2004-03-26 15:00:24 +03:00
/*
2008-01-30 17:00:02 +03:00
* Copyright ( C ) 2001 - 2004 Sistina Software , Inc . All rights reserved .
2012-09-07 13:13:41 +04:00
* Copyright ( C ) 2004 - 2012 Red Hat , Inc . All rights reserved .
2004-05-05 01:25:57 +04:00
*
2004-03-30 23:35:44 +04:00
* This file is part of LVM2 .
*
* This copyrighted material is made available to anyone wishing to use ,
* modify , copy , or redistribute it subject to the terms and conditions
2007-08-21 00:55:30 +04:00
* of the GNU Lesser General Public License v .2 .1 .
2004-03-30 23:35:44 +04:00
*
2007-08-21 00:55:30 +04:00
* You should have received a copy of the GNU Lesser General Public License
2004-03-30 23:35:44 +04:00
* along with this program ; if not , write to the Free Software Foundation ,
2016-01-21 13:49:46 +03:00
* Inc . , 51 Franklin Street , Fifth Floor , Boston , MA 02110 - 1301 USA
2004-03-26 15:00:24 +03:00
*/
# include "tools.h"
2015-07-06 19:30:18 +03:00
2004-03-26 15:00:24 +03:00
# include "lvm2cmdline.h"
2018-05-14 12:30:20 +03:00
# include "lib/label/label.h"
2009-02-23 01:11:58 +03:00
# include "lvm-version.h"
2018-05-14 12:30:20 +03:00
# include "lib/locking/lvmlockd.h"
2004-03-26 15:00:24 +03:00
# include "stub.h"
2018-05-14 12:30:20 +03:00
# include "lib/misc/last-path-component.h"
2004-03-26 15:00:24 +03:00
# include <signal.h>
# include <sys/stat.h>
# include <time.h>
2004-12-10 19:01:35 +03:00
# include <sys/resource.h>
2012-03-15 04:18:23 +04:00
# include <dirent.h>
2012-09-07 13:13:41 +04:00
# include <paths.h>
2014-10-28 13:20:33 +03:00
# include <locale.h>
2017-07-17 21:36:39 +03:00
# include <langinfo.h>
2004-03-26 15:00:24 +03:00
2015-02-12 17:32:30 +03:00
# ifdef HAVE_VALGRIND
# include <valgrind.h>
# endif
2004-03-26 15:00:24 +03:00
# ifdef HAVE_GETOPTLONG
# include <getopt.h>
# define GETOPTLONG_FN(a, b, c, d, e) getopt_long((a), (b), (c), (d), (e))
# define OPTIND_INIT 0
# else
struct option {
} ;
extern int optind ;
extern char * optarg ;
# define GETOPTLONG_FN(a, b, c, d, e) getopt((a), (b), (c))
# define OPTIND_INIT 1
# endif
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* Table of valid - - option values .
*/
2017-03-07 20:47:44 +03:00
extern struct val_name val_names [ VAL_COUNT + 1 ] ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2004-03-26 15:00:24 +03:00
/*
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
* Table of valid - - option ' s
2004-03-26 15:00:24 +03:00
*/
2017-03-07 20:47:44 +03:00
extern struct opt_name opt_names [ ARG_COUNT + 1 ] ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* Table of LV properties
*/
2017-03-07 21:08:23 +03:00
extern struct lv_prop lv_props [ LVP_COUNT + 1 ] ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* Table of LV types
*/
2017-03-07 21:08:23 +03:00
extern struct lv_type lv_types [ LVT_COUNT + 1 ] ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2017-02-10 20:36:11 +03:00
/*
* Table of command names
*/
2017-03-07 21:08:23 +03:00
extern struct command_name command_names [ MAX_COMMAND_NAMES ] ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
2017-02-10 20:36:11 +03:00
* Table of commands ( as defined in command - lines . in )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
*/
2017-02-10 20:36:11 +03:00
struct command commands [ COMMAND_COUNT ] ;
2007-02-14 19:51:48 +03:00
static struct cmdline_context _cmdline ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* Table of command line functions
*
* This table could be auto - generated once all commands have been converted
* to use these functions instead of the old per - command - name function .
* For now , any command id not included here uses the old command fn .
*/
2017-10-18 17:57:46 +03:00
static const struct command_function _command_functions [ CMD_COUNT ] = {
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
{ lvmconfig_general_CMD , lvmconfig } ,
2016-11-17 01:05:47 +03:00
{ lvchange_properties_CMD , lvchange_properties_cmd } ,
{ lvchange_resync_CMD , lvchange_resync_cmd } ,
{ lvchange_syncaction_CMD , lvchange_syncaction_cmd } ,
{ lvchange_rebuild_CMD , lvchange_rebuild_cmd } ,
{ lvchange_activate_CMD , lvchange_activate_cmd } ,
{ lvchange_refresh_CMD , lvchange_refresh_cmd } ,
{ lvchange_monitor_CMD , lvchange_monitor_poll_cmd } ,
{ lvchange_poll_CMD , lvchange_monitor_poll_cmd } ,
{ lvchange_persistent_CMD , lvchange_persistent_cmd } ,
2016-11-18 00:38:52 +03:00
2017-07-13 00:03:41 +03:00
{ vgchange_locktype_CMD , vgchange_locktype_cmd } ,
2017-07-13 21:26:10 +03:00
{ vgchange_lockstart_CMD , vgchange_lock_start_stop_cmd } ,
{ vgchange_lockstop_CMD , vgchange_lock_start_stop_cmd } ,
2017-07-13 21:43:39 +03:00
{ vgchange_systemid_CMD , vgchange_systemid_cmd } ,
2017-07-13 00:03:41 +03:00
2016-11-18 22:16:04 +03:00
/* lvconvert utilities related to repair. */
2017-09-18 12:33:47 +03:00
{ lvconvert_repair_CMD , lvconvert_repair_cmd } ,
2016-11-18 00:38:52 +03:00
{ lvconvert_replace_pv_CMD , lvconvert_replace_pv_cmd } ,
2016-11-18 22:16:04 +03:00
/* lvconvert utilities related to snapshots. */
{ lvconvert_split_cow_snapshot_CMD , lvconvert_split_snapshot_cmd } ,
{ lvconvert_merge_snapshot_CMD , lvconvert_merge_snapshot_cmd } ,
{ lvconvert_combine_split_snapshot_CMD , lvconvert_combine_split_snapshot_cmd } ,
2016-12-20 00:38:03 +03:00
/* lvconvert utility to trigger polling on an LV. */
{ lvconvert_start_poll_CMD , lvconvert_start_poll_cmd } ,
2018-07-23 19:08:12 +03:00
{ lvconvert_plain_CMD , lvconvert_start_poll_cmd } ,
2016-12-07 23:30:57 +03:00
/* lvconvert utilities for creating/maintaining thin and cache objects. */
{ lvconvert_to_thinpool_CMD , lvconvert_to_pool_cmd } ,
{ lvconvert_to_cachepool_CMD , lvconvert_to_pool_cmd } ,
{ lvconvert_to_thin_with_external_CMD , lvconvert_to_thin_with_external_cmd } ,
{ lvconvert_to_cache_vol_CMD , lvconvert_to_cache_vol_cmd } ,
{ lvconvert_swap_pool_metadata_CMD , lvconvert_swap_pool_metadata_cmd } ,
2017-02-17 20:45:13 +03:00
{ lvconvert_to_thinpool_or_swap_metadata_CMD , lvconvert_to_pool_or_swap_metadata_cmd } ,
{ lvconvert_to_cachepool_or_swap_metadata_CMD , lvconvert_to_pool_or_swap_metadata_cmd } ,
2016-12-07 23:30:57 +03:00
{ lvconvert_merge_thin_CMD , lvconvert_merge_thin_cmd } ,
{ lvconvert_split_and_keep_cachepool_CMD , lvconvert_split_cachepool_cmd } ,
{ lvconvert_split_and_remove_cachepool_CMD , lvconvert_split_cachepool_cmd } ,
2016-12-20 00:38:03 +03:00
2016-12-20 00:53:21 +03:00
/* lvconvert raid-related type conversions */
{ lvconvert_raid_types_CMD , lvconvert_raid_types_cmd } ,
2016-12-09 23:39:57 +03:00
/* lvconvert utilities for raid/mirror */
2016-12-20 00:53:21 +03:00
{ lvconvert_split_mirror_images_CMD , lvconvert_split_mirror_images_cmd } ,
2016-12-09 23:39:57 +03:00
{ lvconvert_change_mirrorlog_CMD , lvconvert_change_mirrorlog_cmd } ,
2016-12-20 00:53:21 +03:00
{ lvconvert_merge_mirror_images_CMD , lvconvert_merge_mirror_images_cmd } ,
2017-02-07 20:52:13 +03:00
{ lvconvert_change_region_size_CMD , lvconvert_change_region_size_cmd } ,
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2016-12-09 23:39:57 +03:00
/* redirected to merge_snapshot/merge_thin/merge_mirrors */
{ lvconvert_merge_CMD , lvconvert_merge_cmd } ,
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2018-07-01 00:38:49 +03:00
/* lvconvert VDO pool */
{ lvconvert_to_vdopool_CMD , lvconvert_to_vdopool_cmd } ,
{ lvconvert_to_vdopool_param_CMD , lvconvert_to_vdopool_param_cmd } ,
2018-07-10 21:39:29 +03:00
{ pvscan_display_CMD , pvscan_display_cmd } ,
{ pvscan_cache_CMD , pvscan_cache_cmd } ,
2016-12-09 23:39:57 +03:00
} ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2008-12-17 19:45:32 +03:00
/* Command line args */
2010-11-11 20:29:05 +03:00
unsigned arg_count ( const struct cmd_context * cmd , int a )
2008-12-17 19:45:32 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return cmd - > opt_arg_values ? cmd - > opt_arg_values [ a ] . count : 0 ;
2010-11-11 20:29:05 +03:00
}
unsigned grouped_arg_count ( const struct arg_values * av , int a )
{
2016-08-04 10:32:05 +03:00
return av ? av [ a ] . count : 0 ;
2008-12-17 19:45:32 +03:00
}
2009-11-03 18:50:42 +03:00
unsigned arg_is_set ( const struct cmd_context * cmd , int a )
{
return arg_count ( cmd , a ) ? 1 : 0 ;
}
2014-07-18 23:56:37 +04:00
int arg_from_list_is_set ( const struct cmd_context * cmd , const char * err_found , . . . )
2014-07-11 00:52:53 +04:00
{
int arg ;
va_list ap ;
2014-07-18 23:56:37 +04:00
va_start ( ap , err_found ) ;
2016-06-22 00:24:52 +03:00
while ( ( arg = va_arg ( ap , int ) ) ! = - 1 & & ! arg_is_set ( cmd , arg ) )
2014-07-11 00:52:53 +04:00
/* empty */ ;
va_end ( ap ) ;
2014-07-18 23:56:37 +04:00
if ( arg = = - 1 )
2014-07-11 00:52:53 +04:00
return 0 ;
2014-07-18 23:56:37 +04:00
if ( err_found )
log_error ( " %s %s. " , arg_long_option_name ( arg ) , err_found ) ;
2014-07-11 00:52:53 +04:00
return 1 ;
}
2014-07-18 23:56:37 +04:00
int arg_outside_list_is_set ( const struct cmd_context * cmd , const char * err_found , . . . )
2014-07-11 00:52:53 +04:00
{
int i , arg ;
va_list ap ;
for ( i = 0 ; i < ARG_COUNT ; + + i ) {
switch ( i ) {
/* skip common options */
case commandprofile_ARG :
case config_ARG :
case debug_ARG :
case driverloaded_ARG :
case help2_ARG :
case help_ARG :
case profile_ARG :
case quiet_ARG :
case verbose_ARG :
case version_ARG :
case yes_ARG :
continue ;
}
2016-06-22 00:24:52 +03:00
if ( ! arg_is_set ( cmd , i ) )
2014-07-11 00:52:53 +04:00
continue ; /* unset */
2014-07-18 23:56:37 +04:00
va_start ( ap , err_found ) ;
2014-07-11 00:52:53 +04:00
while ( ( ( arg = va_arg ( ap , int ) ) ! = - 1 ) & & ( arg ! = i ) )
/* empty */ ;
va_end ( ap ) ;
2014-07-18 23:56:37 +04:00
if ( arg = = i )
continue ; /* set and in list */
if ( err_found )
log_error ( " Option %s %s. " , arg_long_option_name ( i ) , err_found ) ;
return 1 ;
2014-07-11 00:52:53 +04:00
}
2014-07-18 23:56:37 +04:00
return 0 ;
2014-07-11 00:52:53 +04:00
}
2014-10-15 17:06:42 +04:00
int arg_from_list_is_negative ( const struct cmd_context * cmd , const char * err_found , . . . )
{
int arg , ret = 0 ;
va_list ap ;
va_start ( ap , err_found ) ;
while ( ( arg = va_arg ( ap , int ) ) ! = - 1 )
if ( arg_sign_value ( cmd , arg , SIGN_NONE ) = = SIGN_MINUS ) {
if ( err_found )
log_error ( " %s %s. " , arg_long_option_name ( arg ) , err_found ) ;
ret = 1 ;
}
va_end ( ap ) ;
return ret ;
}
int arg_from_list_is_zero ( const struct cmd_context * cmd , const char * err_found , . . . )
{
int arg , ret = 0 ;
va_list ap ;
va_start ( ap , err_found ) ;
while ( ( arg = va_arg ( ap , int ) ) ! = - 1 )
if ( arg_is_set ( cmd , arg ) & &
! arg_int_value ( cmd , arg , 0 ) ) {
if ( err_found )
log_error ( " %s %s. " , arg_long_option_name ( arg ) , err_found ) ;
ret = 1 ;
}
va_end ( ap ) ;
return ret ;
}
2010-11-11 20:29:05 +03:00
unsigned grouped_arg_is_set ( const struct arg_values * av , int a )
{
return grouped_arg_count ( av , a ) ? 1 : 0 ;
}
2013-03-22 23:20:33 +04:00
const char * arg_long_option_name ( int a )
{
2017-03-07 20:47:44 +03:00
return _cmdline . opt_names [ a ] . long_opt ;
2013-03-22 23:20:33 +04:00
}
2014-09-19 16:29:12 +04:00
const char * arg_value ( const struct cmd_context * cmd , int a )
2008-12-17 19:45:32 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return cmd - > opt_arg_values ? cmd - > opt_arg_values [ a ] . value : NULL ;
2008-12-17 19:45:32 +03:00
}
2014-09-19 16:29:12 +04:00
const char * arg_str_value ( const struct cmd_context * cmd , int a , const char * def )
2008-12-17 19:45:32 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return arg_is_set ( cmd , a ) ? cmd - > opt_arg_values [ a ] . value : def ;
2010-11-11 20:29:05 +03:00
}
const char * grouped_arg_str_value ( const struct arg_values * av , int a , const char * def )
{
return grouped_arg_count ( av , a ) ? av [ a ] . value : def ;
2008-12-17 19:45:32 +03:00
}
2012-03-06 06:30:49 +04:00
int32_t grouped_arg_int_value ( const struct arg_values * av , int a , const int32_t def )
{
return grouped_arg_count ( av , a ) ? av [ a ] . i_value : def ;
}
2014-09-19 16:29:12 +04:00
int32_t first_grouped_arg_int_value ( const struct cmd_context * cmd , int a , const int32_t def )
2012-03-16 14:43:52 +04:00
{
struct arg_value_group_list * current_group ;
struct arg_values * av ;
2012-04-11 16:49:10 +04:00
dm_list_iterate_items ( current_group , & cmd - > arg_value_groups ) {
2012-03-16 14:43:52 +04:00
av = current_group - > arg_values ;
if ( grouped_arg_count ( av , a ) )
return grouped_arg_int_value ( av , a , def ) ;
}
return def ;
}
2014-09-19 16:29:12 +04:00
int32_t arg_int_value ( const struct cmd_context * cmd , int a , const int32_t def )
2008-12-17 19:45:32 +03:00
{
2017-03-07 20:47:44 +03:00
return ( _cmdline . opt_names [ a ] . flags & ARG_GROUPABLE ) ?
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
first_grouped_arg_int_value ( cmd , a , def ) : ( arg_is_set ( cmd , a ) ? cmd - > opt_arg_values [ a ] . i_value : def ) ;
2008-12-17 19:45:32 +03:00
}
2014-09-19 16:29:12 +04:00
uint32_t arg_uint_value ( const struct cmd_context * cmd , int a , const uint32_t def )
2008-12-17 19:45:32 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return arg_is_set ( cmd , a ) ? cmd - > opt_arg_values [ a ] . ui_value : def ;
2008-12-17 19:45:32 +03:00
}
2014-09-19 16:29:12 +04:00
int64_t arg_int64_value ( const struct cmd_context * cmd , int a , const int64_t def )
2008-12-17 19:45:32 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return arg_is_set ( cmd , a ) ? cmd - > opt_arg_values [ a ] . i64_value : def ;
2008-12-17 19:45:32 +03:00
}
2014-09-19 16:29:12 +04:00
uint64_t arg_uint64_value ( const struct cmd_context * cmd , int a , const uint64_t def )
2008-12-17 19:45:32 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return arg_is_set ( cmd , a ) ? cmd - > opt_arg_values [ a ] . ui64_value : def ;
2008-12-17 19:45:32 +03:00
}
2010-04-29 05:38:12 +04:00
/* No longer used.
2009-11-03 18:50:42 +03:00
const void * arg_ptr_value ( struct cmd_context * cmd , int a , const void * def )
2008-12-17 19:45:32 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return arg_is_set ( cmd , a ) ? cmd - > opt_arg_values [ a ] . ptr : def ;
2008-12-17 19:45:32 +03:00
}
2010-04-29 05:38:12 +04:00
*/
2008-12-17 19:45:32 +03:00
2014-09-19 16:29:12 +04:00
sign_t arg_sign_value ( const struct cmd_context * cmd , int a , const sign_t def )
2008-12-17 19:45:32 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return arg_is_set ( cmd , a ) ? cmd - > opt_arg_values [ a ] . sign : def ;
2008-12-17 19:45:32 +03:00
}
2014-09-19 16:29:12 +04:00
percent_type_t arg_percent_value ( const struct cmd_context * cmd , int a , const percent_type_t def )
2008-12-17 19:45:32 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return arg_is_set ( cmd , a ) ? cmd - > opt_arg_values [ a ] . percent : def ;
2008-12-17 19:45:32 +03:00
}
2010-11-11 20:29:05 +03:00
int arg_count_increment ( struct cmd_context * cmd , int a )
2008-12-17 19:45:32 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return cmd - > opt_arg_values [ a ] . count + + ;
2008-12-17 19:45:32 +03:00
}
2010-11-11 20:29:05 +03:00
int yes_no_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
2004-03-26 15:00:24 +03:00
{
2010-11-11 20:29:05 +03:00
av - > sign = SIGN_NONE ;
av - > percent = PERCENT_NONE ;
2004-03-26 15:00:24 +03:00
2010-11-11 20:29:05 +03:00
if ( ! strcmp ( av - > value , " y " ) ) {
av - > i_value = 1 ;
av - > ui_value = 1 ;
2004-05-24 17:44:10 +04:00
}
2010-11-11 20:29:05 +03:00
else if ( ! strcmp ( av - > value , " n " ) ) {
av - > i_value = 0 ;
av - > ui_value = 0 ;
2004-05-24 17:44:10 +04:00
}
else
return 0 ;
return 1 ;
}
2012-06-27 15:48:31 +04:00
int activation_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
2004-05-24 17:44:10 +04:00
{
2010-11-11 20:29:05 +03:00
av - > sign = SIGN_NONE ;
av - > percent = PERCENT_NONE ;
2004-05-24 17:44:10 +04:00
2010-11-11 20:29:05 +03:00
if ( ! strcmp ( av - > value , " e " ) | | ! strcmp ( av - > value , " ey " ) | |
! strcmp ( av - > value , " ye " ) ) {
2014-09-19 16:28:28 +04:00
av - > i_value = CHANGE_AEY ;
av - > ui_value = CHANGE_AEY ;
2004-05-24 17:44:10 +04:00
}
2015-06-16 18:18:16 +03:00
else if ( ! strcmp ( av - > value , " s " ) | | ! strcmp ( av - > value , " sy " ) | |
! strcmp ( av - > value , " ys " ) ) {
av - > i_value = CHANGE_ASY ;
av - > ui_value = CHANGE_ASY ;
}
2010-11-11 20:29:05 +03:00
else if ( ! strcmp ( av - > value , " y " ) ) {
av - > i_value = CHANGE_AY ;
av - > ui_value = CHANGE_AY ;
2004-03-26 15:00:24 +03:00
}
2012-06-27 16:59:34 +04:00
else if ( ! strcmp ( av - > value , " a " ) | | ! strcmp ( av - > value , " ay " ) | |
! strcmp ( av - > value , " ya " ) ) {
av - > i_value = CHANGE_AAY ;
av - > ui_value = CHANGE_AAY ;
}
2010-11-11 20:29:05 +03:00
else if ( ! strcmp ( av - > value , " n " ) | | ! strcmp ( av - > value , " en " ) | |
! strcmp ( av - > value , " ne " ) ) {
av - > i_value = CHANGE_AN ;
av - > ui_value = CHANGE_AN ;
2004-06-16 21:13:41 +04:00
}
2010-11-11 20:29:05 +03:00
else if ( ! strcmp ( av - > value , " ln " ) | | ! strcmp ( av - > value , " nl " ) ) {
av - > i_value = CHANGE_ALN ;
av - > ui_value = CHANGE_ALN ;
2004-06-16 21:13:41 +04:00
}
2010-11-11 20:29:05 +03:00
else if ( ! strcmp ( av - > value , " ly " ) | | ! strcmp ( av - > value , " yl " ) ) {
av - > i_value = CHANGE_ALY ;
av - > ui_value = CHANGE_ALY ;
2004-03-26 15:00:24 +03:00
}
else
return 0 ;
return 1 ;
}
2016-04-25 14:39:30 +03:00
int cachemode_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
{
cache_mode_t mode ;
if ( ! set_cache_mode ( & mode , av - > value ) )
return_0 ;
av - > i_value = mode ;
av - > ui_value = mode ;
return 1 ;
}
2017-03-03 13:33:10 +03:00
int cachemetadataformat_arg ( struct cmd_context * cmd , struct arg_values * av )
{
if ( ! strcmp ( av - > value , " auto " ) ) {
av - > i_value = CACHE_METADATA_FORMAT_UNSELECTED ;
av - > ui_value = CACHE_METADATA_FORMAT_UNSELECTED ;
} else if ( ! int_arg ( cmd , av ) )
return_0 ;
switch ( av - > i_value ) {
case CACHE_METADATA_FORMAT_UNSELECTED :
case CACHE_METADATA_FORMAT_1 :
case CACHE_METADATA_FORMAT_2 :
return 1 ;
}
log_error ( " Selected cache metadata format %d is not supported. " , av - > i_value ) ;
return 0 ;
}
2012-08-08 00:24:41 +04:00
int discards_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
2012-06-28 16:47:34 +04:00
{
2012-08-08 00:24:41 +04:00
thin_discards_t discards ;
2012-06-28 16:47:34 +04:00
2014-11-08 03:28:38 +03:00
if ( ! set_pool_discards ( & discards , av - > value ) )
2012-06-28 16:47:34 +04:00
return_0 ;
2012-08-08 00:24:41 +04:00
av - > i_value = discards ;
av - > ui_value = discards ;
2012-06-28 16:47:34 +04:00
return 1 ;
}
2014-10-22 23:02:29 +04:00
int mirrorlog_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
{
int log_count ;
2014-11-08 03:28:38 +03:00
if ( ! set_mirror_log_count ( & log_count , av - > value ) )
2014-10-22 23:02:29 +04:00
return_0 ;
av - > i_value = log_count ;
av - > ui_value = log_count ;
return 1 ;
}
2010-11-11 20:29:05 +03:00
int metadatatype_arg ( struct cmd_context * cmd , struct arg_values * av )
2004-03-26 15:00:24 +03:00
{
2010-11-11 20:29:05 +03:00
return get_format_by_name ( cmd , av - > value ) ? 1 : 0 ;
2004-03-26 15:00:24 +03:00
}
2010-11-11 20:29:05 +03:00
static int _get_int_arg ( struct arg_values * av , char * * ptr )
2004-03-26 15:00:24 +03:00
{
char * val ;
2013-09-18 04:16:48 +04:00
unsigned long long v ;
2004-03-26 15:00:24 +03:00
2010-11-11 20:29:05 +03:00
av - > percent = PERCENT_NONE ;
2006-09-26 13:35:43 +04:00
2010-11-11 20:29:05 +03:00
val = av - > value ;
2004-03-26 15:00:24 +03:00
switch ( * val ) {
case ' + ' :
2010-11-11 20:29:05 +03:00
av - > sign = SIGN_PLUS ;
2004-03-26 15:00:24 +03:00
val + + ;
break ;
case ' - ' :
2010-11-11 20:29:05 +03:00
av - > sign = SIGN_MINUS ;
2004-03-26 15:00:24 +03:00
val + + ;
break ;
default :
2010-11-11 20:29:05 +03:00
av - > sign = SIGN_NONE ;
2004-03-26 15:00:24 +03:00
}
if ( ! isdigit ( * val ) )
return 0 ;
2013-09-18 04:16:48 +04:00
errno = 0 ;
v = strtoull ( val , ptr , 10 ) ;
2004-03-26 15:00:24 +03:00
2013-09-18 04:16:48 +04:00
if ( * ptr = = val | | errno )
2004-03-26 15:00:24 +03:00
return 0 ;
2017-11-27 12:21:21 +03:00
av - > i_value = ( v < INT32_MAX ) ? ( int32_t ) v : INT32_MAX ;
av - > ui_value = ( v < UINT32_MAX ) ? ( uint32_t ) v : UINT32_MAX ;
av - > i64_value = ( v < INT64_MAX ) ? ( int64_t ) v : INT64_MAX ;
av - > ui64_value = ( v < UINT64_MAX ) ? ( uint64_t ) v : UINT64_MAX ;
2004-03-26 15:00:24 +03:00
return 1 ;
}
2014-10-30 16:52:37 +03:00
static int _get_percent_arg ( struct arg_values * av , const char * ptr )
{
if ( ! strcasecmp ( ptr , " V " ) | | ! strcasecmp ( ptr , " VG " ) )
av - > percent = PERCENT_VG ;
else if ( ! strcasecmp ( ptr , " L " ) | | ! strcasecmp ( ptr , " LV " ) )
av - > percent = PERCENT_LV ;
else if ( ! strcasecmp ( ptr , " P " ) | | ! strcasecmp ( ptr , " PV " ) | |
! strcasecmp ( ptr , " PVS " ) )
av - > percent = PERCENT_PVS ;
else if ( ! strcasecmp ( ptr , " F " ) | | ! strcasecmp ( ptr , " FR " ) | |
! strcasecmp ( ptr , " FREE " ) )
av - > percent = PERCENT_FREE ;
else if ( ! strcasecmp ( ptr , " O " ) | | ! strcasecmp ( ptr , " OR " ) | |
! strcasecmp ( ptr , " ORIGIN " ) )
av - > percent = PERCENT_ORIGIN ;
else {
log_error ( " Specified %%%s is unknown. " , ptr ) ;
return 0 ;
}
return 1 ;
}
2007-11-14 03:08:25 +03:00
/* Size stored in sectors */
2014-10-30 16:52:37 +03:00
static int _size_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) ,
struct arg_values * av , int factor , int percent )
2004-03-26 15:00:24 +03:00
{
char * ptr ;
int i ;
2009-07-06 23:13:26 +04:00
static const char * suffixes = " kmgtpebs " ;
2004-03-26 15:00:24 +03:00
char * val ;
double v ;
2009-07-06 23:13:26 +04:00
uint64_t v_tmp , adjustment ;
2017-07-17 22:25:50 +03:00
const char * radixchar = nl_langinfo ( RADIXCHAR ) ? : " . " ;
2004-03-26 15:00:24 +03:00
2010-11-11 20:29:05 +03:00
av - > percent = PERCENT_NONE ;
2006-09-26 13:35:43 +04:00
2010-11-11 20:29:05 +03:00
val = av - > value ;
2004-03-26 15:00:24 +03:00
switch ( * val ) {
case ' + ' :
2010-11-11 20:29:05 +03:00
av - > sign = SIGN_PLUS ;
2004-03-26 15:00:24 +03:00
val + + ;
break ;
case ' - ' :
2010-11-11 20:29:05 +03:00
av - > sign = SIGN_MINUS ;
2004-03-26 15:00:24 +03:00
val + + ;
break ;
default :
2010-11-11 20:29:05 +03:00
av - > sign = SIGN_NONE ;
2004-03-26 15:00:24 +03:00
}
2017-07-16 11:30:07 +03:00
if ( * val = = ' + ' | | * val = = ' - ' ) {
log_error ( " Multiple sign symbols detected. " ) ;
2004-03-26 15:00:24 +03:00
return 0 ;
2017-07-16 11:30:07 +03:00
}
2004-03-26 15:00:24 +03:00
2017-07-17 22:25:50 +03:00
if ( ! isdigit ( * val ) & & ( * val ! = ' . ' ) & & ( * val ! = radixchar [ 0 ] ) ) {
2017-07-17 21:36:39 +03:00
log_error ( " Size requires number argument. " ) ;
return 0 ;
}
2017-07-16 11:28:02 +03:00
errno = 0 ;
2004-03-26 15:00:24 +03:00
v = strtod ( val , & ptr ) ;
2017-07-17 22:25:50 +03:00
if ( * ptr = = ' . ' & & radixchar [ 0 ] ! = ' . ' ) {
2014-10-28 13:20:33 +03:00
/*
* Maybe user has non - C locale with different decimal point ?
2017-07-17 22:25:50 +03:00
* Lets be tolerant and retry with standard C locales
2014-10-28 13:20:33 +03:00
*/
if ( setlocale ( LC_ALL , " C " ) ) {
2017-07-16 11:28:02 +03:00
errno = 0 ;
2014-10-28 13:20:33 +03:00
v = strtod ( val , & ptr ) ;
setlocale ( LC_ALL , " " ) ;
}
}
2017-07-16 11:28:02 +03:00
if ( ptr = = val | | errno ) {
log_error ( " Can't parse size argument at '%c'.%s%s " , ptr [ 0 ] , ( errno ) ? " " : " " , ( errno ) ? strerror ( errno ) : " " ) ;
2004-03-26 15:00:24 +03:00
return 0 ;
2017-07-16 11:28:02 +03:00
}
2004-03-26 15:00:24 +03:00
2014-10-30 16:52:37 +03:00
if ( percent & & * ptr = = ' % ' ) {
if ( ! _get_percent_arg ( av , + + ptr ) )
return_0 ;
if ( ( uint64_t ) v > = UINT32_MAX ) {
log_error ( " Percentage is too big (>=%d%%). " , UINT32_MAX ) ;
return 0 ;
}
} else if ( * ptr ) {
2004-03-26 15:00:24 +03:00
for ( i = strlen ( suffixes ) - 1 ; i > = 0 ; i - - )
if ( suffixes [ i ] = = tolower ( ( int ) * ptr ) )
break ;
2009-07-06 23:13:26 +04:00
if ( i < 0 ) {
2017-07-16 11:30:07 +03:00
log_error ( " Can't parse size argument. " ) ;
2004-03-26 15:00:24 +03:00
return 0 ;
2009-07-06 23:13:26 +04:00
} else if ( i = = 7 ) {
2011-08-04 18:11:28 +04:00
/* v is already in sectors */
2011-08-04 18:54:48 +04:00
;
2009-07-06 23:13:26 +04:00
} else if ( i = = 6 ) {
/* bytes */
v_tmp = ( uint64_t ) v ;
adjustment = v_tmp % 512 ;
if ( adjustment ) {
v_tmp + = ( 512 - adjustment ) ;
log_error ( " Size is not a multiple of 512. "
2009-07-07 05:51:00 +04:00
" Try using % " PRIu64 " or % " PRIu64 " . " ,
2009-07-06 23:13:26 +04:00
v_tmp - 512 , v_tmp ) ;
return 0 ;
}
v / = 512 ;
} else {
/* all other units: kmgtpe */
while ( i - - > 0 )
v * = 1024 ;
v * = 2 ;
}
2004-03-26 15:00:24 +03:00
} else
v * = factor ;
2017-07-16 10:53:49 +03:00
/* Compare (double) */
if ( v > = ( double ) ( UINT64_MAX > > SECTOR_SHIFT ) ) {
2013-05-29 16:50:21 +04:00
log_error ( " Size is too big (>=16EiB). " ) ;
return 0 ;
}
2017-11-27 12:21:21 +03:00
av - > i_value = ( v < INT32_MAX ) ? ( int32_t ) v : INT32_MAX ;
av - > ui_value = ( v < UINT32_MAX ) ? ( uint32_t ) v : UINT32_MAX ;
av - > i64_value = ( v < INT64_MAX ) ? ( int64_t ) v : INT64_MAX ;
av - > ui64_value = ( v < UINT64_MAX ) ? ( uint64_t ) v : UINT64_MAX ;
2004-03-26 15:00:24 +03:00
return 1 ;
}
2017-03-02 21:53:01 +03:00
/* negative not accepted */
2010-11-11 20:29:05 +03:00
int size_kb_arg ( struct cmd_context * cmd , struct arg_values * av )
2017-03-02 21:53:01 +03:00
{
if ( ! _size_arg ( cmd , av , 2 , 0 ) )
return 0 ;
if ( av - > sign = = SIGN_MINUS ) {
log_error ( " Size may not be negative. " ) ;
return 0 ;
}
return 1 ;
}
int ssize_kb_arg ( struct cmd_context * cmd , struct arg_values * av )
2004-03-26 15:00:24 +03:00
{
2014-10-30 16:52:37 +03:00
return _size_arg ( cmd , av , 2 , 0 ) ;
2004-03-26 15:00:24 +03:00
}
2010-11-11 20:29:05 +03:00
int size_mb_arg ( struct cmd_context * cmd , struct arg_values * av )
2004-03-26 15:00:24 +03:00
{
2017-03-02 21:53:01 +03:00
if ( ! _size_arg ( cmd , av , 2048 , 0 ) )
return 0 ;
2017-03-08 01:55:07 +03:00
if ( ( av - > sign = = SIGN_MINUS ) | | ( av - > sign = = SIGN_PLUS ) ) {
log_error ( " Size may not be relative/signed. " ) ;
2017-03-02 21:53:01 +03:00
return 0 ;
}
return 1 ;
2014-10-30 16:52:37 +03:00
}
2017-03-02 21:53:01 +03:00
int ssize_mb_arg ( struct cmd_context * cmd , struct arg_values * av )
2014-10-30 16:52:37 +03:00
{
2017-03-02 21:53:01 +03:00
return _size_arg ( cmd , av , 2048 , 0 ) ;
2004-03-26 15:00:24 +03:00
}
2017-03-08 01:55:07 +03:00
int psize_mb_arg ( struct cmd_context * cmd , struct arg_values * av )
{
if ( ! _size_arg ( cmd , av , 2048 , 0 ) )
return 0 ;
if ( av - > sign = = SIGN_MINUS ) {
log_error ( " Size may not be negative. " ) ;
return 0 ;
}
return 1 ;
}
int nsize_mb_arg ( struct cmd_context * cmd , struct arg_values * av )
{
if ( ! _size_arg ( cmd , av , 2048 , 0 ) )
return 0 ;
if ( av - > sign = = SIGN_PLUS ) {
log_error ( " Size may not be positive. " ) ;
return 0 ;
}
return 1 ;
}
2010-11-11 20:29:05 +03:00
int int_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
2004-03-26 15:00:24 +03:00
{
char * ptr ;
2010-11-11 20:29:05 +03:00
if ( ! _get_int_arg ( av , & ptr ) | | ( * ptr ) | | ( av - > sign = = SIGN_MINUS ) )
2004-03-26 15:00:24 +03:00
return 0 ;
return 1 ;
}
2017-01-03 15:02:52 +03:00
int uint32_arg ( struct cmd_context * cmd , struct arg_values * av )
{
if ( ! int_arg ( cmd , av ) | | ( av - > ui64_value > UINT32_MAX ) )
return 0 ;
return 1 ;
}
2010-11-11 20:29:05 +03:00
int int_arg_with_sign ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
2004-03-26 15:00:24 +03:00
{
char * ptr ;
2010-11-11 20:29:05 +03:00
if ( ! _get_int_arg ( av , & ptr ) | | ( * ptr ) )
2004-03-26 15:00:24 +03:00
return 0 ;
return 1 ;
}
2017-03-11 00:22:13 +03:00
int int_arg_with_plus ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
{
char * ptr ;
if ( ! _get_int_arg ( av , & ptr ) | | ( * ptr ) )
return 0 ;
if ( av - > sign = = SIGN_MINUS ) {
log_error ( " Number may not be negative. " ) ;
return 0 ;
}
return 1 ;
}
2017-03-08 01:55:07 +03:00
static int _extents_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) ,
2017-03-24 02:03:25 +03:00
struct arg_values * av )
2006-09-26 13:35:43 +04:00
{
char * ptr ;
2010-11-11 20:29:05 +03:00
if ( ! _get_int_arg ( av , & ptr ) )
2006-09-26 13:35:43 +04:00
return 0 ;
if ( ! * ptr )
return 1 ;
if ( * ptr + + ! = ' % ' )
return 0 ;
2014-10-30 16:52:37 +03:00
if ( ! _get_percent_arg ( av , ptr ) )
return_0 ;
if ( av - > ui64_value > = UINT32_MAX ) {
log_error ( " Percentage is too big (>=%d%%). " , UINT32_MAX ) ;
2006-09-26 13:35:43 +04:00
return 0 ;
2014-10-30 16:52:37 +03:00
}
2006-09-26 13:35:43 +04:00
return 1 ;
}
2017-03-08 01:55:07 +03:00
int extents_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) ,
struct arg_values * av )
{
if ( ! _extents_arg ( cmd , av ) )
return 0 ;
if ( ( av - > sign = = SIGN_MINUS ) | | ( av - > sign = = SIGN_PLUS ) ) {
log_error ( " Extents may not be relative/signed. " ) ;
return 0 ;
}
return 1 ;
}
int sextents_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) ,
struct arg_values * av )
{
return _extents_arg ( cmd , av ) ;
}
int pextents_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) ,
struct arg_values * av )
{
if ( ! _extents_arg ( cmd , av ) )
return 0 ;
if ( av - > sign = = SIGN_MINUS ) {
log_error ( " Extents may not be negative. " ) ;
return 0 ;
}
return 1 ;
}
int nextents_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) ,
struct arg_values * av )
{
if ( ! _extents_arg ( cmd , av ) )
return 0 ;
if ( av - > sign = = SIGN_PLUS ) {
log_error ( " Extents may not be positive. " ) ;
return 0 ;
}
return 1 ;
}
2010-07-09 19:34:40 +04:00
int string_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) ,
2010-11-11 20:29:05 +03:00
struct arg_values * av __attribute__ ( ( unused ) ) )
2004-03-26 15:00:24 +03:00
{
return 1 ;
}
2010-11-11 20:29:05 +03:00
int tag_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
2004-03-26 15:00:24 +03:00
{
2010-11-11 20:29:05 +03:00
char * pos = av - > value ;
2004-03-26 15:00:24 +03:00
if ( * pos = = ' @ ' )
pos + + ;
2010-11-17 13:19:29 +03:00
if ( ! validate_tag ( pos ) )
2004-03-26 15:00:24 +03:00
return 0 ;
2010-11-11 20:29:05 +03:00
av - > value = pos ;
2007-11-16 00:59:11 +03:00
2004-03-26 15:00:24 +03:00
return 1 ;
}
2010-11-11 20:29:05 +03:00
int permission_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
2004-03-26 15:00:24 +03:00
{
2010-11-11 20:29:05 +03:00
av - > sign = SIGN_NONE ;
2004-03-26 15:00:24 +03:00
2010-11-11 20:29:05 +03:00
if ( ( ! strcmp ( av - > value , " rw " ) ) | | ( ! strcmp ( av - > value , " wr " ) ) )
av - > ui_value = LVM_READ | LVM_WRITE ;
2004-03-26 15:00:24 +03:00
2010-11-11 20:29:05 +03:00
else if ( ! strcmp ( av - > value , " r " ) )
av - > ui_value = LVM_READ ;
2004-03-26 15:00:24 +03:00
else
return 0 ;
return 1 ;
}
2010-11-11 20:29:05 +03:00
int alloc_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
2004-05-19 02:12:53 +04:00
{
alloc_policy_t alloc ;
2010-11-11 20:29:05 +03:00
av - > sign = SIGN_NONE ;
2004-05-19 02:12:53 +04:00
2010-11-11 20:29:05 +03:00
alloc = get_alloc_from_string ( av - > value ) ;
2004-05-19 02:12:53 +04:00
if ( alloc = = ALLOC_INVALID )
return 0 ;
2010-11-11 20:29:05 +03:00
av - > ui_value = ( uint32_t ) alloc ;
2004-05-19 02:12:53 +04:00
return 1 ;
}
2015-03-05 23:00:44 +03:00
int locktype_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
{
lock_type_t lock_type ;
av - > sign = SIGN_NONE ;
lock_type = get_lock_type_from_string ( av - > value ) ;
if ( lock_type = = LOCK_TYPE_INVALID )
return 0 ;
return 1 ;
}
2010-11-11 20:29:05 +03:00
int segtype_arg ( struct cmd_context * cmd , struct arg_values * av )
2004-05-11 20:01:58 +04:00
{
2014-10-11 20:36:40 +04:00
struct segment_type * segtype ;
2015-09-22 21:04:12 +03:00
const char * str = ( ! strcmp ( av - > value , SEG_TYPE_NAME_LINEAR ) ) ? SEG_TYPE_NAME_STRIPED : av - > value ;
2014-10-11 20:36:40 +04:00
if ( ! ( segtype = get_segtype_from_string ( cmd , str ) ) )
return_0 ;
return ( ! segtype_is_unknown ( segtype ) ) ? 1 : 0 ;
2004-05-11 20:01:58 +04:00
}
2007-11-09 19:51:54 +03:00
/*
* Positive integer , zero or " auto " .
*/
2010-11-11 20:29:05 +03:00
int readahead_arg ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , struct arg_values * av )
2007-11-09 19:51:54 +03:00
{
2010-11-11 20:29:05 +03:00
if ( ! strcasecmp ( av - > value , " auto " ) ) {
av - > ui_value = DM_READ_AHEAD_AUTO ;
2007-11-09 19:51:54 +03:00
return 1 ;
}
2010-11-11 20:29:05 +03:00
if ( ! strcasecmp ( av - > value , " none " ) ) {
av - > ui_value = DM_READ_AHEAD_NONE ;
2007-11-09 19:51:54 +03:00
return 1 ;
}
2014-10-30 16:52:37 +03:00
if ( ! _size_arg ( cmd , av , 1 , 0 ) )
2007-11-14 03:08:25 +03:00
return 0 ;
2010-11-11 20:29:05 +03:00
if ( av - > sign = = SIGN_MINUS )
2007-11-14 03:08:25 +03:00
return 0 ;
return 1 ;
2007-11-09 19:51:54 +03:00
}
2018-04-18 13:56:32 +03:00
int regionsize_mb_arg ( struct cmd_context * cmd , struct arg_values * av )
2017-02-08 00:12:24 +03:00
{
int pagesize = lvm_getpagesize ( ) ;
uint32_t num ;
if ( ! _size_arg ( cmd , av , 2048 , 0 ) )
return 0 ;
if ( av - > sign = = SIGN_MINUS ) {
log_error ( " Region size may not be negative. " ) ;
return 0 ;
}
if ( av - > ui64_value > UINT32_MAX ) {
log_error ( " Region size is too big (max %u). " , UINT32_MAX ) ;
return 0 ;
}
num = av - > ui_value ;
if ( ! num ) {
log_error ( " Region size may not be zero. " ) ;
return 0 ;
}
if ( num % ( pagesize > > SECTOR_SHIFT ) ) {
log_error ( " Region size must be a multiple of machine memory page size (%d bytes). " ,
pagesize ) ;
return 0 ;
}
if ( ! is_power_of_2 ( num ) ) {
log_error ( " Region size must be a power of 2. " ) ;
return 0 ;
}
return 1 ;
}
Allow 'all' and 'unmanaged' values for --vgmetadatacopies.
Allowing an 'all' and 'unmanaged' value is more intuitive, and
provides a simple way for users to get back to original LVM behavior
of metadata written to all PVs in the volume group.
If the user requests "--vgmetadatacopies unmanaged", this instructs
LVM not to manage the ignore bits to achieve a specific number of
metadata copies in the volume group. The user is free to use
"pvchange --metadataignore" to control the mdas on a per-PV basis.
If the user requests "--vgmetadatacopies all", this instructs LVM
to do 2 things: 1) clear all ignore bits, and 2) set the "unmanaged"
policy going forward.
Internally, we use the special MAX_UINT32 value to indicate 'all'.
This 'just' works since it's the largest value possible for the
field and so all 'ignore' bits on all mdas in the VG will get
cleared inside _vg_metadata_balance(). However, after we've
called the _vg_metadata_balance function, we check for the special
'all' value, and if set, we write the "unmanaged" value into the
metadata. As such, the 'all' value is never written to disk.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
2010-06-29 00:40:01 +04:00
/*
* Non - zero , positive integer , " all " , or " unmanaged "
*/
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
int vgmetadatacopies_arg ( struct cmd_context * cmd , struct arg_values * av )
{
if ( ! strcasecmp ( av - > value , " all " ) ) {
av - > ui_value = VGMETADATACOPIES_ALL ;
return 1 ;
}
if ( ! strcasecmp ( av - > value , " unmanaged " ) ) {
av - > ui_value = VGMETADATACOPIES_UNMANAGED ;
return 1 ;
}
return int_arg ( cmd , av ) ;
}
int pvmetadatacopies_arg ( struct cmd_context * cmd , struct arg_values * av )
{
int num ;
if ( ! int_arg ( cmd , av ) )
return 0 ;
num = av - > i_value ;
if ( ( num ! = 0 ) & & ( num ! = 1 ) & & ( num ! = 2 ) )
return 0 ;
return 1 ;
}
2010-11-11 20:29:05 +03:00
int metadatacopies_arg ( struct cmd_context * cmd , struct arg_values * av )
Allow 'all' and 'unmanaged' values for --vgmetadatacopies.
Allowing an 'all' and 'unmanaged' value is more intuitive, and
provides a simple way for users to get back to original LVM behavior
of metadata written to all PVs in the volume group.
If the user requests "--vgmetadatacopies unmanaged", this instructs
LVM not to manage the ignore bits to achieve a specific number of
metadata copies in the volume group. The user is free to use
"pvchange --metadataignore" to control the mdas on a per-PV basis.
If the user requests "--vgmetadatacopies all", this instructs LVM
to do 2 things: 1) clear all ignore bits, and 2) set the "unmanaged"
policy going forward.
Internally, we use the special MAX_UINT32 value to indicate 'all'.
This 'just' works since it's the largest value possible for the
field and so all 'ignore' bits on all mdas in the VG will get
cleared inside _vg_metadata_balance(). However, after we've
called the _vg_metadata_balance function, we check for the special
'all' value, and if set, we write the "unmanaged" value into the
metadata. As such, the 'all' value is never written to disk.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
2010-06-29 00:40:01 +04:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( ! strncmp ( cmd - > name , " pv " , 2 ) )
return pvmetadatacopies_arg ( cmd , av ) ;
if ( ! strncmp ( cmd - > name , " vg " , 2 ) )
return vgmetadatacopies_arg ( cmd , av ) ;
return 0 ;
}
int polloperation_arg ( struct cmd_context * cmd , struct arg_values * av )
{
if ( ! strcmp ( av - > value , " pvmove " ) | |
! strcmp ( av - > value , " convert " ) | |
! strcmp ( av - > value , " merge " ) | |
! strcmp ( av - > value , " merge_thin " ) )
return 1 ;
return 0 ;
}
int writemostly_arg ( struct cmd_context * cmd , struct arg_values * av )
{
/* Could we verify that a PV arg looks like /dev/foo ? */
return 1 ;
}
int syncaction_arg ( struct cmd_context * cmd , struct arg_values * av )
{
if ( ! strcmp ( av - > value , " check " ) | |
! strcmp ( av - > value , " repair " ) )
return 1 ;
return 0 ;
}
int reportformat_arg ( struct cmd_context * cmd , struct arg_values * av )
{
if ( ! strcmp ( av - > value , " basic " ) | |
! strcmp ( av - > value , " json " ) )
return 1 ;
return 0 ;
}
int configreport_arg ( struct cmd_context * cmd , struct arg_values * av )
{
if ( ! strcmp ( av - > value , " log " ) | |
! strcmp ( av - > value , " vg " ) | |
! strcmp ( av - > value , " lv " ) | |
! strcmp ( av - > value , " pv " ) | |
! strcmp ( av - > value , " pvseg " ) | |
! strcmp ( av - > value , " seg " ) )
return 1 ;
return 0 ;
}
int configtype_arg ( struct cmd_context * cmd , struct arg_values * av )
{
if ( ! strcmp ( av - > value , " current " ) | |
! strcmp ( av - > value , " default " ) | |
! strcmp ( av - > value , " diff " ) | |
! strcmp ( av - > value , " full " ) | |
! strcmp ( av - > value , " list " ) | |
! strcmp ( av - > value , " missing " ) | |
! strcmp ( av - > value , " new " ) | |
! strcmp ( av - > value , " profilable " ) | |
! strcmp ( av - > value , " profilable-command " ) | |
! strcmp ( av - > value , " profilable-metadata " ) )
return 1 ;
return 0 ;
}
/*
* FIXME : there ' s been a confusing mixup among :
* resizeable , resizable , allocatable , allocation .
*
* resizeable and allocatable are the preferred ,
* standard option names .
*
* The dispreferred " resizable " is always translated
* to the preferred resizeable .
*
* But , the dispreferred " allocation " name seems
* to translate to either or both resizeable
* and allocatable , it ' s not clear which .
*/
static int _opt_standard_to_synonym ( const char * cmd_name , int opt )
{
switch ( opt ) {
case mirrorlog_ARG :
return corelog_ARG ;
case resizeable_ARG :
return resizable_ARG ;
case allocatable_ARG :
return allocation_ARG ;
case activate_ARG :
return available_ARG ;
case rebuild_ARG :
return raidrebuild_ARG ;
case syncaction_ARG :
return raidsyncaction_ARG ;
case writemostly_ARG :
return raidwritemostly_ARG ;
case minrecoveryrate_ARG :
return raidminrecoveryrate_ARG ;
case maxrecoveryrate_ARG :
return raidmaxrecoveryrate_ARG ;
case writebehind_ARG :
return raidwritebehind_ARG ;
case virtualsize_ARG :
return virtualoriginsize_ARG ;
2017-01-19 22:47:24 +03:00
case splitcache_ARG :
return split_ARG ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
case pvmetadatacopies_ARG :
if ( ! strncmp ( cmd_name , " pv " , 2 ) )
return metadatacopies_ARG ;
return 0 ;
case vgmetadatacopies_ARG :
if ( ! strncmp ( cmd_name , " vg " , 2 ) )
return metadatacopies_ARG ;
return 0 ;
}
return 0 ;
}
static int _opt_synonym_to_standard ( const char * cmd_name , int opt )
{
switch ( opt ) {
case corelog_ARG :
return mirrorlog_ARG ;
case resizable_ARG :
return resizeable_ARG ;
case allocation_ARG :
return allocatable_ARG ;
case available_ARG :
return activate_ARG ;
case raidrebuild_ARG :
return rebuild_ARG ;
case raidsyncaction_ARG :
return syncaction_ARG ;
case raidwritemostly_ARG :
return writemostly_ARG ;
case raidminrecoveryrate_ARG :
return minrecoveryrate_ARG ;
case raidmaxrecoveryrate_ARG :
return maxrecoveryrate_ARG ;
case raidwritebehind_ARG :
return writebehind_ARG ;
case virtualoriginsize_ARG :
return virtualsize_ARG ;
2017-01-19 22:47:24 +03:00
case split_ARG :
return splitcache_ARG ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
case metadatacopies_ARG :
if ( ! strncmp ( cmd_name , " pv " , 2 ) )
return pvmetadatacopies_ARG ;
if ( ! strncmp ( cmd_name , " vg " , 2 ) )
return vgmetadatacopies_ARG ;
return 0 ;
}
return 0 ;
}
static void _add_getopt_arg ( int arg_enum , char * * optstrp , struct option * * longoptsp ) ;
/*
* The valid args for a command name in general is a union of
* required_opt_args and optional_opt_args for all commands [ ]
* with the given name .
*/
static void _set_valid_args_for_command_name ( int ci )
{
int all_args [ ARG_COUNT ] = { 0 } ;
int num_args = 0 ;
int opt_enum ; /* foo_ARG from args.h */
int opt_syn ;
2017-04-03 23:24:46 +03:00
int i , ro , oo , io ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* all_args is indexed by the foo_ARG enum vals
*/
for ( i = 0 ; i < COMMAND_COUNT ; i + + ) {
if ( strcmp ( commands [ i ] . name , command_names [ ci ] . name ) )
continue ;
for ( ro = 0 ; ro < commands [ i ] . ro_count ; ro + + ) {
opt_enum = commands [ i ] . required_opt_args [ ro ] . opt ;
all_args [ opt_enum ] = 1 ;
2010-07-01 00:21:03 +04:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
for ( oo = 0 ; oo < commands [ i ] . oo_count ; oo + + ) {
opt_enum = commands [ i ] . optional_opt_args [ oo ] . opt ;
all_args [ opt_enum ] = 1 ;
}
2017-04-03 23:24:46 +03:00
for ( io = 0 ; io < commands [ i ] . io_count ; io + + ) {
opt_enum = commands [ i ] . ignore_opt_args [ io ] . opt ;
all_args [ opt_enum ] = 1 ;
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
Allow 'all' and 'unmanaged' values for --vgmetadatacopies.
Allowing an 'all' and 'unmanaged' value is more intuitive, and
provides a simple way for users to get back to original LVM behavior
of metadata written to all PVs in the volume group.
If the user requests "--vgmetadatacopies unmanaged", this instructs
LVM not to manage the ignore bits to achieve a specific number of
metadata copies in the volume group. The user is free to use
"pvchange --metadataignore" to control the mdas on a per-PV basis.
If the user requests "--vgmetadatacopies all", this instructs LVM
to do 2 things: 1) clear all ignore bits, and 2) set the "unmanaged"
policy going forward.
Internally, we use the special MAX_UINT32 value to indicate 'all'.
This 'just' works since it's the largest value possible for the
field and so all 'ignore' bits on all mdas in the VG will get
cleared inside _vg_metadata_balance(). However, after we've
called the _vg_metadata_balance function, we check for the special
'all' value, and if set, we write the "unmanaged" value into the
metadata. As such, the 'all' value is never written to disk.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
2010-06-29 00:40:01 +04:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
for ( i = 0 ; i < ARG_COUNT ; i + + ) {
if ( all_args [ i ] ) {
2017-03-07 20:47:44 +03:00
opt_enum = _cmdline . opt_names [ i ] . opt_enum ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
command_names [ ci ] . valid_args [ num_args ] = opt_enum ;
num_args + + ;
/* Automatically recognize --extents in addition to --size. */
if ( opt_enum = = size_ARG ) {
command_names [ ci ] . valid_args [ num_args ] = extents_ARG ;
num_args + + ;
}
/* Recognize synonyms */
if ( ( opt_syn = _opt_standard_to_synonym ( command_names [ ci ] . name , opt_enum ) ) ) {
command_names [ ci ] . valid_args [ num_args ] = opt_syn ;
num_args + + ;
}
/*
* " --allocation " is a weird option that seems to be
* a synonym for either allocatable or resizeable ,
* each which already have their own other synonyms ,
* so just add allocation whenever either is seen .
*/
if ( ( opt_enum = = allocatable_ARG ) | | ( opt_enum = = resizeable_ARG ) ) {
command_names [ ci ] . valid_args [ num_args ] = allocation_ARG ;
num_args + + ;
}
2010-07-01 00:21:03 +04:00
}
Allow 'all' and 'unmanaged' values for --vgmetadatacopies.
Allowing an 'all' and 'unmanaged' value is more intuitive, and
provides a simple way for users to get back to original LVM behavior
of metadata written to all PVs in the volume group.
If the user requests "--vgmetadatacopies unmanaged", this instructs
LVM not to manage the ignore bits to achieve a specific number of
metadata copies in the volume group. The user is free to use
"pvchange --metadataignore" to control the mdas on a per-PV basis.
If the user requests "--vgmetadatacopies all", this instructs LVM
to do 2 things: 1) clear all ignore bits, and 2) set the "unmanaged"
policy going forward.
Internally, we use the special MAX_UINT32 value to indicate 'all'.
This 'just' works since it's the largest value possible for the
field and so all 'ignore' bits on all mdas in the VG will get
cleared inside _vg_metadata_balance(). However, after we've
called the _vg_metadata_balance function, we check for the special
'all' value, and if set, we write the "unmanaged" value into the
metadata. As such, the 'all' value is never written to disk.
Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
2010-06-29 00:40:01 +04:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
command_names [ ci ] . num_args = num_args ;
}
2017-10-18 17:57:46 +03:00
static struct command_name * _find_command_name ( const char * name )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
{
int i ;
for ( i = 0 ; i < MAX_COMMAND_NAMES ; i + + ) {
if ( ! command_names [ i ] . name )
break ;
if ( ! strcmp ( command_names [ i ] . name , name ) )
return & command_names [ i ] ;
}
return NULL ;
}
2017-02-18 20:50:22 +03:00
static const struct command_function * _find_command_id_function ( int command_enum )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
{
int i ;
2017-02-10 20:36:11 +03:00
if ( ! command_enum )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return NULL ;
2017-02-10 20:36:11 +03:00
for ( i = 0 ; i < CMD_COUNT ; i + + ) {
2017-10-18 17:57:46 +03:00
if ( _command_functions [ i ] . command_enum = = command_enum )
return & _command_functions [ i ] ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
return NULL ;
}
2018-02-09 12:51:02 +03:00
static void _unregister_commands ( void )
{
_cmdline . commands = NULL ;
_cmdline . num_commands = 0 ;
_cmdline . command_names = NULL ;
_cmdline . num_command_names = 0 ;
memset ( & commands , 0 , sizeof ( commands ) ) ;
}
2017-04-29 00:27:19 +03:00
int lvm_register_commands ( struct cmd_context * cmd , const char * run_name )
2004-03-26 15:00:24 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
int i ;
2017-02-16 22:59:52 +03:00
/* already initialized */
if ( _cmdline . commands )
2017-02-17 00:26:42 +03:00
return 1 ;
2017-02-16 22:59:52 +03:00
2018-02-09 12:51:02 +03:00
memset ( & commands , 0 , sizeof ( commands ) ) ;
2017-02-10 20:36:11 +03:00
/*
* populate commands [ ] array with command definitions
* by parsing command - lines . in / command - lines - input . h
*/
2017-04-29 00:27:19 +03:00
if ( ! define_commands ( cmd , run_name ) ) {
2017-02-17 00:26:42 +03:00
log_error ( INTERNAL_ERROR " Failed to parse command definitions. " ) ;
return 0 ;
2017-02-10 20:36:11 +03:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
_cmdline . commands = commands ;
_cmdline . num_commands = COMMAND_COUNT ;
2017-02-10 20:36:11 +03:00
for ( i = 0 ; i < COMMAND_COUNT ; i + + ) {
commands [ i ] . command_enum = command_id_to_enum ( commands [ i ] . command_id ) ;
2017-02-17 00:26:42 +03:00
if ( ! commands [ i ] . command_enum ) {
log_error ( INTERNAL_ERROR " Failed to find command id %s. " , commands [ i ] . command_id ) ;
_cmdline . commands = NULL ;
_cmdline . num_commands = 0 ;
return 0 ;
}
2017-02-10 20:36:11 +03:00
/* new style */
commands [ i ] . functions = _find_command_id_function ( commands [ i ] . command_enum ) ;
/* old style */
if ( ! commands [ i ] . functions ) {
2017-10-18 17:57:46 +03:00
struct command_name * cname = _find_command_name ( commands [ i ] . name ) ;
2017-02-14 01:11:04 +03:00
if ( cname )
commands [ i ] . fn = cname - > fn ;
2017-02-10 20:36:11 +03:00
}
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
_cmdline . command_names = command_names ;
2017-04-29 00:27:19 +03:00
_cmdline . num_command_names = 0 ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
for ( i = 0 ; i < MAX_COMMAND_NAMES ; i + + ) {
if ( ! command_names [ i ] . name )
break ;
_cmdline . num_command_names + + ;
2004-03-26 15:00:24 +03:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
for ( i = 0 ; i < _cmdline . num_command_names ; i + + )
_set_valid_args_for_command_name ( i ) ;
2017-02-17 00:26:42 +03:00
return 1 ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
2017-03-07 21:08:23 +03:00
struct lv_prop * get_lv_prop ( int lvp_enum )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
{
if ( ! lvp_enum )
return NULL ;
2017-03-07 21:08:23 +03:00
return & lv_props [ lvp_enum ] ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
2017-03-07 21:08:23 +03:00
struct lv_type * get_lv_type ( int lvt_enum )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
{
if ( ! lvt_enum )
return NULL ;
2017-03-07 21:08:23 +03:00
return & lv_types [ lvt_enum ] ;
2004-03-26 15:00:24 +03:00
}
2016-12-07 23:30:57 +03:00
struct command * get_command ( int cmd_enum )
{
int i ;
for ( i = 0 ; i < COMMAND_COUNT ; i + + ) {
2017-02-10 20:36:11 +03:00
if ( commands [ i ] . command_enum = = cmd_enum )
2016-12-07 23:30:57 +03:00
return & commands [ i ] ;
}
return NULL ;
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* Also see merge_synonym ( ) . The command definitions
* are written using just one variation of the option
* name ( opt below ) . This function checks if the user
* entered a synonym ( arg_is_set ) .
*/
static int _opt_synonym_is_set ( struct cmd_context * cmd , int opt_std )
2004-03-26 15:00:24 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
int opt_syn = _opt_standard_to_synonym ( cmd - > name , opt_std ) ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return opt_syn & & arg_is_set ( cmd , opt_syn ) ;
2004-03-26 15:00:24 +03:00
}
2017-04-10 21:41:47 +03:00
static int _command_optional_opt_matches ( struct cmd_context * cmd , int ci , int oo )
{
int opt_enum = commands [ ci ] . optional_opt_args [ oo ] . opt ;
if ( val_bit_is_set ( commands [ ci ] . optional_opt_args [ oo ] . def . val_bits , conststr_VAL ) ) {
if ( ! strcmp ( commands [ ci ] . optional_opt_args [ oo ] . def . str , arg_str_value ( cmd , opt_enum , " " ) ) )
return 1 ;
return 0 ;
}
if ( val_bit_is_set ( commands [ ci ] . optional_opt_args [ oo ] . def . val_bits , constnum_VAL ) ) {
if ( commands [ ci ] . optional_opt_args [ oo ] . def . num = = arg_int_value ( cmd , opt_enum , 0 ) )
return 1 ;
return 0 ;
}
return 1 ;
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
static int _command_ignore_opt_matches ( struct cmd_context * cmd , int ci , int io )
2004-03-26 15:00:24 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
int opt_enum = commands [ ci ] . ignore_opt_args [ io ] . opt ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( val_bit_is_set ( commands [ ci ] . ignore_opt_args [ io ] . def . val_bits , conststr_VAL ) ) {
if ( ! strcmp ( commands [ ci ] . ignore_opt_args [ io ] . def . str , arg_str_value ( cmd , opt_enum , " " ) ) )
return 1 ;
return 0 ;
}
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( val_bit_is_set ( commands [ ci ] . ignore_opt_args [ io ] . def . val_bits , constnum_VAL ) ) {
if ( commands [ ci ] . ignore_opt_args [ io ] . def . num = = arg_int_value ( cmd , opt_enum , 0 ) )
return 1 ;
return 0 ;
}
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return 1 ;
2004-03-26 15:00:24 +03:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
static int _command_required_opt_matches ( struct cmd_context * cmd , int ci , int ro )
2004-03-26 15:00:24 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
int opt_enum = commands [ ci ] . required_opt_args [ ro ] . opt ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( arg_is_set ( cmd , opt_enum ) | | _opt_synonym_is_set ( cmd , opt_enum ) )
goto check_val ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* For some commands , - - size and - - extents are interchangable ,
* but command [ ] definitions use only - - size .
*/
2017-03-03 23:21:36 +03:00
if ( ( opt_enum = = size_ARG ) & & arg_is_set ( cmd , extents_ARG ) & &
command_has_alternate_extents ( commands [ ci ] . name ) )
goto check_val ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return 0 ;
/*
* If the definition requires a literal string or number , check
* that the arg value matches .
*/
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
check_val :
if ( val_bit_is_set ( commands [ ci ] . required_opt_args [ ro ] . def . val_bits , conststr_VAL ) ) {
if ( ! strcmp ( commands [ ci ] . required_opt_args [ ro ] . def . str , arg_str_value ( cmd , opt_enum , " " ) ) )
return 1 ;
/* Special case: "raid0" (any raid<N>), matches command def "raid" */
if ( ! strcmp ( commands [ ci ] . required_opt_args [ ro ] . def . str , " raid " ) & &
! strncmp ( arg_str_value ( cmd , opt_enum , " " ) , " raid " , 4 ) )
return 1 ;
return 0 ;
}
if ( val_bit_is_set ( commands [ ci ] . required_opt_args [ ro ] . def . val_bits , constnum_VAL ) ) {
if ( commands [ ci ] . required_opt_args [ ro ] . def . num = = arg_int_value ( cmd , opt_enum , 0 ) )
return 1 ;
return 0 ;
}
return 1 ;
2004-03-26 15:00:24 +03:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
static int _command_required_pos_matches ( struct cmd_context * cmd , int ci , int rp , char * * argv )
2004-03-26 15:00:24 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
const char * name ;
/*
* rp is the index in required_pos_args [ ] of the required positional arg .
* The pos values begin with 1 , so the first positional arg has
* pos 1 , rp 0.
*/
if ( argv [ rp ] ) {
/* FIXME: can we match object type better than just checking something exists? */
/* Some cases could be validated by looking at defs.types and at the value. */
return 1 ;
}
/*
* If Select is specified as a pos arg , then that pos arg can be
* empty if - - select is used .
*/
if ( ( val_bit_is_set ( commands [ ci ] . required_pos_args [ rp ] . def . val_bits , select_VAL ) ) & &
arg_is_set ( cmd , select_ARG ) )
return 1 ;
/*
* For an lvcreate command with VG as the first required positional arg ,
* the VG position is allowed to be empty if - - name VG / LV is used , or if the
* LVM_VG_NAME env var is set .
*
* - - thinpool VG / LV and - - cachepool VG / LV can also function like - - name
* to provide the VG name in place of the positional arg .
*/
if ( ! strcmp ( cmd - > name , " lvcreate " ) & &
( rp = = 0 ) & &
val_bit_is_set ( commands [ ci ] . required_pos_args [ rp ] . def . val_bits , vg_VAL ) & &
2017-02-15 21:07:51 +03:00
( arg_is_set ( cmd , name_ARG ) | |
arg_is_set ( cmd , thinpool_ARG ) | |
arg_is_set ( cmd , cachepool_ARG ) | |
2017-02-15 23:09:45 +03:00
getenv ( " LVM_VG_NAME " ) ) ) {
2017-02-15 21:07:51 +03:00
2017-02-15 23:09:45 +03:00
if ( getenv ( " LVM_VG_NAME " ) )
2017-02-15 21:07:51 +03:00
return 1 ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( ( name = arg_str_value ( cmd , name_ARG , NULL ) ) ) {
2017-02-15 21:07:51 +03:00
if ( strstr ( name , " / " ) )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return 1 ;
}
if ( ( name = arg_str_value ( cmd , thinpool_ARG , NULL ) ) ) {
if ( strstr ( name , " / " ) )
return 1 ;
}
if ( ( name = arg_str_value ( cmd , cachepool_ARG , NULL ) ) ) {
if ( strstr ( name , " / " ) )
return 1 ;
}
}
return 0 ;
2004-03-26 15:00:24 +03:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* Match what the user typed with a one specific command definition / prototype
* from commands [ ] . If nothing matches , it ' s not a valid command . The match
* is based on command name , required opt args and required pos args .
*
* Find an entry in the commands array that matches based the arg values .
*
* If the cmd has opt or pos args set that are not accepted by command ,
* we can : silently ignore them , warn they are not being used , or fail .
* Default should probably be to warn and continue .
*
* For each command [ i ] , check how many required opt / pos args cmd matches .
* Save the command [ i ] that matches the most .
*
* commands [ i ] . cmd_flags & CMD_FLAG_ONE_REQUIRED_OPT means
* any one item from commands [ i ] . required_opt_args needs to be
* set to match .
*
* required_pos_args [ 0 ] . types & select_VAL means
* argv [ ] in that pos can be NULL if arg_is_set ( select_ARG )
*/
/* The max number of unused options we keep track of to warn about */
# define MAX_UNUSED_COUNT 8
2017-04-12 22:05:36 +03:00
# define MAX_OPTS_MSG 64
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
static struct command * _find_command ( struct cmd_context * cmd , const char * path , int * argc , char * * argv )
{
const char * name ;
2017-04-12 22:05:36 +03:00
char opts_msg [ MAX_OPTS_MSG ] ;
char check_opts_msg [ MAX_OPTS_MSG ] ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
int match_required , match_ro , match_rp , match_type , match_unused , mismatch_required ;
int best_i = 0 , best_required = 0 , best_type = 0 , best_unused = 0 ;
2017-02-14 01:11:04 +03:00
int close_i = 0 , close_ro = 0 , close_type = 0 ;
2017-04-27 22:21:01 +03:00
int only_i = 0 ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
int temp_unused_options [ MAX_UNUSED_COUNT ] ;
int temp_unused_count ;
int best_unused_options [ MAX_UNUSED_COUNT ] = { 0 } ;
int best_unused_count = 0 ;
int opts_match_count , opts_unmatch_count ;
int ro , rp ;
int i , j ;
int opt_enum , opt_i ;
int accepted , count ;
2017-04-27 22:21:01 +03:00
int variants = 0 ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
name = last_path_component ( path ) ;
2017-04-27 22:21:01 +03:00
/* factor_common_options() is only for usage, so cname->variants is not set. */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
for ( i = 0 ; i < COMMAND_COUNT ; i + + ) {
if ( strcmp ( name , commands [ i ] . name ) )
continue ;
2017-04-27 22:21:01 +03:00
variants + + ;
}
for ( i = 0 ; i < COMMAND_COUNT ; i + + ) {
if ( strcmp ( name , commands [ i ] . name ) )
continue ;
if ( variants = = 1 )
only_i = i ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/* For help and version just return the first entry with matching name. */
2017-02-14 18:49:26 +03:00
if ( arg_is_set ( cmd , help_ARG ) | | arg_is_set ( cmd , help2_ARG ) | | arg_is_set ( cmd , longhelp_ARG ) | | arg_is_set ( cmd , version_ARG ) )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return & commands [ i ] ;
2018-07-23 19:08:12 +03:00
/*
* The ' lvconvert LV ' cmd def matches any lvconvert cmd which throws off
* nearest - command partial - match suggestions . Make it a special case so
* that it won ' t be used as a close match . If the command has any option
* set ( other than - v ) , don ' t attempt to match it to ' lvconvert LV ' .
*/
if ( commands [ i ] . command_enum = = lvconvert_plain_CMD ) {
if ( cmd - > opt_count - cmd - > opt_arg_values [ verbose_ARG ] . count )
continue ;
}
2017-03-24 02:03:25 +03:00
match_required = 0 ; /* required parameters that match */
match_ro = 0 ; /* required opt_args that match */
match_rp = 0 ; /* required pos_args that match */
match_type = 0 ; /* type arg matches */
match_unused = 0 ; /* options set that are not accepted by command */
mismatch_required = 0 ; /* required parameters that do not match */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
temp_unused_count = 0 ;
memset ( & temp_unused_options , 0 , sizeof ( temp_unused_options ) ) ;
/* if the command name alone is enough, then that's a match */
if ( ! commands [ i ] . ro_count & & ! commands [ i ] . rp_count )
match_required = 1 ;
/* match required_opt_args */
for ( ro = 0 ; ro < commands [ i ] . ro_count ; ro + + ) {
if ( _command_required_opt_matches ( cmd , i , ro ) ) {
/* log_warn("match %d ro opt %d", i, commands[i].required_opt_args[ro].opt); */
match_required + + ;
match_ro + + ;
if ( commands [ i ] . required_opt_args [ ro ] . opt = = type_ARG )
match_type = 1 ;
} else {
/* cmd is missing a required opt arg */
/* log_warn("mismatch %d ro opt %d", i, commands[i].required_opt_args[ro].opt); */
mismatch_required + + ;
}
}
/*
* Special case where missing required_opt_arg ' s does not matter
* if one required_opt_arg did match .
*/
if ( commands [ i ] . cmd_flags & CMD_FLAG_ONE_REQUIRED_OPT ) {
if ( match_ro ) {
/* one or more of the required_opt_args is used */
mismatch_required = 0 ;
} else {
/* not even one of the required_opt_args is used */
mismatch_required = 1 ;
}
}
/* match required_pos_args */
for ( rp = 0 ; rp < commands [ i ] . rp_count ; rp + + ) {
if ( _command_required_pos_matches ( cmd , i , rp , argv ) ) {
/* log_warn("match %d rp %d", i, commands[i].required_pos_args[rp].pos); */
match_required + + ;
match_rp + + ;
} else {
/* cmd is missing a required pos arg */
/* log_warn("mismatch %d rp %d", i, commands[i].required_pos_args[rp].pos); */
mismatch_required + + ;
}
}
/* if cmd is missing any required opt/pos args, it can't be this command. */
if ( mismatch_required ) {
/* save "closest" command that doesn't match */
if ( ( match_type & & ! close_type ) | |
( ( match_type = = close_type ) & & ( match_ro > close_ro ) ) ) {
close_i = i ;
close_ro = match_ro ;
close_type = match_type ;
}
continue ;
}
if ( ! match_required )
continue ;
/* Count the command name as a match if all the required opt/pos args match. */
if ( ( commands [ i ] . ro_count | | commands [ i ] . rp_count ) & & ( match_ro | | match_rp ) )
match_required + + ;
/* log_warn("command %d has match_required %d match_ro %d match_rp %d",
i , match_required , match_ro , match_rp ) ; */
/* Count how many options cmd has set that are not accepted by commands[i]. */
/* FIXME: also count unused positional args? */
for ( opt_i = 0 ; opt_i < ARG_COUNT ; opt_i + + ) {
if ( ! arg_is_set ( cmd , opt_i ) )
continue ;
if ( ! ( opt_enum = _opt_synonym_to_standard ( cmd - > name , opt_i ) ) )
opt_enum = opt_i ;
/* extents are not used in command definitions */
if ( opt_enum = = extents_ARG )
continue ;
accepted = 0 ;
/* NB in some cases required_opt_args are optional */
for ( j = 0 ; j < commands [ i ] . ro_count ; j + + ) {
if ( commands [ i ] . required_opt_args [ j ] . opt = = opt_enum ) {
accepted = 1 ;
break ;
}
}
if ( accepted )
continue ;
for ( j = 0 ; j < commands [ i ] . oo_count ; j + + ) {
2017-04-10 21:41:47 +03:00
if ( ( commands [ i ] . optional_opt_args [ j ] . opt = = opt_enum ) & &
_command_optional_opt_matches ( cmd , i , j ) ) {
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
accepted = 1 ;
break ;
}
}
for ( j = 0 ; j < commands [ i ] . io_count ; j + + ) {
if ( ( commands [ i ] . ignore_opt_args [ j ] . opt = = opt_enum ) & &
_command_ignore_opt_matches ( cmd , i , j ) ) {
accepted = 1 ;
break ;
}
}
if ( ! accepted ) {
match_unused + + ;
if ( temp_unused_count < MAX_UNUSED_COUNT )
temp_unused_options [ temp_unused_count + + ] = opt_enum ;
}
}
/*
* Choose the best match , which in general is the command with
2017-03-13 20:54:56 +03:00
* the most matching required_ { opt , pos } , but it could be a
* command with fewer required_ { opt , pos } matches in the case
* where cmddef1 has more required matches , but a match_unused
* and cmddef2 has fewer required matches , but zero match_unused .
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
*
* A match is better if :
* . more required opt / pos args match
* . type arg matches when other doesn ' t
2017-03-13 20:54:56 +03:00
* . less unused options
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
*/
2017-03-13 20:54:56 +03:00
if ( ! best_required | |
( ( match_required > best_required ) & & ! match_unused ) | |
( match_unused < best_unused ) | |
( match_type > best_type ) | |
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
( ( match_required = = best_required ) & & ( match_type = = best_type ) & & ( match_unused < best_unused ) ) ) {
/* log_warn("best %d has match_required %d match_ro %d match_rp %d",
i , match_required , match_ro , match_rp ) ; */
best_i = i ;
best_required = match_required ;
best_type = match_type ;
best_unused = match_unused ;
best_unused_count = temp_unused_count ;
memcpy ( & best_unused_options , & temp_unused_options , sizeof ( best_unused_options ) ) ;
}
}
if ( ! best_required ) {
/* cmd did not have all the required opt/pos args of any command */
2017-04-25 20:19:11 +03:00
log_error ( " No command with matching syntax recognised. Run '%s --help' for more information. " , name ) ;
2017-04-27 22:21:01 +03:00
if ( only_i ) {
log_warn ( " Correct command syntax is: " ) ;
print_usage ( & _cmdline . commands [ only_i ] , 0 , 0 ) ;
} else if ( close_ro ) {
2017-03-02 18:37:54 +03:00
log_warn ( " Nearest similar command has syntax: " ) ;
print_usage ( & _cmdline . commands [ close_i ] , 0 , 0 ) ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
return NULL ;
}
/*
* If the user passed an option that is not accepted by the matched
* command , then fail .
*
* FIXME : it might be nice to have a config setting that would turn
* these into warnings , and just ignore the unused options .
*/
if ( best_unused_count ) {
for ( i = 0 ; i < best_unused_count ; i + + ) {
2017-04-10 21:41:47 +03:00
const char * opt_val = NULL ;
opt_enum = best_unused_options [ i ] ;
opt_val = arg_value ( cmd , opt_enum ) ;
2017-04-25 20:19:11 +03:00
log_error ( " Command does not accept option: %s%s%s. " ,
2017-04-10 21:41:47 +03:00
arg_long_option_name ( opt_enum ) ,
opt_val ? " " : " " , opt_val ? : " " ) ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
return NULL ;
}
/*
* If the user provided a positional arg that is not accepted by
* the mached command , then fail .
*
* If the last required_pos_arg or the last optional_pos_arg may repeat ,
* then there won ' t be unused positional args .
*
* FIXME : same question as above , should there be a config setting
* to just warn / ignore about unused positional args ?
*/
count = commands [ best_i ] . rp_count ;
if ( count & & ( commands [ best_i ] . required_pos_args [ count - 1 ] . def . flags & ARG_DEF_FLAG_MAY_REPEAT ) )
goto out ;
count = commands [ best_i ] . op_count ;
if ( count & & ( commands [ best_i ] . optional_pos_args [ count - 1 ] . def . flags & ARG_DEF_FLAG_MAY_REPEAT ) )
goto out ;
for ( count = 0 ; ; count + + ) {
if ( ! argv [ count ] )
break ;
if ( count > = ( commands [ best_i ] . rp_count + commands [ best_i ] . op_count ) ) {
2017-04-25 20:19:11 +03:00
log_error ( " Command does not accept argument: %s. " , argv [ count ] ) ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/* FIXME: to warn/ignore, clear so it can't be used when processing. */
/*
argv [ count ] = NULL ;
( * argc ) - - ;
*/
return NULL ;
}
}
out :
/*
* Check any rules related to option combinations .
* Other rules are checked after VG is read .
*/
for ( i = 0 ; i < commands [ best_i ] . rule_count ; i + + ) {
struct cmd_rule * rule ;
rule = & commands [ best_i ] . rules [ i ] ;
/*
* The rule wants to validate options ( check_opts ) . That can be
* done here if the only qualification for the validation is
* other options ( and not specific LV type or LV property which
* are not known here . )
*/
if ( rule - > check_opts_count & & ! rule - > lvt_bits & & ! rule - > lvp_bits ) {
/*
* When no opt is specified for applying the rule , then
* the rule is always applied , otherwise the rule is
* applied when the specific option is set .
*/
if ( rule - > opts_count & &
! opt_in_list_is_set ( cmd , rule - > opts , rule - > opts_count , NULL , NULL ) )
continue ;
opt_in_list_is_set ( cmd , rule - > check_opts , rule - > check_opts_count ,
& opts_match_count , & opts_unmatch_count ) ;
if ( opts_match_count & & ( rule - > rule = = RULE_INVALID ) ) {
2017-04-12 22:05:36 +03:00
memset ( opts_msg , 0 , sizeof ( opts_msg ) ) ;
memset ( check_opts_msg , 0 , sizeof ( check_opts_msg ) ) ;
if ( rule - > opts_count )
opt_array_to_str ( cmd , rule - > opts , rule - > opts_count , opts_msg , sizeof ( opts_msg ) ) ;
opt_array_to_str ( cmd , rule - > check_opts , rule - > check_opts_count , check_opts_msg , sizeof ( check_opts_msg ) ) ;
if ( rule - > opts_count )
2017-04-25 20:19:11 +03:00
log_error ( " Command does not accept option combination: %s with %s " , opts_msg , check_opts_msg ) ;
2017-04-12 22:05:36 +03:00
else
2017-04-25 20:19:11 +03:00
log_error ( " Command does not accept options: %s " , check_opts_msg ) ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return NULL ;
}
if ( opts_unmatch_count & & ( rule - > rule = = RULE_REQUIRE ) ) {
2017-04-12 22:05:36 +03:00
memset ( check_opts_msg , 0 , sizeof ( check_opts_msg ) ) ;
opt_array_to_str ( cmd , rule - > check_opts , rule - > check_opts_count , check_opts_msg , sizeof ( check_opts_msg ) ) ;
2017-04-25 20:19:11 +03:00
log_error ( " Command requires options: %s " , check_opts_msg ) ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return NULL ;
}
}
}
2017-11-13 17:43:32 +03:00
log_debug ( " Recognised command %s (id %d / enum %d). " ,
commands [ best_i ] . command_id , best_i , commands [ best_i ] . command_enum ) ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return & commands [ best_i ] ;
2004-03-26 15:00:24 +03:00
}
2007-09-21 22:06:33 +04:00
static void _short_usage ( const char * name )
{
2007-09-21 22:43:55 +04:00
log_error ( " Run `%s --help' for more information. " , name ) ;
2007-09-21 22:06:33 +04:00
}
2017-03-07 21:01:06 +03:00
static int _usage ( const char * name , int longhelp , int skip_notes )
2004-03-26 15:00:24 +03:00
{
2017-10-18 17:57:46 +03:00
struct command_name * cname = _find_command_name ( name ) ;
2017-04-01 13:17:16 +03:00
struct command * cmd = NULL ;
2017-03-03 01:10:40 +03:00
int show_full = longhelp ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
int i ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( ! cname ) {
2008-12-19 17:43:02 +03:00
log_print ( " %s: no such command. " , name ) ;
return 0 ;
}
2004-03-26 15:00:24 +03:00
2017-03-08 01:55:07 +03:00
configure_command_option_values ( name ) ;
2017-02-21 20:40:51 +03:00
/*
* Looks at all variants of each command name and figures out
* which options are common to all variants ( for compact output )
*/
2017-03-24 02:03:25 +03:00
factor_common_options ( ) ;
2017-02-21 20:40:51 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
log_print ( " %s - %s \n " , name , cname - > desc ) ;
2017-02-21 20:40:51 +03:00
/* Reduce the default output when there are several variants. */
if ( cname - > variants < 3 )
2017-03-03 01:10:40 +03:00
show_full = 1 ;
2017-02-21 20:40:51 +03:00
2017-02-10 20:36:11 +03:00
for ( i = 0 ; i < COMMAND_COUNT ; i + + ) {
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( strcmp ( _cmdline . commands [ i ] . name , name ) )
continue ;
2017-02-17 20:45:13 +03:00
if ( _cmdline . commands [ i ] . cmd_flags & CMD_FLAG_PREVIOUS_SYNTAX )
continue ;
2017-03-03 01:10:40 +03:00
if ( ( _cmdline . commands [ i ] . cmd_flags & CMD_FLAG_SECONDARY_SYNTAX ) & & ! show_full )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
continue ;
2017-04-04 00:17:37 +03:00
log_very_verbose ( " Command definition index %d enum %d id %s " ,
_cmdline . commands [ i ] . command_index ,
_cmdline . commands [ i ] . command_enum ,
_cmdline . commands [ i ] . command_id ) ;
2017-04-04 00:36:04 +03:00
print_usage ( & _cmdline . commands [ i ] , 1 , 1 ) ;
2017-02-10 20:36:11 +03:00
cmd = & _cmdline . commands [ i ] ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
/* Common options are printed once for all variants of a command name. */
2017-04-01 13:17:16 +03:00
if ( ! cmd ) {
log_error ( INTERNAL_ERROR " Command %s not found. " , name ) ;
return 0 ;
}
2017-04-04 00:36:04 +03:00
print_usage_common_cmd ( cname , cmd ) ;
print_usage_common_lvm ( cname , cmd ) ;
2017-03-03 01:10:40 +03:00
2017-03-07 21:01:06 +03:00
if ( skip_notes )
return 1 ;
2017-03-03 01:10:40 +03:00
if ( longhelp )
2017-03-07 21:01:06 +03:00
print_usage_notes ( cname ) ;
2017-03-03 01:10:40 +03:00
else
2017-03-01 02:04:46 +03:00
log_print ( " Use --longhelp to show all options and advanced commands. " ) ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2008-12-19 17:43:02 +03:00
return 1 ;
2004-03-26 15:00:24 +03:00
}
2017-02-14 18:49:26 +03:00
static void _usage_all ( void )
{
int i ;
for ( i = 0 ; i < MAX_COMMAND_NAMES ; i + + ) {
if ( ! command_names [ i ] . name )
break ;
2017-03-07 21:01:06 +03:00
_usage ( command_names [ i ] . name , 1 , 1 ) ;
2017-02-14 18:49:26 +03:00
}
2017-03-07 21:01:06 +03:00
print_usage_notes ( NULL ) ;
2017-02-14 18:49:26 +03:00
}
2004-03-26 15:00:24 +03:00
/*
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
* Sets up the arguments to pass to getopt_long ( ) .
*
* getopt_long ( ) takes a string of short option characters
* where the char is followed by " : " if the option takes an arg ,
* e . g . " abc:d: " This string is created in optstrp .
*
* getopt_long ( ) also takes an array of struct option which
* has the name of the long option , if it takes an arg , etc ,
* e . g .
*
* option long_options [ ] = {
* { " foo " , required_argument , 0 , 0 } ,
* { " bar " , no_argument , 0 , ' b ' }
* } ;
*
* this array is created in longoptsp .
*
* Original comment :
2004-03-26 15:00:24 +03:00
* Sets up the short and long argument . If there
* is no short argument then the index of the
* argument in the the_args array is set as the
* long opt value . Yuck . Of course this means we
* can ' t have more than ' a ' long arguments .
*/
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2017-03-07 20:47:44 +03:00
static void _add_getopt_arg ( int opt_enum , char * * optstrp , struct option * * longoptsp )
2004-03-26 15:00:24 +03:00
{
2017-03-07 20:47:44 +03:00
struct opt_name * a = _cmdline . opt_names + opt_enum ;
2004-03-26 15:00:24 +03:00
2017-03-07 20:47:44 +03:00
if ( a - > short_opt ) {
* ( * optstrp ) + + = a - > short_opt ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( a - > val_enum )
* ( * optstrp ) + + = ' : ' ;
2004-03-26 15:00:24 +03:00
}
# ifdef HAVE_GETOPTLONG
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/* long_arg is "--foo", so +2 is the offset of the name after "--" */
2017-03-07 20:47:44 +03:00
if ( * ( a - > long_opt + 2 ) ) {
( * longoptsp ) - > name = a - > long_opt + 2 ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
( * longoptsp ) - > has_arg = a - > val_enum ? 1 : 0 ;
( * longoptsp ) - > flag = NULL ;
/*
* When getopt_long ( ) sees an option that has an associated
* single letter , it returns the ascii value of that letter .
* e . g . getopt_long ( ) returns 100 for ' - d ' or ' - - debug '
* ( 100 is the ascii value of ' d ' ) .
*
* When getopt_long ( ) sees an option that does not have an
* associated single letter , it returns the value of the
* the enum for that long option name plus 128.
* e . g . getopt_long ( ) returns 139 for - - cachepool
* ( 11 is the enum value for - - cachepool , so 11 + 128 )
*/
2017-03-07 20:47:44 +03:00
if ( a - > short_opt )
( * longoptsp ) - > val = a - > short_opt ;
2004-03-26 15:00:24 +03:00
else
2017-03-07 20:47:44 +03:00
( * longoptsp ) - > val = opt_enum + 128 ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
( * longoptsp ) + + ;
2004-03-26 15:00:24 +03:00
}
# endif
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* getopt_long ( ) has returned goval which indicates which option it ' s found .
* We need to translate that goval to an enum value from the args array .
*
* For options with both long and short forms , goval is the character value
* of the short option . For options with only a long form , goval is the
* corresponding enum value plus 128.
*
* The trick with character values is that different long options share the
* same single - letter short form . So , we have to translate goval to an
* enum using only the set of valid options for the given command . And ,
* a command name is not allowed to use two different long options that
* have the same single - letter short form .
*/
static int _find_arg ( const char * cmd_name , int goval )
2004-03-26 15:00:24 +03:00
{
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
struct command_name * cname ;
int arg_enum ;
int i ;
2004-03-26 15:00:24 +03:00
2017-10-18 17:57:46 +03:00
if ( ! ( cname = _find_command_name ( cmd_name ) ) )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return - 1 ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
for ( i = 0 ; i < cname - > num_args ; i + + ) {
arg_enum = cname - > valid_args [ i ] ;
2017-03-07 20:47:44 +03:00
/* assert arg_enum == _cmdline.opt_names[arg_enum].arg_enum */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/* the value returned by getopt matches the ascii value of single letter option */
2017-03-07 20:47:44 +03:00
if ( _cmdline . opt_names [ arg_enum ] . short_opt & & ( goval = = _cmdline . opt_names [ arg_enum ] . short_opt ) )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return arg_enum ;
/* the value returned by getopt matches the enum value plus 128 */
2017-03-07 20:47:44 +03:00
if ( ! _cmdline . opt_names [ arg_enum ] . short_opt & & ( goval = = ( arg_enum + 128 ) ) )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
return arg_enum ;
2004-03-26 15:00:24 +03:00
}
2010-11-11 20:29:05 +03:00
return - 1 ;
2004-03-26 15:00:24 +03:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
static int _process_command_line ( struct cmd_context * cmd , int * argc , char * * * argv )
2004-03-26 15:00:24 +03:00
{
char str [ ( ( ARG_COUNT + 1 ) * 2 ) + 1 ] , * ptr = str ;
struct option opts [ ARG_COUNT + 1 ] , * o = opts ;
2017-03-07 20:47:44 +03:00
struct opt_name * a ;
2010-11-11 20:29:05 +03:00
struct arg_values * av ;
struct arg_value_group_list * current_group = NULL ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
int arg_enum ; /* e.g. foo_ARG */
int goval ; /* the number returned from getopt_long identifying what it found */
int i ;
if ( ! ( cmd - > opt_arg_values = dm_pool_zalloc ( cmd - > mem , sizeof ( * cmd - > opt_arg_values ) * ARG_COUNT ) ) ) {
2010-11-11 20:29:05 +03:00
log_fatal ( " Unable to allocate memory for command line arguments. " ) ;
return 0 ;
2004-03-26 15:00:24 +03:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* create the short - form character array ( str ) and the long - form option
* array ( opts ) to pass to the getopt_long ( ) function . IOW we generate
2017-03-07 20:47:44 +03:00
* the arguments to pass to getopt_long ( ) from the opt_names data .
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
*/
2017-03-24 02:03:25 +03:00
if ( cmd - > cname )
for ( i = 0 ; i < cmd - > cname - > num_args ; i + + )
_add_getopt_arg ( cmd - > cname - > valid_args [ i ] , & ptr , & o ) ;
2004-03-26 15:00:24 +03:00
* ptr = ' \0 ' ;
memset ( o , 0 , sizeof ( * o ) ) ;
optarg = 0 ;
optind = OPTIND_INIT ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
while ( ( goval = GETOPTLONG_FN ( * argc , * argv , str , opts , NULL ) ) > = 0 ) {
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( goval = = ' ? ' )
2004-03-26 15:00:24 +03:00
return 0 ;
2018-07-23 19:08:12 +03:00
cmd - > opt_count + + ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* translate the option value used by getopt into the enum
* value ( e . g . foo_ARG ) from the args array .
*/
if ( ( arg_enum = _find_arg ( cmd - > name , goval ) ) < 0 ) {
2004-03-26 15:00:24 +03:00
log_fatal ( " Unrecognised option. " ) ;
return 0 ;
}
2017-03-07 20:47:44 +03:00
a = _cmdline . opt_names + arg_enum ;
2010-11-11 20:29:05 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
av = & cmd - > opt_arg_values [ arg_enum ] ;
2010-11-11 20:29:05 +03:00
if ( a - > flags & ARG_GROUPABLE ) {
2016-06-17 12:03:14 +03:00
/*
* Start a new group of arguments :
* - the first time ,
* - or if a non - countable argument is repeated ,
* - or if argument has higher priority than current group .
*/
if ( ! current_group | |
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
( current_group - > arg_values [ arg_enum ] . count & & ! ( a - > flags & ARG_COUNTABLE ) ) | |
2016-06-17 12:03:14 +03:00
( current_group - > prio < a - > prio ) ) {
2010-11-11 20:29:05 +03:00
/* FIXME Reduce size including only groupable args */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( ! ( current_group = dm_pool_zalloc ( cmd - > mem , sizeof ( struct arg_value_group_list ) + sizeof ( * cmd - > opt_arg_values ) * ARG_COUNT ) ) ) {
2010-11-11 20:29:05 +03:00
log_fatal ( " Unable to allocate memory for command line arguments. " ) ;
return 0 ;
}
2016-06-17 12:03:14 +03:00
current_group - > prio = a - > prio ;
2010-11-11 20:29:05 +03:00
dm_list_add ( & cmd - > arg_value_groups , & current_group - > list ) ;
}
/* Maintain total argument count as well as count within each group */
av - > count + + ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
av = & current_group - > arg_values [ arg_enum ] ;
2010-11-11 20:29:05 +03:00
}
if ( av - > count & & ! ( a - > flags & ARG_COUNTABLE ) ) {
log_error ( " Option%s%c%s%s may not be repeated. " ,
2017-03-07 20:47:44 +03:00
a - > short_opt ? " - " : " " ,
a - > short_opt ? : ' ' ,
( a - > short_opt & & a - > long_opt ) ?
" / " : " " , a - > long_opt ? : " " ) ;
2007-08-21 23:46:36 +04:00
return 0 ;
}
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( a - > val_enum ) {
2004-03-26 15:00:24 +03:00
if ( ! optarg ) {
log_error ( " Option requires argument. " ) ;
return 0 ;
}
2010-11-11 20:29:05 +03:00
av - > value = optarg ;
2004-03-26 15:00:24 +03:00
2017-03-07 20:47:44 +03:00
if ( ! val_names [ a - > val_enum ] . fn ( cmd , av ) ) {
log_error ( " Invalid argument for %s: %s " , a - > long_opt , optarg ) ;
2004-03-26 15:00:24 +03:00
return 0 ;
}
}
2010-11-11 20:29:05 +03:00
av - > count + + ;
2004-03-26 15:00:24 +03:00
}
* argc - = optind ;
* argv + = optind ;
return 1 ;
}
2013-07-19 23:37:43 +04:00
static void _copy_arg_values ( struct arg_values * av , int oldarg , int newarg )
{
const struct arg_values * old = av + oldarg ;
struct arg_values * new = av + newarg ;
new - > count = old - > count ;
new - > value = old - > value ;
new - > i_value = old - > i_value ;
new - > ui_value = old - > ui_value ;
new - > i64_value = old - > i64_value ;
new - > ui64_value = old - > ui64_value ;
new - > sign = old - > sign ;
}
2004-03-26 15:00:24 +03:00
static int _merge_synonym ( struct cmd_context * cmd , int oldarg , int newarg )
{
2013-07-19 23:37:43 +04:00
struct arg_values * av ;
struct arg_value_group_list * current_group ;
2004-03-26 15:00:24 +03:00
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , oldarg ) & & arg_is_set ( cmd , newarg ) ) {
2004-03-26 15:00:24 +03:00
log_error ( " %s and %s are synonyms. Please only supply one. " ,
2017-03-07 20:47:44 +03:00
_cmdline . opt_names [ oldarg ] . long_opt , _cmdline . opt_names [ newarg ] . long_opt ) ;
2004-03-26 15:00:24 +03:00
return 0 ;
}
2013-07-19 23:37:43 +04:00
/* Not groupable? */
2017-03-07 20:47:44 +03:00
if ( ! ( _cmdline . opt_names [ oldarg ] . flags & ARG_GROUPABLE ) ) {
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , oldarg ) )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
_copy_arg_values ( cmd - > opt_arg_values , oldarg , newarg ) ;
2004-03-26 15:00:24 +03:00
return 1 ;
2013-07-19 23:37:43 +04:00
}
2004-03-26 15:00:24 +03:00
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , oldarg ) )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
cmd - > opt_arg_values [ newarg ] . count = cmd - > opt_arg_values [ oldarg ] . count ;
2004-03-26 15:00:24 +03:00
2013-07-19 23:37:43 +04:00
/* Groupable */
dm_list_iterate_items ( current_group , & cmd - > arg_value_groups ) {
av = current_group - > arg_values ;
if ( ! grouped_arg_count ( av , oldarg ) )
continue ;
_copy_arg_values ( av , oldarg , newarg ) ;
}
2004-03-26 15:00:24 +03:00
return 1 ;
}
2015-02-23 20:26:50 +03:00
int systemid ( struct cmd_context * cmd __attribute__ ( ( unused ) ) ,
int argc __attribute__ ( ( unused ) ) ,
char * * argv __attribute__ ( ( unused ) ) )
{
2015-02-27 22:32:00 +03:00
log_print ( " system ID: %s " , cmd - > system_id ? : " " ) ;
2015-02-23 20:26:50 +03:00
return ECMD_PROCESSED ;
}
2010-07-09 19:34:40 +04:00
int version ( struct cmd_context * cmd __attribute__ ( ( unused ) ) ,
int argc __attribute__ ( ( unused ) ) ,
char * * argv __attribute__ ( ( unused ) ) )
2004-03-26 15:00:24 +03:00
{
char vsn [ 80 ] ;
log_print ( " LVM version: %s " , LVM_VERSION ) ;
if ( library_version ( vsn , sizeof ( vsn ) ) )
log_print ( " Library version: %s " , vsn ) ;
if ( driver_version ( vsn , sizeof ( vsn ) ) )
log_print ( " Driver version: %s " , vsn ) ;
2017-03-23 04:00:49 +03:00
log_print ( " Configuration: %s " , LVM_CONFIGURE_LINE ) ;
2004-03-26 15:00:24 +03:00
return ECMD_PROCESSED ;
}
2017-03-02 19:41:41 +03:00
static void _reset_current_settings_to_default ( struct cmd_context * cmd )
{
cmd - > current_settings = cmd - > default_settings ;
}
static void _get_current_output_settings_from_args ( struct cmd_context * cmd )
2004-03-26 15:00:24 +03:00
{
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , debug_ARG ) )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
cmd - > current_settings . debug = _LOG_FATAL + ( arg_count ( cmd , debug_ARG ) - 1 ) ;
2004-03-26 15:00:24 +03:00
2016-10-03 20:14:17 +03:00
if ( arg_is_set ( cmd , verbose_ARG ) )
cmd - > current_settings . verbose = arg_count ( cmd , verbose_ARG ) ;
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , quiet_ARG ) ) {
2004-03-26 15:00:24 +03:00
cmd - > current_settings . debug = 0 ;
cmd - > current_settings . verbose = 0 ;
2014-07-14 19:34:49 +04:00
cmd - > current_settings . silent = ( arg_count ( cmd , quiet_ARG ) > 1 ) ? 1 : 0 ;
2004-03-26 15:00:24 +03:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
2017-03-02 19:41:41 +03:00
static void _apply_current_output_settings ( struct cmd_context * cmd )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
{
init_debug ( cmd - > current_settings . debug ) ;
init_debug_classes_logged ( cmd - > default_settings . debug_classes ) ;
init_verbose ( cmd - > current_settings . verbose + VERBOSE_BASE_LEVEL ) ;
init_silent ( cmd - > current_settings . silent ) ;
}
2017-03-02 19:41:41 +03:00
static int _get_current_settings ( struct cmd_context * cmd )
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
{
const char * activation_mode ;
2004-03-26 15:00:24 +03:00
2017-03-02 19:41:41 +03:00
_get_current_output_settings_from_args ( cmd ) ;
2016-10-03 20:14:17 +03:00
if ( arg_is_set ( cmd , test_ARG ) )
cmd - > current_settings . test = arg_is_set ( cmd , test_ARG ) ;
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , driverloaded_ARG ) ) {
2004-03-26 15:00:24 +03:00
cmd - > current_settings . activation =
arg_int_value ( cmd , driverloaded_ARG ,
cmd - > default_settings . activation ) ;
}
2006-11-14 18:28:50 +03:00
cmd - > current_settings . archive = arg_int_value ( cmd , autobackup_ARG , cmd - > current_settings . archive ) ;
cmd - > current_settings . backup = arg_int_value ( cmd , autobackup_ARG , cmd - > current_settings . backup ) ;
2014-04-18 05:46:34 +04:00
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , readonly_ARG ) ) {
2014-04-18 05:46:34 +04:00
cmd - > current_settings . activation = 0 ;
cmd - > current_settings . archive = 0 ;
cmd - > current_settings . backup = 0 ;
}
2017-01-14 00:08:51 +03:00
if ( cmd - > cname - > flags & LOCKD_VG_SH )
2015-03-05 23:00:44 +03:00
cmd - > lockd_vg_default_sh = 1 ;
2018-04-19 00:29:42 +03:00
if ( cmd - > cname - > flags & CAN_USE_ONE_SCAN )
cmd - > can_use_one_scan = 1 ;
2008-09-19 11:12:45 +04:00
cmd - > partial_activation = 0 ;
activation: Add "degraded" activation mode
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
2014-07-10 07:56:11 +04:00
cmd - > degraded_activation = 0 ;
activation_mode = find_config_tree_str ( cmd , activation_mode_CFG , NULL ) ;
if ( ! activation_mode )
activation_mode = DEFAULT_ACTIVATION_MODE ;
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , activationmode_ARG ) ) {
activation: Add "degraded" activation mode
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
2014-07-10 07:56:11 +04:00
activation_mode = arg_str_value ( cmd , activationmode_ARG ,
activation_mode ) ;
/* complain only if the two arguments conflict */
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , partial_ARG ) & &
activation: Add "degraded" activation mode
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
2014-07-10 07:56:11 +04:00
strcmp ( activation_mode , " partial " ) ) {
log_error ( " --partial and --activationmode are mutually "
" exclusive arguments " ) ;
return EINVALID_CMD_LINE ;
}
2016-06-22 00:24:52 +03:00
} else if ( arg_is_set ( cmd , partial_ARG ) )
activation: Add "degraded" activation mode
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
2014-07-10 07:56:11 +04:00
activation_mode = " partial " ;
2004-03-26 15:00:24 +03:00
activation: Add "degraded" activation mode
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
2014-07-10 07:56:11 +04:00
if ( ! strcmp ( activation_mode , " partial " ) ) {
2008-09-19 11:12:45 +04:00
cmd - > partial_activation = 1 ;
config: add silent mode
Accept -q as the short form of --quiet.
Suppress non-essential standard output if -q is given twice.
Treat log/silent in lvm.conf as equivalent to -qq.
Review all log_print messages and change some to
log_print_unless_silent.
When silent, the following commands still produce output:
dumpconfig, lvdisplay, lvmdiskscan, lvs, pvck, pvdisplay,
pvs, version, vgcfgrestore -l, vgdisplay, vgs.
[Needs checking.]
Non-essential messages are shifted from log level 4 to log level 5
for syslog and lvm2_log_fn purposes.
2012-08-25 23:35:48 +04:00
log_warn ( " PARTIAL MODE. Incomplete logical volumes will be processed. " ) ;
2014-07-22 23:50:29 +04:00
} else if ( ! strcmp ( activation_mode , " degraded " ) )
activation: Add "degraded" activation mode
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
2014-07-10 07:56:11 +04:00
cmd - > degraded_activation = 1 ;
2014-07-22 23:50:29 +04:00
else if ( strcmp ( activation_mode , " complete " ) ) {
activation: Add "degraded" activation mode
Currently, we have two modes of activation, an unnamed nominal mode
(which I will refer to as "complete") and "partial" mode. The
"complete" mode requires that a volume group be 'complete' - that
is, no missing PVs. If there are any missing PVs, no affected LVs
are allowed to activate - even RAID LVs which might be able to
tolerate a failure. The "partial" mode allows anything to be
activated (or at least attempted). If a non-redundant LV is
missing a portion of its addressable space due to a device failure,
it will be replaced with an error target. RAID LVs will either
activate or fail to activate depending on how badly their
redundancy is compromised.
This patch adds a third option, "degraded" mode. This mode can
be selected via the '--activationmode {complete|degraded|partial}'
option to lvchange/vgchange. It can also be set in lvm.conf.
The "degraded" activation mode allows RAID LVs with a sufficient
level of redundancy to activate (e.g. a RAID5 LV with one device
failure, a RAID6 with two device failures, or RAID1 with n-1
failures). RAID LVs with too many device failures are not allowed
to activate - nor are any non-redundant LVs that may have been
affected. This patch also makes the "degraded" mode the default
activation mode.
The degraded activation mode does not yet work in a cluster. A
new cluster lock flag (LCK_DEGRADED_MODE) will need to be created
to make that work. Currently, there is limited space for this
extra flag and I am looking for possible solutions. One possible
solution is to usurp LCK_CONVERT, as it is not used. When the
locking_type is 3, the degraded mode flag simply gets dropped and
the old ("complete") behavior is exhibited.
2014-07-10 07:56:11 +04:00
log_error ( " Invalid activation mode given. " ) ;
return EINVALID_CMD_LINE ;
2008-09-19 10:42:00 +04:00
}
2004-03-26 15:00:24 +03:00
2015-02-25 19:44:42 +03:00
cmd - > include_foreign_vgs = arg_is_set ( cmd , foreign_ARG ) ? 1 : 0 ;
2015-03-05 23:00:44 +03:00
cmd - > include_shared_vgs = arg_is_set ( cmd , shared_ARG ) ? 1 : 0 ;
2016-03-01 17:22:48 +03:00
cmd - > include_historical_lvs = arg_is_set ( cmd , history_ARG ) ? 1 : 0 ;
2016-03-01 17:25:49 +03:00
cmd - > record_historical_lvs = find_config_tree_bool ( cmd , metadata_record_lvs_history_CFG , NULL ) ?
( arg_is_set ( cmd , nohistory_ARG ) ? 0 : 1 ) : 0 ;
2015-03-05 23:00:44 +03:00
/*
* This is set to zero by process_each which wants to print errors
* itself rather than having them printed in vg_read .
*/
cmd - > vg_read_print_access_error = 1 ;
2015-02-25 19:44:42 +03:00
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , nosuffix_ARG ) )
2004-03-26 15:00:24 +03:00
cmd - > current_settings . suffix = 0 ;
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , units_ARG ) )
2004-03-26 15:00:24 +03:00
if ( ! ( cmd - > current_settings . unit_factor =
2014-04-28 12:25:43 +04:00
dm_units_to_factor ( arg_str_value ( cmd , units_ARG , " " ) ,
& cmd - > current_settings . unit_type , 1 , NULL ) ) ) {
2004-03-26 15:00:24 +03:00
log_error ( " Invalid units specification " ) ;
return EINVALID_CMD_LINE ;
}
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , binary_ARG ) )
2014-07-02 15:16:32 +04:00
cmd - > report_binary_values_as_numeric = 1 ;
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , trustcache_ARG ) ) {
if ( arg_is_set ( cmd , all_ARG ) ) {
2006-08-01 18:56:33 +04:00
log_error ( " --trustcache is incompatible with --all " ) ;
return EINVALID_CMD_LINE ;
}
init_trust_cache ( 1 ) ;
2007-06-28 21:33:44 +04:00
log_warn ( " WARNING: Cache file of PVs will be trusted. "
2006-08-01 18:56:33 +04:00
" New devices holding PVs may get ignored. " ) ;
} else
init_trust_cache ( 0 ) ;
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , noudevsync_ARG ) )
2009-08-04 19:36:13 +04:00
cmd - > current_settings . udev_sync = 0 ;
2004-03-26 15:00:24 +03:00
/* Handle synonyms */
if ( ! _merge_synonym ( cmd , resizable_ARG , resizeable_ARG ) | |
! _merge_synonym ( cmd , allocation_ARG , allocatable_ARG ) | |
2009-05-27 20:30:29 +04:00
! _merge_synonym ( cmd , allocation_ARG , resizeable_ARG ) | |
2012-06-27 15:48:31 +04:00
! _merge_synonym ( cmd , virtualoriginsize_ARG , virtualsize_ARG ) | |
2013-07-19 22:24:54 +04:00
! _merge_synonym ( cmd , available_ARG , activate_ARG ) | |
2016-08-05 16:54:49 +03:00
! _merge_synonym ( cmd , raidrebuild_ARG , rebuild_ARG ) | |
2013-07-19 22:24:54 +04:00
! _merge_synonym ( cmd , raidsyncaction_ARG , syncaction_ARG ) | |
! _merge_synonym ( cmd , raidwritemostly_ARG , writemostly_ARG ) | |
! _merge_synonym ( cmd , raidminrecoveryrate_ARG , minrecoveryrate_ARG ) | |
! _merge_synonym ( cmd , raidmaxrecoveryrate_ARG , maxrecoveryrate_ARG ) | |
! _merge_synonym ( cmd , raidwritebehind_ARG , writebehind_ARG ) )
2010-06-29 00:39:39 +04:00
return EINVALID_CMD_LINE ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( ( ! strncmp ( cmd - > name , " pv " , 2 ) & &
2010-06-29 00:39:39 +04:00
! _merge_synonym ( cmd , metadatacopies_ARG , pvmetadatacopies_ARG ) ) | |
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
( ! strncmp ( cmd - > name , " vg " , 2 ) & &
2010-06-29 00:39:39 +04:00
! _merge_synonym ( cmd , metadatacopies_ARG , vgmetadatacopies_ARG ) ) )
2004-03-26 15:00:24 +03:00
return EINVALID_CMD_LINE ;
/* Zero indicates success */
return 0 ;
}
static int _process_common_commands ( struct cmd_context * cmd )
{
2017-02-14 18:49:26 +03:00
if ( arg_is_set ( cmd , help_ARG ) | |
arg_is_set ( cmd , longhelp_ARG ) | |
arg_is_set ( cmd , help2_ARG ) ) {
2017-03-07 21:01:06 +03:00
_usage ( cmd - > name , arg_is_set ( cmd , longhelp_ARG ) , 0 ) ;
2004-03-26 15:00:24 +03:00
return ECMD_PROCESSED ;
}
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , version_ARG ) ) {
2004-03-26 15:00:24 +03:00
return version ( cmd , 0 , ( char * * ) NULL ) ;
}
/* Zero indicates it's OK to continue processing this command */
return 0 ;
}
static void _display_help ( void )
{
int i ;
log_error ( " Available lvm commands: " ) ;
log_error ( " Use 'lvm help <command>' for more information " ) ;
log_error ( " " ) ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
for ( i = 0 ; i < _cmdline . num_command_names ; i + + ) {
struct command_name * cname = _cmdline . command_names + i ;
2004-03-26 15:00:24 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
log_error ( " %-16.16s%s " , cname - > name , cname - > desc ) ;
2004-03-26 15:00:24 +03:00
}
}
2010-07-09 19:34:40 +04:00
int help ( struct cmd_context * cmd __attribute__ ( ( unused ) ) , int argc , char * * argv )
2004-03-26 15:00:24 +03:00
{
2008-12-19 17:43:02 +03:00
int ret = ECMD_PROCESSED ;
2004-03-26 15:00:24 +03:00
if ( ! argc )
_display_help ( ) ;
2017-02-14 18:49:26 +03:00
else if ( argc = = 1 & & ! strcmp ( argv [ 0 ] , " all " ) )
_usage_all ( ) ;
2004-03-26 15:00:24 +03:00
else {
int i ;
for ( i = 0 ; i < argc ; i + + )
2017-03-07 21:01:06 +03:00
if ( ! _usage ( argv [ i ] , 0 , 0 ) )
2008-12-19 17:43:02 +03:00
ret = EINVALID_CMD_LINE ;
2004-03-26 15:00:24 +03:00
}
2008-12-19 17:43:02 +03:00
return ret ;
2004-03-26 15:00:24 +03:00
}
2017-03-02 19:41:41 +03:00
static void _apply_current_settings ( struct cmd_context * cmd )
2004-03-26 15:00:24 +03:00
{
2017-03-02 19:41:41 +03:00
_apply_current_output_settings ( cmd ) ;
2004-03-26 15:00:24 +03:00
init_test ( cmd - > current_settings . test ) ;
2006-05-16 20:48:31 +04:00
init_mirror_in_sync ( 0 ) ;
2012-02-15 19:18:43 +04:00
init_dmeventd_monitor ( DEFAULT_DMEVENTD_MONITOR ) ;
2004-03-26 15:00:24 +03:00
init_msg_prefix ( cmd - > default_settings . msg_prefix ) ;
init_cmd_name ( cmd - > default_settings . cmd_name ) ;
2005-05-17 17:46:38 +04:00
archive_enable ( cmd , cmd - > current_settings . archive ) ;
backup_enable ( cmd , cmd - > current_settings . backup ) ;
2004-03-26 15:00:24 +03:00
2014-04-18 05:46:34 +04:00
set_activation ( cmd - > current_settings . activation , cmd - > metadata_read_only ) ;
2004-03-26 15:00:24 +03:00
2010-04-29 05:38:12 +04:00
cmd - > fmt = get_format_by_name ( cmd , arg_str_value ( cmd , metadatatype_ARG ,
cmd - > current_settings . fmt_name ) ) ;
2008-09-19 10:42:00 +04:00
cmd - > handles_missing_pvs = 0 ;
2004-03-26 15:00:24 +03:00
}
2009-07-13 23:49:48 +04:00
static const char * _copy_command_line ( struct cmd_context * cmd , int argc , char * * argv )
2004-03-26 15:00:24 +03:00
{
2006-05-16 20:48:31 +04:00
int i , space ;
2004-03-26 15:00:24 +03:00
/*
* Build up the complete command line , used as a
* description for backups .
*/
2005-10-17 03:03:59 +04:00
if ( ! dm_pool_begin_object ( cmd - > mem , 128 ) )
2007-04-26 20:44:59 +04:00
goto_bad ;
2004-03-26 15:00:24 +03:00
for ( i = 0 ; i < argc ; i + + ) {
2006-05-16 20:48:31 +04:00
space = strchr ( argv [ i ] , ' ' ) ? 1 : 0 ;
if ( space & & ! dm_pool_grow_object ( cmd - > mem , " ' " , 1 ) )
2007-04-26 20:44:59 +04:00
goto_bad ;
2006-05-16 20:48:31 +04:00
2005-10-17 03:03:59 +04:00
if ( ! dm_pool_grow_object ( cmd - > mem , argv [ i ] , strlen ( argv [ i ] ) ) )
2007-04-26 20:44:59 +04:00
goto_bad ;
2004-03-26 15:00:24 +03:00
2006-05-16 20:48:31 +04:00
if ( space & & ! dm_pool_grow_object ( cmd - > mem , " ' " , 1 ) )
2007-04-26 20:44:59 +04:00
goto_bad ;
2006-05-16 20:48:31 +04:00
2004-03-26 15:00:24 +03:00
if ( i < ( argc - 1 ) )
2005-10-17 03:03:59 +04:00
if ( ! dm_pool_grow_object ( cmd - > mem , " " , 1 ) )
2007-04-26 20:44:59 +04:00
goto_bad ;
2004-03-26 15:00:24 +03:00
}
/*
* Terminate .
*/
2005-10-17 03:03:59 +04:00
if ( ! dm_pool_grow_object ( cmd - > mem , " \0 " , 1 ) )
2007-04-26 20:44:59 +04:00
goto_bad ;
2004-03-26 15:00:24 +03:00
2005-10-17 03:03:59 +04:00
return dm_pool_end_object ( cmd - > mem ) ;
2004-03-26 15:00:24 +03:00
bad :
2009-07-16 00:02:46 +04:00
log_error ( " Couldn't copy command line. " ) ;
2005-10-17 03:03:59 +04:00
dm_pool_abandon_object ( cmd - > mem ) ;
2004-03-26 15:00:24 +03:00
return NULL ;
}
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
static int _prepare_profiles ( struct cmd_context * cmd )
2004-03-26 15:00:24 +03:00
{
2015-02-09 16:16:24 +03:00
static const char COMMAND_PROFILE_ENV_VAR_NAME [ ] = " LVM_COMMAND_PROFILE " ;
static const char _cmd_profile_arg_preferred_over_env_var_msg [ ] = " Giving "
" preference to command profile specified on command "
" line over the one specified via environment variable. " ;
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
static const char _failed_to_add_profile_msg [ ] = " Failed to add %s %s. " ;
static const char _failed_to_apply_profile_msg [ ] = " Failed to apply %s %s. " ;
static const char _command_profile_source_name [ ] = " command profile " ;
static const char _metadata_profile_source_name [ ] = " metadata profile " ;
static const char _setting_global_profile_msg [ ] = " Setting global %s \" %s \" . " ;
2015-02-09 16:16:24 +03:00
const char * env_cmd_profile_name = NULL ;
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
const char * name ;
2014-05-19 15:59:23 +04:00
struct profile * profile ;
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
config_source_t source ;
const char * source_name ;
2015-02-09 16:16:24 +03:00
/* Check whether default global command profile is set via env. var. */
if ( ( env_cmd_profile_name = getenv ( COMMAND_PROFILE_ENV_VAR_NAME ) ) ) {
if ( ! * env_cmd_profile_name )
env_cmd_profile_name = NULL ;
else
log_debug ( " Command profile '%s' requested via "
" environment variable. " ,
env_cmd_profile_name ) ;
}
2016-06-22 00:24:52 +03:00
if ( ! arg_is_set ( cmd , profile_ARG ) & &
! arg_is_set ( cmd , commandprofile_ARG ) & &
! arg_is_set ( cmd , metadataprofile_ARG ) & &
2015-02-09 16:16:24 +03:00
! env_cmd_profile_name )
/* nothing to do */
return 1 ;
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , profile_ARG ) ) {
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
/*
* If - - profile is used with dumpconfig , it ' s used
* to dump the profile without the profile being applied .
*/
2015-04-28 19:00:37 +03:00
if ( ! strcmp ( cmd - > command - > name , " dumpconfig " ) | |
! strcmp ( cmd - > command - > name , " lvmconfig " ) | |
! strcmp ( cmd - > command - > name , " config " ) )
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
return 1 ;
/*
* If - - profile is used with lvcreate / lvchange / vgchange ,
* it ' s recognized as shortcut to - - metadataprofile .
* The - - commandprofile is assumed otherwise .
*/
if ( ! strcmp ( cmd - > command - > name , " lvcreate " ) | |
! strcmp ( cmd - > command - > name , " vgcreate " ) | |
! strcmp ( cmd - > command - > name , " lvchange " ) | |
! strcmp ( cmd - > command - > name , " vgchange " ) ) {
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , metadataprofile_ARG ) ) {
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
log_error ( " Only one of --profile or "
" --metadataprofile allowed. " ) ;
return 0 ;
}
source = CONFIG_PROFILE_METADATA ;
source_name = _metadata_profile_source_name ;
}
else {
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , commandprofile_ARG ) ) {
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
log_error ( " Only one of --profile or "
" --commandprofile allowed. " ) ;
return 0 ;
}
2015-02-09 16:16:24 +03:00
/*
* Prefer command profile specified on command
* line over the profile specified via
* COMMAND_PROFILE_ENV_VAR_NAME env . var .
*/
if ( env_cmd_profile_name ) {
log_debug ( _cmd_profile_arg_preferred_over_env_var_msg ) ;
env_cmd_profile_name = NULL ;
}
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
source = CONFIG_PROFILE_COMMAND ;
source_name = _command_profile_source_name ;
}
name = arg_str_value ( cmd , profile_ARG , NULL ) ;
if ( ! ( profile = add_profile ( cmd , name , source ) ) ) {
log_error ( _failed_to_add_profile_msg , source_name , name ) ;
return 0 ;
}
if ( source = = CONFIG_PROFILE_COMMAND ) {
log_debug ( _setting_global_profile_msg , _command_profile_source_name , profile - > name ) ;
cmd - > profile_params - > global_command_profile = profile ;
} else if ( source = = CONFIG_PROFILE_METADATA ) {
log_debug ( _setting_global_profile_msg , _metadata_profile_source_name , profile - > name ) ;
/* This profile will override any VG/LV-based profile if present */
cmd - > profile_params - > global_metadata_profile = profile ;
}
2016-08-04 17:45:27 +03:00
remove_config_tree_by_source ( cmd , source ) ;
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
if ( ! override_config_tree_from_profile ( cmd , profile ) ) {
log_error ( _failed_to_apply_profile_msg , source_name , name ) ;
return 0 ;
}
}
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , commandprofile_ARG ) | | env_cmd_profile_name ) {
if ( arg_is_set ( cmd , commandprofile_ARG ) ) {
2015-02-09 16:16:24 +03:00
/*
* Prefer command profile specified on command
* line over the profile specified via
* COMMAND_PROFILE_ENV_VAR_NAME env . var .
*/
if ( env_cmd_profile_name )
log_debug ( _cmd_profile_arg_preferred_over_env_var_msg ) ;
name = arg_str_value ( cmd , commandprofile_ARG , NULL ) ;
} else
name = env_cmd_profile_name ;
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
source_name = _command_profile_source_name ;
if ( ! ( profile = add_profile ( cmd , name , CONFIG_PROFILE_COMMAND ) ) ) {
log_error ( _failed_to_add_profile_msg , source_name , name ) ;
return 0 ;
}
2016-08-04 17:45:27 +03:00
remove_config_tree_by_source ( cmd , CONFIG_PROFILE_COMMAND ) ;
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
if ( ! override_config_tree_from_profile ( cmd , profile ) ) {
log_error ( _failed_to_apply_profile_msg , source_name , name ) ;
return 0 ;
}
log_debug ( _setting_global_profile_msg , _command_profile_source_name , profile - > name ) ;
cmd - > profile_params - > global_command_profile = profile ;
2016-08-08 11:43:18 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( ! cmd - > opt_arg_values )
2016-08-08 11:43:18 +03:00
cmd - > profile_params - > shell_profile = profile ;
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
}
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , metadataprofile_ARG ) ) {
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
name = arg_str_value ( cmd , metadataprofile_ARG , NULL ) ;
source_name = _metadata_profile_source_name ;
if ( ! ( profile = add_profile ( cmd , name , CONFIG_PROFILE_METADATA ) ) ) {
log_error ( _failed_to_add_profile_msg , source_name , name ) ;
return 0 ;
}
2016-08-04 17:45:27 +03:00
remove_config_tree_by_source ( cmd , CONFIG_PROFILE_METADATA ) ;
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
if ( ! override_config_tree_from_profile ( cmd , profile ) ) {
log_error ( _failed_to_apply_profile_msg , source_name , name ) ;
return 0 ;
}
log_debug ( _setting_global_profile_msg , _metadata_profile_source_name , profile - > name ) ;
cmd - > profile_params - > global_metadata_profile = profile ;
}
if ( ! process_profilable_config ( cmd ) )
return_0 ;
return 1 ;
}
2015-03-05 23:00:44 +03:00
static int _init_lvmlockd ( struct cmd_context * cmd )
{
const char * lvmlockd_socket ;
int use_lvmlockd = find_config_tree_bool ( cmd , global_use_lvmlockd_CFG , NULL ) ;
2016-06-22 00:24:52 +03:00
if ( use_lvmlockd & & arg_is_set ( cmd , nolocking_ARG ) ) {
lockd: allow nolocking and readonly options
When --nolocking is used (by vgs, lvs, pvs):
. don't use lvmlockd at all (set use_lvmlockd to 0)
. allow lockd VGs to be read
When --readonly is used (by vgs, lvs, pvs, vgdisplay, lvdisplay,
pvdisplay, lvmdiskscan, lvscan, pvscan, vgcfgbackup):
. skip actual lvmlockd locking calls
. allow lockd VGs to be read
. check that only shared gl/vg locks are being requested
(even though the actually locking is being skipped)
. check that no LV locks are requested, because no LVs
should be activated or used in readonly mode
. disable using lvmetad so VGs are read from disk
It is important to note the limited commands that accept
the --nolocking and --readonly options, i.e. no commands
that change/write a VG or change/activate LVs accept these
options, only commands that read VGs.
2015-07-11 01:20:22 +03:00
/* --nolocking is only allowed with vgs/lvs/pvs commands */
cmd - > lockd_gl_disable = 1 ;
cmd - > lockd_vg_disable = 1 ;
cmd - > lockd_lv_disable = 1 ;
return 1 ;
}
2018-01-09 20:18:57 +03:00
if ( use_lvmlockd & & arg_is_set ( cmd , lockopt_ARG ) ) {
const char * opts = arg_str_value ( cmd , lockopt_ARG , " " ) ;
2018-01-09 20:46:00 +03:00
if ( strstr ( opts , " skiplv " ) ) {
log_warn ( " WARNING: skipping LV lock in lvmlockd. " ) ;
2018-01-09 20:18:57 +03:00
cmd - > lockd_lv_disable = 1 ;
2018-01-09 20:46:00 +03:00
}
if ( strstr ( opts , " skipvg " ) ) {
log_warn ( " WARNING: skipping VG lock in lvmlockd. " ) ;
2018-01-09 20:18:57 +03:00
cmd - > lockd_vg_disable = 1 ;
2018-01-09 20:46:00 +03:00
}
if ( strstr ( opts , " skipgl " ) ) {
log_warn ( " WARNING: skipping global lock in lvmlockd. " ) ;
2018-01-09 20:18:57 +03:00
cmd - > lockd_gl_disable = 1 ;
2018-01-09 20:46:00 +03:00
}
2018-01-09 20:18:57 +03:00
}
2015-03-05 23:00:44 +03:00
lvmlockd_disconnect ( ) ; /* start over when tool context is refreshed */
lvmlockd_socket = getenv ( " LVM_LVMLOCKD_SOCKET " ) ;
if ( ! lvmlockd_socket )
lvmlockd_socket = DEFAULT_RUN_DIR " /lvmlockd.socket " ;
lvmlockd_set_socket ( lvmlockd_socket ) ;
lvmlockd_set_use ( use_lvmlockd ) ;
if ( use_lvmlockd ) {
lvmlockd_init ( cmd ) ;
lvmlockd_connect ( ) ;
}
return 1 ;
}
commands: add new NO_METADATA_PROCESSING flag to selected commands
When a command is flagged with NO_METADATA_PROCESSING flag, it means
such command does not process any metadata and hence it doens't require
lvmetad, lvmpolld and it can get away with no locking too. These are
mostly simple commands (like lvmconfig/dumpconfig, version, types,
segtypes and other builtin commands that do not process metadata
in any way).
At first, when lvm command is executed, create toolcontext without
initializing connections (lvmetad,lvmpolld) and without initializing
filters (which depend on connections init). Instead, delay this
initialization until we know we need this. That is, until the
lvm_run_command fn is called in which we know what the actual
command to run is and hence we can avoid any connection, filter
or locking initiliazation for commands that would not make use
of it anyway.
For all the other create_toolcontext calls, we keep the original
behaviour - the filters and connections are initialized together
with the toolcontext.
2015-07-30 11:48:28 +03:00
static int _cmd_no_meta_proc ( struct cmd_context * cmd )
{
2017-01-14 00:08:51 +03:00
return cmd - > cname - > flags & NO_METADATA_PROCESSING ;
commands: add new NO_METADATA_PROCESSING flag to selected commands
When a command is flagged with NO_METADATA_PROCESSING flag, it means
such command does not process any metadata and hence it doens't require
lvmetad, lvmpolld and it can get away with no locking too. These are
mostly simple commands (like lvmconfig/dumpconfig, version, types,
segtypes and other builtin commands that do not process metadata
in any way).
At first, when lvm command is executed, create toolcontext without
initializing connections (lvmetad,lvmpolld) and without initializing
filters (which depend on connections init). Instead, delay this
initialization until we know we need this. That is, until the
lvm_run_command fn is called in which we know what the actual
command to run is and hence we can avoid any connection, filter
or locking initiliazation for commands that would not make use
of it anyway.
For all the other create_toolcontext calls, we keep the original
behaviour - the filters and connections are initialized together
with the toolcontext.
2015-07-30 11:48:28 +03:00
}
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
int lvm_run_command ( struct cmd_context * cmd , int argc , char * * argv )
{
2016-04-14 01:00:01 +03:00
struct dm_config_tree * config_string_cft , * config_profile_command_cft , * config_profile_metadata_cft ;
2004-03-26 15:00:24 +03:00
int ret = 0 ;
int locking_type ;
Rework lock-override options and locking_type settings
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
2018-06-07 23:33:02 +03:00
int nolocking = 0 ;
int readonly = 0 ;
2018-09-12 23:59:47 +03:00
int sysinit = 0 ;
2012-02-15 19:18:43 +04:00
int monitoring ;
2015-07-24 21:45:49 +03:00
char * arg_new , * arg ;
int i ;
int skip_hyphens ;
2015-09-10 17:00:14 +03:00
int refresh_done = 0 ;
2004-03-26 15:00:24 +03:00
2008-06-06 23:28:35 +04:00
init_error_message_produced ( 0 ) ;
2007-06-15 14:11:14 +04:00
/* each command should start out with sigint flag cleared */
sigint_clear ( ) ;
2017-06-27 00:57:12 +03:00
if ( ! ( cmd - > name = dm_pool_strdup ( cmd - > mem , dm_basename ( argv [ 0 ] ) ) ) ) {
log_error ( " Failed to strdup command basename. " ) ;
return ECMD_FAILED ;
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2017-03-08 01:55:07 +03:00
configure_command_option_values ( cmd - > name ) ;
2015-06-19 10:44:14 +03:00
/* eliminate '-' from all options starting with -- */
2015-07-24 18:25:13 +03:00
for ( i = 1 ; i < argc ; i + + ) {
2015-07-24 21:45:49 +03:00
2015-07-24 18:25:13 +03:00
arg = argv [ i ] ;
2015-06-19 10:44:14 +03:00
2015-07-24 21:45:49 +03:00
if ( * arg + + ! = ' - ' | | * arg + + ! = ' - ' )
continue ;
/* If we reach "--" then stop. */
if ( ! * arg )
2015-07-24 18:25:13 +03:00
break ;
2015-06-19 10:44:14 +03:00
2015-07-24 21:45:49 +03:00
arg_new = arg ;
skip_hyphens = 1 ;
while ( * arg ) {
/* If we encounter '=', stop any further hyphen removal. */
if ( * arg = = ' = ' )
skip_hyphens = 0 ;
/* Do we need to keep the next character? */
if ( * arg ! = ' - ' | | ! skip_hyphens ) {
if ( arg_new ! = arg )
* arg_new = * arg ;
+ + arg_new ;
2015-06-19 10:44:14 +03:00
}
2015-07-24 21:45:49 +03:00
arg + + ;
2015-07-24 18:25:13 +03:00
}
2015-07-24 21:45:49 +03:00
/* Terminate a shortened arg */
if ( arg_new ! = arg )
* arg_new = ' \0 ' ;
2015-06-19 10:44:14 +03:00
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/* The cmd_line string is only used for logging, not processing. */
2013-07-01 13:27:22 +04:00
if ( ! ( cmd - > cmd_line = _copy_command_line ( cmd , argc , argv ) ) )
return_ECMD_FAILED ;
2004-03-26 15:00:24 +03:00
2017-03-24 02:03:25 +03:00
/* Look up command - will be NULL if not recognised */
2017-10-18 17:57:46 +03:00
if ( ! ( cmd - > cname = _find_command_name ( cmd - > name ) ) )
2017-05-08 18:50:27 +03:00
return ENO_SUCH_CMD ;
2017-03-24 02:03:25 +03:00
2004-03-26 15:00:24 +03:00
if ( ! _process_command_line ( cmd , & argc , & argv ) ) {
2017-03-24 02:03:25 +03:00
log_error ( " Error during parsing of command line. " ) ;
2004-03-26 15:00:24 +03:00
return EINVALID_CMD_LINE ;
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
2017-03-02 19:41:41 +03:00
* Now we have the command line args , set up any known output logging
* options immediately .
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
*/
2017-03-02 19:41:41 +03:00
_reset_current_settings_to_default ( cmd ) ;
_get_current_output_settings_from_args ( cmd ) ;
_apply_current_output_settings ( cmd ) ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
log_debug ( " Parsing: %s " , cmd - > cmd_line ) ;
if ( ! ( cmd - > command = _find_command ( cmd , cmd - > name , & argc , argv ) ) )
return EINVALID_CMD_LINE ;
/*
* Remaining position args after command name and - - options are removed .
*/
cmd - > position_argc = argc ;
cmd - > position_argv = argv ;
set_cmd_name ( cmd - > name ) ;
2004-03-26 15:00:24 +03:00
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , config_ARG ) )
2012-10-16 12:07:27 +04:00
if ( ! override_config_tree_from_string ( cmd , arg_str_value ( cmd , config_ARG , " " ) ) ) {
2009-07-28 01:01:56 +04:00
ret = EINVALID_CMD_LINE ;
2006-05-16 20:48:31 +04:00
goto_out ;
2009-07-28 01:01:56 +04:00
}
2006-05-16 20:48:31 +04:00
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , config_ARG ) | | ! cmd - > initialized . config | | config_files_changed ( cmd ) ) {
2004-03-26 15:00:24 +03:00
/* Reinitialise various settings inc. logging, filters */
if ( ! refresh_toolcontext ( cmd ) ) {
2014-05-19 15:59:23 +04:00
if ( ( config_string_cft = remove_config_tree_by_source ( cmd , CONFIG_STRING ) ) )
dm_config_destroy ( config_string_cft ) ;
2004-03-26 15:00:24 +03:00
log_error ( " Updated config file invalid. Aborting. " ) ;
return ECMD_FAILED ;
}
2015-09-10 17:00:14 +03:00
refresh_done = 1 ;
2004-03-26 15:00:24 +03:00
}
2015-02-09 16:16:24 +03:00
if ( ! _prepare_profiles ( cmd ) )
return_ECMD_FAILED ;
2013-06-25 14:27:04 +04:00
commands: add new NO_METADATA_PROCESSING flag to selected commands
When a command is flagged with NO_METADATA_PROCESSING flag, it means
such command does not process any metadata and hence it doens't require
lvmetad, lvmpolld and it can get away with no locking too. These are
mostly simple commands (like lvmconfig/dumpconfig, version, types,
segtypes and other builtin commands that do not process metadata
in any way).
At first, when lvm command is executed, create toolcontext without
initializing connections (lvmetad,lvmpolld) and without initializing
filters (which depend on connections init). Instead, delay this
initialization until we know we need this. That is, until the
lvm_run_command fn is called in which we know what the actual
command to run is and hence we can avoid any connection, filter
or locking initiliazation for commands that would not make use
of it anyway.
For all the other create_toolcontext calls, we keep the original
behaviour - the filters and connections are initialized together
with the toolcontext.
2015-07-30 11:48:28 +03:00
if ( ! cmd - > initialized . connections & & ! _cmd_no_meta_proc ( cmd ) & & ! init_connections ( cmd ) )
return_ECMD_FAILED ;
2017-11-13 22:45:16 +03:00
if ( ! cmd - > initialized . filters & & ! _cmd_no_meta_proc ( cmd ) & &
2018-09-13 00:13:46 +03:00
! init_filters ( cmd , ! refresh_done ) )
commands: add new NO_METADATA_PROCESSING flag to selected commands
When a command is flagged with NO_METADATA_PROCESSING flag, it means
such command does not process any metadata and hence it doens't require
lvmetad, lvmpolld and it can get away with no locking too. These are
mostly simple commands (like lvmconfig/dumpconfig, version, types,
segtypes and other builtin commands that do not process metadata
in any way).
At first, when lvm command is executed, create toolcontext without
initializing connections (lvmetad,lvmpolld) and without initializing
filters (which depend on connections init). Instead, delay this
initialization until we know we need this. That is, until the
lvm_run_command fn is called in which we know what the actual
command to run is and hence we can avoid any connection, filter
or locking initiliazation for commands that would not make use
of it anyway.
For all the other create_toolcontext calls, we keep the original
behaviour - the filters and connections are initialized together
with the toolcontext.
2015-07-30 11:48:28 +03:00
return_ECMD_FAILED ;
2016-06-22 00:24:52 +03:00
if ( arg_is_set ( cmd , readonly_ARG ) )
2014-04-18 05:46:34 +04:00
cmd - > metadata_read_only = 1 ;
Rework lock-override options and locking_type settings
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
2018-06-07 23:33:02 +03:00
if ( ( cmd - > command - > command_enum = = vgchange_activate_CMD ) | |
( cmd - > command - > command_enum = = lvchange_activate_CMD ) )
cmd - > is_activating = 1 ;
2017-03-02 19:41:41 +03:00
/*
* Now that all configs , profiles and command lines args are available ,
* freshly calculate and apply all settings . Specific command line
* options take precedence over config files ( which include - - config as
* that is treated like a config file ) .
*/
_reset_current_settings_to_default ( cmd ) ;
if ( ( ret = _get_current_settings ( cmd ) ) )
2006-05-16 20:48:31 +04:00
goto_out ;
2017-03-02 19:41:41 +03:00
_apply_current_settings ( cmd ) ;
2014-07-22 23:50:29 +04:00
if ( cmd - > degraded_activation )
2014-09-10 12:10:13 +04:00
log_debug ( " DEGRADED MODE. Incomplete RAID LVs will be processed. " ) ;
2004-03-26 15:00:24 +03:00
2012-02-15 19:18:43 +04:00
if ( ! get_activation_monitoring_mode ( cmd , & monitoring ) )
goto_out ;
init_dmeventd_monitor ( monitoring ) ;
2017-11-13 17:43:32 +03:00
log_debug ( " Processing command: %s " , cmd - > cmd_line ) ;
2016-06-14 22:51:03 +03:00
log_debug ( " Command pid: %d " , getpid ( ) ) ;
2017-11-13 17:43:32 +03:00
log_debug ( " System ID: %s " , cmd - > system_id ? : " " ) ;
2004-12-10 19:01:35 +03:00
# ifdef O_DIRECT_SUPPORT
log_debug ( " O_DIRECT will be used " ) ;
# endif
2011-01-13 18:00:29 +03:00
if ( ( ret = _process_common_commands ( cmd ) ) ) {
if ( ret ! = ECMD_PROCESSED )
stack ;
goto out ;
}
2004-03-26 15:00:24 +03:00
2010-10-25 15:20:54 +04:00
if ( cmd - > metadata_read_only & &
2017-01-14 00:08:51 +03:00
! ( cmd - > cname - > flags & PERMITTED_READ_ONLY ) ) {
2010-10-25 15:20:54 +04:00
log_error ( " %s: Command not permitted while global/metadata_read_only "
" is set. " , cmd - > cmd_line ) ;
goto out ;
}
Rework lock-override options and locking_type settings
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
2018-06-07 23:33:02 +03:00
/* Defaults to 1 if not set. */
2018-06-07 00:31:59 +03:00
locking_type = find_config_tree_int ( cmd , global_locking_type_CFG , NULL ) ;
if ( locking_type = = 3 )
Rework lock-override options and locking_type settings
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
2018-06-07 23:33:02 +03:00
log_warn ( " WARNING: see lvmlockd(8) for information on using cluster/clvm VGs. " ) ;
2018-06-07 00:31:59 +03:00
Rework lock-override options and locking_type settings
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
2018-06-07 23:33:02 +03:00
if ( ( locking_type = = 0 ) | | ( locking_type = = 5 ) ) {
2018-09-12 23:59:47 +03:00
log_warn ( " WARNING: locking_type (%d) is deprecated, using --nolocking. " , locking_type ) ;
Rework lock-override options and locking_type settings
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
2018-06-07 23:33:02 +03:00
nolocking = 1 ;
} else if ( locking_type = = 4 ) {
2018-09-12 23:59:47 +03:00
log_warn ( " WARNING: locking_type (%d) is deprecated, using --sysinit --readonly. " , locking_type ) ;
sysinit = 1 ;
Rework lock-override options and locking_type settings
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
2018-06-07 23:33:02 +03:00
readonly = 1 ;
} else if ( locking_type ! = 1 ) {
2018-09-12 23:59:47 +03:00
log_warn ( " WARNING: locking_type (%d) is deprecated, using file locking. " , locking_type ) ;
2018-06-07 00:31:59 +03:00
}
Rework lock-override options and locking_type settings
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
2018-06-07 23:33:02 +03:00
if ( arg_is_set ( cmd , nolocking_ARG ) | | _cmd_no_meta_proc ( cmd ) )
nolocking = 1 ;
2018-09-12 23:59:47 +03:00
if ( arg_is_set ( cmd , sysinit_ARG ) )
sysinit = 1 ;
Rework lock-override options and locking_type settings
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
2018-06-07 23:33:02 +03:00
if ( arg_is_set ( cmd , readonly_ARG ) )
readonly = 1 ;
if ( nolocking ) {
if ( ! _cmd_no_meta_proc ( cmd ) )
log_warn ( " WARNING: File locking is disabled. " ) ;
} else {
2018-09-12 23:59:47 +03:00
if ( ! init_locking ( cmd , sysinit , readonly , arg_is_set ( cmd , ignorelockingfailure_ARG ) ) ) {
2018-06-07 00:31:59 +03:00
ret = ECMD_FAILED ;
goto_out ;
}
2004-03-26 15:00:24 +03:00
}
commands: add new NO_METADATA_PROCESSING flag to selected commands
When a command is flagged with NO_METADATA_PROCESSING flag, it means
such command does not process any metadata and hence it doens't require
lvmetad, lvmpolld and it can get away with no locking too. These are
mostly simple commands (like lvmconfig/dumpconfig, version, types,
segtypes and other builtin commands that do not process metadata
in any way).
At first, when lvm command is executed, create toolcontext without
initializing connections (lvmetad,lvmpolld) and without initializing
filters (which depend on connections init). Instead, delay this
initialization until we know we need this. That is, until the
lvm_run_command fn is called in which we know what the actual
command to run is and hence we can avoid any connection, filter
or locking initiliazation for commands that would not make use
of it anyway.
For all the other create_toolcontext calls, we keep the original
behaviour - the filters and connections are initialized together
with the toolcontext.
2015-07-30 11:48:28 +03:00
if ( ! _cmd_no_meta_proc ( cmd ) & & ! _init_lvmlockd ( cmd ) ) {
2015-03-05 23:00:44 +03:00
ret = ECMD_FAILED ;
goto_out ;
}
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
if ( cmd - > command - > functions )
2017-02-10 20:36:11 +03:00
/* A command-line-specific function is used */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
ret = cmd - > command - > functions - > fn ( cmd , argc , argv ) ;
else
/* The old style command-name function is used */
ret = cmd - > command - > fn ( cmd , argc , argv ) ;
2004-03-26 15:00:24 +03:00
2015-03-05 23:00:44 +03:00
lvmlockd_disconnect ( ) ;
2004-03-26 15:00:24 +03:00
fin_locking ( ) ;
2016-02-22 18:42:03 +03:00
if ( ! _cmd_no_meta_proc ( cmd ) & & find_config_tree_bool ( cmd , global_notify_dbus_CFG , NULL ) )
lvmnotify_send ( cmd ) ;
2004-03-26 15:00:24 +03:00
out :
2018-04-06 21:05:17 +03:00
lvmcache_destroy ( cmd , 1 , 1 ) ;
label_scan_destroy ( cmd ) ;
2004-03-26 15:00:24 +03:00
2014-05-19 15:59:23 +04:00
if ( ( config_string_cft = remove_config_tree_by_source ( cmd , CONFIG_STRING ) ) )
dm_config_destroy ( config_string_cft ) ;
config: differentiate command and metadata profiles and consolidate profile handling code
- When defining configuration source, the code now uses separate
CONFIG_PROFILE_COMMAND and CONFIG_PROFILE_METADATA markers
(before, it was just CONFIG_PROFILE that did not make the
difference between the two). This helps when checking the
configuration if it contains correct set of options which
are all in either command-profilable or metadata-profilable
group without mixing these groups together - so it's a firm
distinction. The "command profile" can't contain
"metadata profile" and vice versa! This is strictly checked
and if the settings are mixed, such profile is rejected and
it's not used. So in the end, the CONFIG_PROFILE_COMMAND
set of options and CONFIG_PROFILE_METADATA are mutually exclusive
sets.
- Marking configuration with one or the other marker will also
determine the way these configuration sources are positioned
in the configuration cascade which is now:
CONFIG_STRING -> CONFIG_PROFILE_COMMAND -> CONFIG_PROFILE_METADATA -> CONFIG_FILE/CONFIG_MERGED_FILES
- Marking configuration with one or the other marker will also make
it possible to issue a command context refresh (will be probably
a part of a future patch) if needed for settings in global profile
set. For settings in metadata profile set this is impossible since
we can't refresh cmd context in the middle of reading VG/LV metadata
and for each VG/LV separately because each VG/LV can have a different
metadata profile assinged and it's not possible to change these
settings at this level.
- When command profile is incorrect, it's rejected *and also* the
command exits immediately - the profile *must* be correct for the
command that was run with a profile to be executed. Before this
patch, when the profile was found incorrect, there was just the
warning message and the command continued without profile applied.
But it's more correct to exit immediately in this case.
- When metadata profile is incorrect, we reject it during command
runtime (as we know the profile name from metadata and not early
from command line as it is in case of command profiles) and we
*do continue* with the command as we're in the middle of operation.
Also, the metadata profile is applied directly and on the fly on
find_config_tree_* fn call and even if the metadata profile is
found incorrect, we still need to return the non-profiled value
as found in the other configuration provided or default value.
To exit immediately even in this case, we'd need to refactor
existing find_config_tree_* fns so they can return error. Currently,
these fns return only config values (which end up with default
values in the end if the config is not found).
- To check the profile validity before use to be sure it's correct,
one can use :
lvm dumpconfig --commandprofile/--metadataprofile ProfileName --validate
(the --commandprofile/--metadataprofile for dumpconfig will come
as part of the subsequent patch)
- This patch also adds a reference to --commandprofile and
--metadataprofile in the cmd help string (which was missing before
for the --profile for some commands). We do not mention --profile
now as people should use --commandprofile or --metadataprofile
directly. However, the --profile is still supported for backward
compatibility and it's translated as:
--profile == --metadataprofile for lvcreate, vgcreate, lvchange and vgchange
(as these commands are able to attach profile to metadata)
--profile == --commandprofile for all the other commands
(--metadataprofile is not allowed there as it makes no sense)
- This patch also contains some cleanups to make the code handling
the profiles more readable...
2014-05-20 16:13:10 +04:00
config_profile_command_cft = remove_config_tree_by_source ( cmd , CONFIG_PROFILE_COMMAND ) ;
config_profile_metadata_cft = remove_config_tree_by_source ( cmd , CONFIG_PROFILE_METADATA ) ;
cmd - > profile_params - > global_metadata_profile = NULL ;
2014-05-19 15:59:23 +04:00
2016-08-08 12:57:13 +03:00
if ( config_string_cft ) {
2006-05-16 20:48:31 +04:00
/* Move this? */
if ( ! refresh_toolcontext ( cmd ) )
stack ;
2016-08-08 12:57:13 +03:00
} else if ( config_profile_command_cft | | config_profile_metadata_cft ) {
if ( ! process_profilable_config ( cmd ) )
stack ;
2006-05-16 20:48:31 +04:00
}
2008-01-30 17:00:02 +03:00
2016-05-20 15:23:43 +03:00
if ( ret = = EINVALID_CMD_LINE & & ! cmd - > is_interactive )
2007-09-21 22:06:33 +04:00
_short_usage ( cmd - > command - > name ) ;
2004-03-26 15:00:24 +03:00
2006-05-16 20:48:31 +04:00
log_debug ( " Completed: %s " , cmd - > cmd_line ) ;
2017-03-02 19:41:41 +03:00
/*
* Reset all settings back to the persistent defaults that
* ignore everything supplied on the command line of the
* completed command .
*/
_reset_current_settings_to_default ( cmd ) ;
_apply_current_settings ( cmd ) ;
2013-09-06 04:47:41 +04:00
2009-04-02 18:59:48 +04:00
/*
* free off any memory the command used .
*/
2010-11-11 20:29:05 +03:00
dm_list_init ( & cmd - > arg_value_groups ) ;
2009-04-02 18:59:48 +04:00
dm_pool_empty ( cmd - > mem ) ;
2009-07-16 03:57:54 +04:00
reset_lvm_errno ( 1 ) ;
2010-05-06 02:37:52 +04:00
reset_log_duplicated ( ) ;
2009-07-16 03:57:54 +04:00
2004-03-26 15:00:24 +03:00
return ret ;
}
2010-01-11 22:19:17 +03:00
int lvm_return_code ( int ret )
{
2015-04-20 11:04:18 +03:00
unlink_log_file ( ret ) ;
2010-01-11 22:19:17 +03:00
return ( ret = = ECMD_PROCESSED ? 0 : ret ) ;
}
2006-08-19 01:17:18 +04:00
int lvm_split ( char * str , int * argc , char * * argv , int max )
2004-03-26 15:00:24 +03:00
{
char * b = str , * e ;
2014-10-17 15:55:06 +04:00
char quote = 0 ;
2014-11-08 17:33:17 +03:00
* argc = 0 ;
2004-03-26 15:00:24 +03:00
while ( * b ) {
while ( * b & & isspace ( * b ) )
b + + ;
if ( ( ! * b ) | | ( * b = = ' # ' ) )
break ;
2014-10-17 15:55:06 +04:00
if ( * b = = ' \' ' | | * b = = ' " ' ) {
quote = * b ;
b + + ;
}
2004-03-26 15:00:24 +03:00
e = b ;
2014-10-17 15:55:06 +04:00
while ( * e & & ( quote ? * e ! = quote : ! isspace ( * e ) ) )
2004-03-26 15:00:24 +03:00
e + + ;
argv [ ( * argc ) + + ] = b ;
if ( ! * e )
break ;
* e + + = ' \0 ' ;
2014-10-17 15:55:06 +04:00
quote = 0 ;
2004-03-26 15:00:24 +03:00
b = e ;
if ( * argc = = max )
break ;
}
2017-06-26 21:03:05 +03:00
if ( * argc < max )
argv [ * argc ] = NULL ;
2004-03-26 15:00:24 +03:00
return * argc ;
}
2012-09-07 13:13:41 +04:00
/* Make sure we have always valid filedescriptors 0,1,2 */
static int _check_standard_fds ( void )
{
int err = is_valid_fd ( STDERR_FILENO ) ;
if ( ! is_valid_fd ( STDIN_FILENO ) & &
! ( stdin = fopen ( _PATH_DEVNULL , " r " ) ) ) {
if ( err )
perror ( " stdin stream open " ) ;
else
printf ( " stdin stream open: %s \n " ,
strerror ( errno ) ) ;
return 0 ;
}
if ( ! is_valid_fd ( STDOUT_FILENO ) & &
! ( stdout = fopen ( _PATH_DEVNULL , " w " ) ) ) {
if ( err )
perror ( " stdout stream open " ) ;
/* else no stdout */
return 0 ;
}
if ( ! is_valid_fd ( STDERR_FILENO ) & &
! ( stderr = fopen ( _PATH_DEVNULL , " w " ) ) ) {
printf ( " stderr stream open: %s \n " ,
strerror ( errno ) ) ;
return 0 ;
}
return 1 ;
}
2016-07-08 17:47:51 +03:00
# define LVM_OUT_FD_ENV_VAR_NAME "LVM_OUT_FD"
# define LVM_ERR_FD_ENV_VAR_NAME "LVM_ERR_FD"
# define LVM_REPORT_FD_ENV_VAR_NAME "LVM_REPORT_FD"
static int _do_get_custom_fd ( const char * env_var_name , int * fd )
{
const char * str ;
char * endptr ;
2016-08-10 10:10:28 +03:00
long int tmp_fd ;
2016-07-08 17:47:51 +03:00
* fd = - 1 ;
if ( ! ( str = getenv ( env_var_name ) ) )
return 1 ;
errno = 0 ;
tmp_fd = strtol ( str , & endptr , 10 ) ;
if ( errno | | * endptr | | ( tmp_fd < 0 ) | | ( tmp_fd > INT_MAX ) ) {
log_error ( " %s: invalid file descriptor. " , env_var_name ) ;
return 0 ;
}
* fd = tmp_fd ;
return 1 ;
}
static int _get_custom_fds ( struct custom_fds * custom_fds )
{
return _do_get_custom_fd ( LVM_OUT_FD_ENV_VAR_NAME , & custom_fds - > out ) & &
_do_get_custom_fd ( LVM_ERR_FD_ENV_VAR_NAME , & custom_fds - > err ) & &
_do_get_custom_fd ( LVM_REPORT_FD_ENV_VAR_NAME , & custom_fds - > report ) ;
}
2008-08-01 23:51:27 +04:00
static const char * _get_cmdline ( pid_t pid )
{
static char _proc_cmdline [ 32 ] ;
char buf [ 256 ] ;
2010-12-20 16:16:30 +03:00
int fd , n = 0 ;
2008-08-01 23:51:27 +04:00
snprintf ( buf , sizeof ( buf ) , DEFAULT_PROC_DIR " /%u/cmdline " , pid ) ;
2010-12-20 16:16:30 +03:00
/* FIXME Use generic read code. */
2012-02-13 16:07:51 +04:00
if ( ( fd = open ( buf , O_RDONLY ) ) > = 0 ) {
2010-12-20 16:16:30 +03:00
if ( ( n = read ( fd , _proc_cmdline , sizeof ( _proc_cmdline ) - 1 ) ) < 0 ) {
log_sys_error ( " read " , buf ) ;
n = 0 ;
}
if ( close ( fd ) )
log_sys_error ( " close " , buf ) ;
}
_proc_cmdline [ n ] = ' \0 ' ;
2008-08-01 23:51:27 +04:00
return _proc_cmdline ;
}
static const char * _get_filename ( int fd )
{
static char filename [ PATH_MAX ] ;
char buf [ 32 ] ; /* Assumes short DEFAULT_PROC_DIR */
int size ;
snprintf ( buf , sizeof ( buf ) , DEFAULT_PROC_DIR " /self/fd/%u " , fd ) ;
if ( ( size = readlink ( buf , filename , sizeof ( filename ) - 1 ) ) = = - 1 )
filename [ 0 ] = ' \0 ' ;
else
filename [ size ] = ' \0 ' ;
return filename ;
}
static void _close_descriptor ( int fd , unsigned suppress_warnings ,
const char * command , pid_t ppid ,
const char * parent_cmdline )
{
int r ;
const char * filename ;
/* Ignore bad file descriptors */
2012-08-27 15:07:07 +04:00
if ( ! is_valid_fd ( fd ) )
2008-08-01 23:51:27 +04:00
return ;
if ( ! suppress_warnings )
filename = _get_filename ( fd ) ;
r = close ( fd ) ;
if ( suppress_warnings )
return ;
if ( ! r )
fprintf ( stderr , " File descriptor %d (%s) leaked on "
" %s invocation. " , fd , filename , command ) ;
else if ( errno = = EBADF )
return ;
else
fprintf ( stderr , " Close failed on stray file descriptor "
" %d (%s): %s " , fd , filename , strerror ( errno ) ) ;
fprintf ( stderr , " Parent PID % " PRIpid_t " : %s \n " , ppid , parent_cmdline ) ;
}
2016-07-08 17:47:51 +03:00
static int _close_stray_fds ( const char * command , struct custom_fds * custom_fds )
2004-12-10 19:01:35 +03:00
{
2012-10-12 18:52:38 +04:00
# ifndef VALGRIND_POOL
2004-12-10 19:01:35 +03:00
struct rlimit rlim ;
int fd ;
2008-08-01 23:51:27 +04:00
unsigned suppress_warnings = 0 ;
pid_t ppid = getppid ( ) ;
const char * parent_cmdline = _get_cmdline ( ppid ) ;
2012-03-15 04:18:23 +04:00
static const char _fd_dir [ ] = DEFAULT_PROC_DIR " /self/fd " ;
struct dirent * dirent ;
DIR * d ;
2004-12-10 19:01:35 +03:00
2015-02-12 17:32:30 +03:00
# ifdef HAVE_VALGRIND
if ( RUNNING_ON_VALGRIND ) {
log_debug ( " Skipping close of descriptors within valgrind execution. " ) ;
return 1 ;
}
# endif
2005-03-04 01:09:20 +03:00
if ( getenv ( " LVM_SUPPRESS_FD_WARNINGS " ) )
suppress_warnings = 1 ;
2012-03-15 04:18:23 +04:00
if ( ! ( d = opendir ( _fd_dir ) ) ) {
if ( errno ! = ENOENT ) {
log_sys_error ( " opendir " , _fd_dir ) ;
return 0 ; /* broken system */
}
/* Path does not exist, use the old way */
if ( getrlimit ( RLIMIT_NOFILE , & rlim ) < 0 ) {
log_sys_error ( " getrlimit " , " RLIMIT_NOFILE " ) ;
return 1 ;
}
2016-07-08 17:47:51 +03:00
for ( fd = 3 ; fd < ( int ) rlim . rlim_cur ; fd + + ) {
if ( ( fd ! = custom_fds - > out ) & &
( fd ! = custom_fds - > err ) & &
( fd ! = custom_fds - > report ) ) {
_close_descriptor ( fd , suppress_warnings , command , ppid ,
parent_cmdline ) ;
}
}
2012-03-15 04:18:23 +04:00
return 1 ;
}
while ( ( dirent = readdir ( d ) ) ) {
fd = atoi ( dirent - > d_name ) ;
2016-07-08 17:47:51 +03:00
if ( ( fd > 2 ) & &
( fd ! = dirfd ( d ) ) & &
( fd ! = custom_fds - > out ) & &
( fd ! = custom_fds - > err ) & &
( fd ! = custom_fds - > report ) ) {
2012-03-15 04:18:23 +04:00
_close_descriptor ( fd , suppress_warnings ,
command , ppid , parent_cmdline ) ;
2016-07-08 17:47:51 +03:00
}
2012-03-15 04:18:23 +04:00
}
if ( closedir ( d ) )
log_sys_error ( " closedir " , _fd_dir ) ;
2012-10-12 18:52:38 +04:00
# endif
2012-03-15 04:18:23 +04:00
return 1 ;
2004-12-10 19:01:35 +03:00
}
2015-07-30 11:34:10 +03:00
struct cmd_context * init_lvm ( unsigned set_connections , unsigned set_filters )
2004-03-26 15:00:24 +03:00
{
struct cmd_context * cmd ;
2011-04-22 16:05:32 +04:00
if ( ! udev_init_library_context ( ) )
stack ;
2014-05-22 11:56:44 +04:00
/*
* It ' s not necessary to use name mangling for LVM :
* - the character set used for LV names is subset of udev character set
2014-09-23 14:47:11 +04:00
* - when we check other devices ( e . g . device_is_usable fn ) , we use major : minor , not dm names
2014-05-22 11:56:44 +04:00
*/
dm_set_name_mangling_mode ( DM_STRING_MANGLING_NONE ) ;
2015-07-30 11:34:10 +03:00
if ( ! ( cmd = create_toolcontext ( 0 , NULL , 1 , 0 ,
set_connections , set_filters ) ) ) {
2012-03-12 18:15:04 +04:00
udev_fin_library_context ( ) ;
2008-01-30 16:19:47 +03:00
return_NULL ;
2012-03-12 18:15:04 +04:00
}
2004-03-26 15:00:24 +03:00
2017-03-07 20:47:44 +03:00
_cmdline . opt_names = & opt_names [ 0 ] ;
2010-11-11 20:29:05 +03:00
2009-07-16 04:36:59 +04:00
if ( stored_errno ( ) ) {
destroy_toolcontext ( cmd ) ;
2012-03-12 18:15:04 +04:00
udev_fin_library_context ( ) ;
2009-07-16 04:36:59 +04:00
return_NULL ;
}
2004-03-26 15:00:24 +03:00
return cmd ;
}
2006-08-19 01:17:18 +04:00
void lvm_fin ( struct cmd_context * cmd )
2004-03-26 15:00:24 +03:00
{
2018-02-09 12:51:02 +03:00
_unregister_commands ( ) ;
2004-03-26 15:00:24 +03:00
destroy_toolcontext ( cmd ) ;
2011-04-22 16:05:32 +04:00
udev_fin_library_context ( ) ;
2004-03-26 15:00:24 +03:00
}
static int _run_script ( struct cmd_context * cmd , int argc , char * * argv )
{
FILE * script ;
char buffer [ CMD_LEN ] ;
2017-05-08 18:50:27 +03:00
int ret = ENO_SUCH_CMD ;
2004-03-26 15:00:24 +03:00
int magic_number = 0 ;
2007-01-25 17:37:48 +03:00
char * script_file = argv [ 0 ] ;
2004-03-26 15:00:24 +03:00
2007-01-25 17:37:48 +03:00
if ( ( script = fopen ( script_file , " r " ) ) = = NULL )
2004-03-26 15:00:24 +03:00
return ENO_SUCH_CMD ;
while ( fgets ( buffer , sizeof ( buffer ) , script ) ! = NULL ) {
if ( ! magic_number ) {
if ( buffer [ 0 ] = = ' # ' & & buffer [ 1 ] = = ' ! ' )
magic_number = 1 ;
2006-05-10 01:23:51 +04:00
else {
ret = ENO_SUCH_CMD ;
break ;
}
2004-03-26 15:00:24 +03:00
}
if ( ( strlen ( buffer ) = = sizeof ( buffer ) - 1 )
& & ( buffer [ sizeof ( buffer ) - 1 ] - 2 ! = ' \n ' ) ) {
buffer [ 50 ] = ' \0 ' ;
log_error ( " Line too long (max 255) beginning: %s " ,
buffer ) ;
ret = EINVALID_CMD_LINE ;
break ;
}
2006-08-19 01:17:18 +04:00
if ( lvm_split ( buffer , & argc , argv , MAX_ARGS ) = = MAX_ARGS ) {
2004-03-26 15:00:24 +03:00
buffer [ 50 ] = ' \0 ' ;
log_error ( " Too many arguments: %s " , buffer ) ;
ret = EINVALID_CMD_LINE ;
break ;
}
if ( ! argc )
continue ;
if ( ! strcmp ( argv [ 0 ] , " quit " ) | | ! strcmp ( argv [ 0 ] , " exit " ) )
break ;
2008-06-06 23:28:35 +04:00
ret = lvm_run_command ( cmd , argc , argv ) ;
2017-05-08 18:50:27 +03:00
/*
* FIXME : handling scripts with invalid or failing commands
* could use some cleaning up , e . g . error_message_produced
* check and error are repeated again in the caller .
*/
if ( ret = = ENO_SUCH_CMD )
break ;
2008-06-06 23:28:35 +04:00
if ( ret ! = ECMD_PROCESSED ) {
if ( ! error_message_produced ( ) ) {
2009-12-16 22:22:11 +03:00
log_debug ( INTERNAL_ERROR " Failed command did not use log_error " ) ;
2008-06-06 23:28:35 +04:00
log_error ( " Command failed with status code %d. " , ret ) ;
}
break ;
}
2004-03-26 15:00:24 +03:00
}
2007-01-25 17:37:48 +03:00
if ( fclose ( script ) )
log_sys_error ( " fclose " , script_file ) ;
2004-03-26 15:00:24 +03:00
return ret ;
}
2008-11-12 12:49:06 +03:00
static void _nonroot_warning ( void )
2008-01-09 18:55:44 +03:00
{
if ( getuid ( ) | | geteuid ( ) )
log_warn ( " WARNING: Running as a non-root user. Functionality may be unavailable. " ) ;
}
2008-12-18 08:27:17 +03:00
int lvm2_main ( int argc , char * * argv )
2004-03-26 15:00:24 +03:00
{
2008-11-18 13:13:23 +03:00
const char * base ;
2004-03-26 15:00:24 +03:00
int ret , alias = 0 ;
2016-07-08 17:47:51 +03:00
struct custom_fds custom_fds ;
2004-03-26 15:00:24 +03:00
struct cmd_context * cmd ;
2017-05-08 18:31:30 +03:00
int run_shell = 0 ;
int run_script = 0 ;
2017-03-24 02:03:25 +03:00
const char * run_name ;
2017-05-08 18:31:30 +03:00
const char * run_command_name = NULL ;
2004-03-26 15:00:24 +03:00
2013-04-29 15:50:26 +04:00
if ( ! argv )
2017-07-27 01:18:03 +03:00
return EINIT_FAILED ;
2013-04-29 15:50:26 +04:00
2007-07-20 19:48:39 +04:00
base = last_path_component ( argv [ 0 ] ) ;
2004-06-29 17:27:19 +04:00
if ( strcmp ( base , " lvm " ) & & strcmp ( base , " lvm.static " ) & &
strcmp ( base , " initrd-lvm " ) )
2004-03-26 15:00:24 +03:00
alias = 1 ;
2005-02-18 21:58:31 +03:00
2012-09-07 13:13:41 +04:00
if ( ! _check_standard_fds ( ) )
2017-07-27 01:18:03 +03:00
return EINIT_FAILED ;
2012-09-07 13:13:41 +04:00
2016-07-08 17:47:51 +03:00
if ( ! _get_custom_fds ( & custom_fds ) )
2017-07-27 01:18:03 +03:00
return EINIT_FAILED ;
2016-07-08 17:47:51 +03:00
if ( ! _close_stray_fds ( base , & custom_fds ) )
2017-07-27 01:18:03 +03:00
return EINIT_FAILED ;
2016-07-08 17:47:51 +03:00
if ( ! init_custom_log_streams ( & custom_fds ) )
2017-07-27 01:18:03 +03:00
return EINIT_FAILED ;
2008-08-01 23:51:27 +04:00
2008-12-18 08:27:17 +03:00
if ( is_static ( ) & & strcmp ( base , " lvm.static " ) & &
2015-05-18 13:16:24 +03:00
path_exists ( LVM_PATH ) & &
2005-02-18 21:58:31 +03:00
! getenv ( " LVM_DID_EXEC " ) ) {
2012-03-02 01:17:29 +04:00
if ( setenv ( " LVM_DID_EXEC " , base , 1 ) )
log_sys_error ( " setenv " , " LVM_DID_EXEC " ) ;
2015-05-18 13:16:24 +03:00
if ( execvp ( LVM_PATH , argv ) = = - 1 )
log_sys_error ( " execvp " , LVM_PATH ) ;
2012-03-02 01:17:29 +04:00
if ( unsetenv ( " LVM_DID_EXEC " ) )
log_sys_error ( " unsetenv " , " LVM_DID_EXEC " ) ;
2005-02-18 21:58:31 +03:00
}
2017-07-11 03:42:06 +03:00
if ( ! alias & & argc > 1 ) {
/* "version" command is simple enough so it doesn't need any complex init */
if ( ! strcmp ( argv [ 1 ] , " version " ) )
return lvm_return_code ( version ( NULL , argc , argv ) ) ;
2017-08-09 17:34:33 +03:00
/* turn 'lvm -h', 'lvm --help', 'lvm -?' into 'lvm help' */
if ( ! strcmp ( argv [ 1 ] , " -h " ) | | ! strcmp ( argv [ 1 ] , " --help " ) | | ! strcmp ( argv [ 1 ] , " -? " ) )
2017-07-11 03:42:06 +03:00
argv [ 1 ] = ( char * ) " help " ;
if ( * argv [ 1 ] = = ' - ' ) {
log_error ( " Specify options after a command: lvm [command] [options]. " ) ;
2017-07-27 01:18:03 +03:00
return EINVALID_CMD_LINE ;
2017-07-11 03:42:06 +03:00
}
2017-07-10 19:00:28 +03:00
}
2017-08-09 23:06:36 +03:00
/* turn command -? into command -h and lvm command -? into lvm command -h */
2017-08-09 17:34:33 +03:00
if ( alias & & ( argc > 1 ) & & ! strcmp ( argv [ 1 ] , " -? " ) )
argv [ 1 ] = ( char * ) " -h " ;
2017-08-09 23:06:36 +03:00
if ( ! alias & & ( argc > 2 ) & & ! strcmp ( argv [ 2 ] , " -? " ) )
argv [ 2 ] = ( char * ) " -h " ;
2017-08-09 17:34:33 +03:00
commands: add new NO_METADATA_PROCESSING flag to selected commands
When a command is flagged with NO_METADATA_PROCESSING flag, it means
such command does not process any metadata and hence it doens't require
lvmetad, lvmpolld and it can get away with no locking too. These are
mostly simple commands (like lvmconfig/dumpconfig, version, types,
segtypes and other builtin commands that do not process metadata
in any way).
At first, when lvm command is executed, create toolcontext without
initializing connections (lvmetad,lvmpolld) and without initializing
filters (which depend on connections init). Instead, delay this
initialization until we know we need this. That is, until the
lvm_run_command fn is called in which we know what the actual
command to run is and hence we can avoid any connection, filter
or locking initiliazation for commands that would not make use
of it anyway.
For all the other create_toolcontext calls, we keep the original
behaviour - the filters and connections are initialized together
with the toolcontext.
2015-07-30 11:48:28 +03:00
if ( ! ( cmd = init_lvm ( 0 , 0 ) ) )
2017-07-27 01:18:03 +03:00
return EINIT_FAILED ;
2005-02-18 21:58:31 +03:00
2017-03-24 02:03:25 +03:00
/* Store original argv location so we may customise it if we become a daemon */
2005-02-18 21:58:31 +03:00
cmd - > argv = argv ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2017-03-24 02:03:25 +03:00
/*
* If the invocation command name wasn ' t itself an alias , shift to the
* first arg . After this point , run_name holds one of :
* the LVM command name we want to run ;
* the LVM script name ( handled through ENO_SUCH_CMD below ) ;
* NULL for a shell ( if readline is enabled ) .
*/
if ( ! alias ) {
argc - - ;
argv + + ;
run_name = argv [ 0 ] ;
} else
run_name = dm_basename ( argv [ 0 ] ) ;
2004-03-26 15:00:24 +03:00
2017-05-08 18:31:30 +03:00
/*
* Decide if we are running a shell or a command or a script . When
* there is no run_name , it ' s a shell , when run_name is a recognized
* lvm command it ' s that command , when run_name is not a recognized
* command name , try it as an lvm script .
*/
if ( ! run_name )
run_shell = 1 ;
2017-10-18 17:57:46 +03:00
else if ( ! _find_command_name ( run_name ) )
2017-05-08 18:31:30 +03:00
run_script = 1 ;
else
run_command_name = run_name ;
2017-04-29 00:43:42 +03:00
2017-05-08 18:31:30 +03:00
/*
* NULL run_command_name means register all command defs because
* a script or shell needs to access any command name , while a
* single command needs to access only defs for the named command .
*/
if ( ! lvm_register_commands ( cmd , run_command_name ) ) {
2017-03-24 02:03:25 +03:00
ret = ECMD_FAILED ;
goto out ;
}
2017-05-08 18:31:30 +03:00
if ( run_shell ) {
2004-03-26 15:00:24 +03:00
# ifdef READLINE_SUPPORT
2008-01-09 18:55:44 +03:00
_nonroot_warning ( ) ;
2016-08-04 17:45:27 +03:00
if ( ! _prepare_profiles ( cmd ) ) {
ret = ECMD_FAILED ;
goto out ;
}
2007-02-14 19:51:48 +03:00
ret = lvm_shell ( cmd , & _cmdline ) ;
2004-03-26 15:00:24 +03:00
goto out ;
2017-03-24 02:03:25 +03:00
# else
log_fatal ( " Please supply an LVM command. " ) ;
_display_help ( ) ;
ret = EINVALID_CMD_LINE ;
goto out ;
2004-03-26 15:00:24 +03:00
# endif
}
2008-01-09 18:55:44 +03:00
_nonroot_warning ( ) ;
2017-05-08 18:31:30 +03:00
if ( run_script )
2004-03-26 15:00:24 +03:00
ret = _run_script ( cmd , argc , argv ) ;
2017-05-08 18:31:30 +03:00
else
ret = lvm_run_command ( cmd , argc , argv ) ;
if ( ret = = ENO_SUCH_CMD ) {
2017-07-10 18:43:47 +03:00
log_error ( " No such command. Try 'lvm help'. " ) ;
2017-05-08 18:31:30 +03:00
goto out ;
}
2004-03-26 15:00:24 +03:00
2008-06-06 23:28:35 +04:00
if ( ( ret ! = ECMD_PROCESSED ) & & ! error_message_produced ( ) ) {
2009-12-16 22:22:11 +03:00
log_debug ( INTERNAL_ERROR " Failed command did not use log_error " ) ;
2008-06-06 23:28:35 +04:00
log_error ( " Command failed with status code %d. " , ret ) ;
}
2004-03-26 15:00:24 +03:00
out :
2006-08-19 01:17:18 +04:00
lvm_fin ( cmd ) ;
2017-02-18 21:09:24 +03:00
2010-01-11 22:19:17 +03:00
return lvm_return_code ( ret ) ;
2004-03-26 15:00:24 +03:00
}