev2":0-2 "$dev3":5-5 "$dev4":5-5 "$dev5":5-5
check lv_on $vg $lv2 "$dev3" "$dev4" "$dev5"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
# ---
# alloc policy (anywhere, contiguous) with both success and failure cases
#COMM "alloc normal on same PV for source and destination: from pv3:0-2 to pv3:5-7"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
not pvmove $mode -i0 "$dev3":0-2 "$dev3":5-7
# "(cleanup previous test)"
lvs_not_changed_ $lv1 $lv2 $lv3
check_and_cleanup_lvs_
#COMM "alloc anywhere on same PV for source and destination: from pv3:0-2 to pv3:5-7"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 --alloc anywhere "$dev3":0-2 "$dev3":5-7
check lv_on $vg $lv2 "$dev2" "$dev3" "$dev4"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
#COMM "alloc anywhere but better area available: from pv3:0-2 to pv3:5-7 or pv5:5-6,pv4:5-5"
restore_lvs_
#lvs -a -o name,size,seg_pe_ranges $vg
#LV2 1.12m @TESTDIR@/dev/mapper/@PREFIX@pv2:0-2 @TESTDIR@/dev/mapper/@PREFIX@pv3:0-2 @TESTDIR@/dev/mapper/@PREFIX@pv4:0-2
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 --alloc anywhere "$dev3":0-2 "$dev3":5-7 "$dev5":5-6 "$dev4":5-5
#lvs -a -o name,size,seg_pe_ranges $vg
# Hmm is this correct ? - why pv2 is split
#LV2 1.12m @TESTDIR@/dev/mapper/@PREFIX@pv2:0-1 @TESTDIR@/dev/mapper/@PREFIX@pv5:5-6 @TESTDIR@/dev/mapper/@PREFIX@pv4:0-1
#LV2 1.12m @TESTDIR@/dev/mapper/@PREFIX@pv2:2-2 @TESTDIR@/dev/mapper/@PREFIX@pv3:5-5 @TESTDIR@/dev/mapper/@PREFIX@pv4:2-2
check lv_on $vg $lv2 "$dev2" "$dev3" "$dev4" "$dev5"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
#COMM "alloc contiguous but area not available: from pv2:0-2 to pv5:5-5 and pv4:5-6"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
not pvmove $mode -i0 --alloc contiguous "$dev2":0-2 "$dev5":5-5 "$dev4":5-6
# "(cleanup previous test)"
lvs_not_changed_ $lv1 $lv2 $lv3
check_and_cleanup_lvs_
#COMM "alloc contiguous and contiguous area available: from pv2:0-2 to pv5:0-0,pv5:3-5 and pv4:5-6"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 --alloc contiguous "$dev2":0-2 "$dev5":0-0 "$dev5":3-5 "$dev4":5-6
check lv_on $vg $lv2 "$dev5" "$dev3" "$dev4"
lvs_not_changed_ $lv1 $lv3
check_and_cleanup_lvs_
# ---
# multiple segments in a LV
#COMM "multiple source LVs: from pv3 to pv5"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 "$dev3" "$dev5"
check lv_on $vg $lv1 "$dev1" "$dev2" "$dev5"
check lv_on $vg $lv2 "$dev2" "$dev5" "$dev4"
lvs_not_changed_ $lv3
check_and_cleanup_lvs_
# ---
# move inactive LV
#COMM "move inactive LV: from pv2 to pv5"
restore_lvs_
lvchange -an $vg/$lv1
lvchange -an $vg/$lv3
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 "$dev2" "$dev5"
check lv_on $vg $lv1 "$dev1" "$dev5" "$dev3"
check lv_on $vg $lv2 "$dev5" "$dev3" "$dev4"
check lv_on $vg $lv3 "$dev5"
check_and_cleanup_lvs_
# ---
# other failure cases
#COMM "no PEs to move: from pv3 to pv1"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i0 "$dev3" "$dev1"
not pvmove $mode -i0 "$dev3" "$dev1"
# "(cleanup previous test)"
check lv_on $vg $lv1 "$dev1" "$dev2" "$dev1"
check lv_on $vg $lv2 "$dev2" "$dev1" "$dev4"
lvs_not_changed_ $lv3
check_and_cleanup_lvs_
#COMM "no space available: from pv2:0-0 to pv1:0-0"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
not pvmove $mode -i0 "$dev2":0-0 "$dev1":0-0
# "(cleanup previous test)"
lvs_not_changed_ $lv1 $lv2 $lv3
check_and_cleanup_lvs_
#COMM 'same source and destination: from pv1 to pv1'
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
not pvmove $mode -i0 "$dev1" "$dev1"
#"(cleanup previous test)"
lvs_not_changed_ $lv1 $lv2 $lv3
check_and_cleanup_lvs_
#COMM "sum of specified destination PEs is large enough, but it includes source PEs and the free PEs are not enough"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
not pvmove $mode --alloc anywhere "$dev1":0-2 "$dev1":0-2 "$dev5":0-0 2> err
#"(cleanup previous test)"
grep "Insufficient free space" err
lvs_not_changed_ $lv1 $lv2 $lv3
check_and_cleanup_lvs_
# ---------------------------------------------------------------------
#COMM "pvmove abort"
restore_lvs_
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode -i100 -b "$dev1" "$dev3"
pvmove --abort
check_and_cleanup_lvs_
#COMM "pvmove out of --metadatacopies 0 PV (bz252150)"
vgremove -ff $vg
pvcreate $(cat DEVICES)
pvcreate --metadatacopies 0 "$dev1" "$dev2"
create_vg_
lvcreate -l4 -n $lv1 $vg "$dev1"
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
pvmove $mode "$dev1"
#COMM "pvmove fails activating mirror, properly restores state before pvmove"
dmsetup create $vg-pvmove0 --notable
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
not pvmove $mode -i 1 "$dev2"
dmsetup info --noheadings -c -o suspended $vg-$lv1
test $(dmsetup info --noheadings -c -o suspended $vg-$lv1) = "Active"
if dmsetup info $vg-pvmove0_mimage_0 > /dev/null; then
dmsetup remove $vg-pvmove0 $vg-pvmove0_mimage_0 $vg-pvmove0_mimage_1
pvmove: Enable all-or-nothing (atomic) pvmoves pvmove can be used to move single LVs by name or multiple LVs that lie within the specified PV range (e.g. /dev/sdb1:0-1000). When moving more than one LV, the portions of those LVs that are in the range to be moved are added to a new temporary pvmove LV. The LVs then point to the range in the pvmove LV, rather than the PV range. Example 1: We have two LVs in this example. After they were created, the first LV was grown, yeilding two segments in LV1. So, there are two LVs with a total of three segments. Before pvmove: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- After pvmove inserts the temporary pvmove LV: --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | ------------------------------------- PV | 000 - 255 | 256 - 511 | 512 - 767 | ------------------------------------- Each of the affected LV segments now point to a range of blocks in the pvmove LV, which purposefully corresponds to the segments moved from the original LVs into the temporary pvmove LV. The current implementation goes on from here to mirror the temporary pvmove LV by segment. Further, as the pvmove LV is activated, only one of its segments is actually mirrored (i.e. "moving") at a time. The rest are either complete or not addressed yet. If the pvmove is aborted, those segments that are completed will remain on the destination and those that are not yet addressed or in the process of moving will stay on the source PV. Thus, it is possible to have a partially completed move - some LVs (or certain segments of LVs) on the source PV and some on the destination. Example 2: What 'example 1' might look if it was half-way through the move. --------- --------- --------- | LV1s0 | | LV2s0 | | LV1s1 | --------- --------- --------- | | | ------------------------------------- pvmove0 | seg 0 | seg 1 | seg 2 | ------------------------------------- | | | | ------------------------- source PV | | 256 - 511 | 512 - 767 | | ------------------------- | || ------------------------- dest PV | 000 - 255 | 256 - 511 | ------------------------- This update allows the user to specify that they would like the pvmove mirror created "by LV" rather than "by segment". That is, the pvmove LV becomes an image in an encapsulating mirror along with the allocated copy image. Example 3: A pvmove that is performed "by LV" rather than "by segment". --------- --------- | LV1s0 | | LV2s0 | --------- --------- | | ------------------------- pvmove0 | * LV-level mirror * | ------------------------- / \ pvmove_mimage0 / pvmove_mimage1 ------------------------- ------------------------- | seg 0 | seg 1 | | seg 0 | seg 1 | ------------------------- ------------------------- | | | | ------------------------- ------------------------- | 000 - 255 | 256 - 511 | | 000 - 255 | 256 - 511 | ------------------------- ------------------------- source PV dest PV The thing that differentiates a pvmove done in this way and a simple "up-convert" from linear to mirror is the preservation of the distinct segments. A normal up-convert would simply allocate the necessary space with no regard for segment boundaries. The pvmove operation must preserve the segments because they are the critical boundary between the segments of the LVs being moved. So, when the pvmove copy image is allocated, all corresponding segments must be allocated. The code that merges ajoining segments that are part of the same LV when the metadata is written must also be avoided in this case. This method of mirroring is unique enough to warrant its own definitional macro, MIRROR_BY_SEGMENTED_LV. This joins the two existing macros: MIRROR_BY_SEG (for original pvmove) and MIRROR_BY_LV (for user created mirrors). The advantages of performing pvmove in this way is that all of the LVs affected can be moved together. It is an all-or-nothing approach that leaves all LV segments on the source PV if the move is aborted. Additionally, a mirror log can be used (in the future) to provide tracking of progress; allowing the copy to continue where it left off in the event there is a deactivation.
2014-06-17 22:59:36 -05:00
else
dmsetup remove $vg-pvmove0
fi
lvremove -ff $vg
done