commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* Copyright ( C ) 2001 - 2004 Sistina Software , Inc . All rights reserved .
* Copyright ( C ) 2004 - 2015 Red Hat , Inc . All rights reserved .
*
* This file is part of LVM2 .
*
* This copyrighted material is made available to anyone wishing to use ,
* modify , copy , or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v .2 .1 .
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program ; if not , write to the Free Software Foundation ,
* Inc . , 51 Franklin Street , Fifth Floor , Boston , MA 02110 - 1301 USA
*/
# ifndef _LVM_COMMAND_H
# define _LVM_COMMAND_H
struct cmd_context ;
2017-03-08 01:55:07 +03:00
struct logical_volume ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/* old per-command-name function */
typedef int ( * command_fn ) ( struct cmd_context * cmd , int argc , char * * argv ) ;
struct command_function {
2017-02-10 20:36:11 +03:00
int command_enum ;
2024-05-12 17:46:02 +03:00
command_fn fn ; /* new style */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
} ;
struct command_name {
const char * name ;
const char * desc ; /* general command description from commands.h */
unsigned int flags ;
2017-02-10 20:36:11 +03:00
command_fn fn ; /* old style */
2024-05-01 15:36:28 +03:00
uint16_t lvm_command_enum ; /* as declared in commands.h with _COMMAND */
2024-05-12 02:14:14 +03:00
} ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2024-05-12 02:14:14 +03:00
struct command_name_args {
2024-05-11 23:00:42 +03:00
uint16_t num_args ;
uint16_t variants ; /* number of command defs with this command name */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/* union of {required,optional}_opt_args for all commands with this name */
2024-05-11 23:00:42 +03:00
uint16_t valid_args [ ARG_COUNT ] ; /* used for getopt, store option */
2017-02-10 20:36:11 +03:00
/* the following are for generating help and man page output */
2024-05-11 23:00:42 +03:00
uint8_t common_options [ ARG_COUNT ] ; /* options common to all defs 0/1 */
uint8_t all_options [ ARG_COUNT ] ; /* union of options from all defs 0/1 */
uint8_t variant_has_ro ; /* do variants use required_opt_args ? */
uint8_t variant_has_rp ; /* do variants use required_pos_args ? */
uint8_t variant_has_oo ; /* do variants use optional_opt_args ? */
uint8_t variant_has_op ; /* do variants use optional_pos_args ? */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
} ;
/*
* Command defintion
*
* A command is defined in terms of a command name ,
* required options ( + args ) , optional options ( + args ) ,
* required positional args , optional positional args .
*
* A positional arg always has non - zero pos_arg . def . types .
* The first positional arg has pos_arg . pos of 1.
*/
/* arg_def flags */
# define ARG_DEF_FLAG_NEW_VG 1 << 0
# define ARG_DEF_FLAG_NEW_LV 1 << 1
# define ARG_DEF_FLAG_MAY_REPEAT 1 << 2
static inline int val_bit_is_set ( uint64_t val_bits , int val_enum )
{
2017-02-15 00:53:29 +03:00
return ( val_bits & ( 1ULL < < val_enum ) ) ? 1 : 0 ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
static inline uint64_t val_enum_to_bit ( int val_enum )
{
return ( 1ULL < < val_enum ) ;
}
static inline int lvp_bit_is_set ( uint64_t lvp_bits , int lvp_enum )
{
2017-02-15 00:53:29 +03:00
return ( lvp_bits & ( 1ULL < < lvp_enum ) ) ? 1 : 0 ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
static inline uint64_t lvp_enum_to_bit ( int lvp_enum )
{
return ( 1ULL < < lvp_enum ) ;
}
static inline int lvt_bit_is_set ( uint64_t lvt_bits , int lvt_enum )
{
2017-02-15 00:53:29 +03:00
return ( lvt_bits & ( 1ULL < < lvt_enum ) ) ? 1 : 0 ;
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
}
static inline uint64_t lvt_enum_to_bit ( int lvt_enum )
{
return ( 1ULL < < lvt_enum ) ;
}
/* Description a value that follows an option or exists in a position. */
struct arg_def {
uint64_t val_bits ; /* bits of x_VAL, can be multiple for pos_arg */
uint64_t lvt_bits ; /* lvt_enum_to_bit(x_LVT) for lv_VAL, can be multiple */
const char * str ; /* a literal string for constnum_VAL */
uint32_t flags ; /* ARG_DEF_FLAG_ */
2024-03-28 19:19:44 +03:00
uint16_t num ; /* a literal number for conststr_VAL */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
} ;
/* Description of an option and the value that follows it. */
struct opt_arg {
int opt ; /* option, e.g. foo_ARG */
struct arg_def def ; /* defines accepted values */
} ;
/* Description of a position and the value that exists there. */
struct pos_arg {
int pos ; /* position, e.g. first is 1 */
struct arg_def def ; /* defines accepted values */
} ;
/*
* Commands using a given command definition must follow a set
* of rules . If a given command + LV matches the conditions in
* opts / lvt_bits / lvp_bits , then the checks are applied .
* If one condition is not met , the checks are not applied .
* If no conditions are set , the checks are always applied .
*/
# define RULE_INVALID 1
# define RULE_REQUIRE 2
2024-05-11 01:42:49 +03:00
# define MAX_RULE_OPTS 8
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
struct cmd_rule {
uint64_t lvt_bits ; /* if LV has one of these types (lvt_enum_to_bit), the check may apply */
uint64_t lvp_bits ; /* if LV has all of these properties (lvp_enum_to_bit), the check may apply */
uint64_t check_lvt_bits ; /* LV must [not] have one of these type */
uint64_t check_lvp_bits ; /* LV must [not] have all of these properties */
2024-05-11 01:42:49 +03:00
uint16_t opts [ MAX_RULE_OPTS ] ; /* if any option in this list is set, the check may apply */
uint16_t check_opts [ MAX_RULE_OPTS ] ; /* used options must [not] be in this list */
2024-03-28 19:19:44 +03:00
uint16_t rule ; /* RULE_INVALID, RULE_REQUIRE: check values must [not] be true */
uint16_t opts_count ; /* entries in opts[] */
uint16_t check_opts_count ; /* entries in check_opts[] */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
} ;
/*
2017-01-13 23:51:50 +03:00
* Array sizes
*
2017-07-08 20:21:38 +03:00
* CMD_RO_ARGS needs to accommodate a list of options ,
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
* of which one is required after which the rest are
* optional .
*/
2024-03-28 19:04:37 +03:00
# define CMD_RO_ARGS 32 /* required opt args */
2024-05-11 23:00:42 +03:00
# define CMD_OO_ARGS 56 /* optional opt args */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
# define CMD_RP_ARGS 8 /* required positional args */
# define CMD_OP_ARGS 8 /* optional positional args */
# define CMD_IO_ARGS 8 /* ignore opt args */
2024-05-11 23:00:42 +03:00
# define CMD_MAX_RULES 12 /* max number of rules per command def */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/*
* one or more from required_opt_args is required ,
* then the rest are optional .
2019-06-10 19:35:26 +03:00
*
* CMD_FLAG_ANY_REQUIRED_OPT : for lvchange / vgchange special case .
* The first ro_count entries of required_opt_args must be met
* ( ro_count may be 0. ) After this , one or more options must be
* set from the remaining required_opt_args . So , the first
* ro_count options in required_opt_args must match , and after
* that one or more of the remaining options in required_opt_args
* must match .
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
*/
2019-06-10 19:35:26 +03:00
# define CMD_FLAG_ANY_REQUIRED_OPT 1
2017-01-13 23:51:50 +03:00
# define CMD_FLAG_SECONDARY_SYNTAX 2 /* allows syntax variants to be suppressed in certain output */
2017-02-17 20:45:13 +03:00
# define CMD_FLAG_PREVIOUS_SYNTAX 4 /* allows syntax variants to not be advertised in output */
# define CMD_FLAG_PARSE_ERROR 8 /* error parsing command-lines.in def */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/* a register of the lvm commands */
struct command {
const char * name ;
2017-02-10 20:36:11 +03:00
const char * desc ; /* specific command description from command-lines.in */
2024-05-12 02:14:14 +03:00
uint16_t command_enum ; /* <command_id>_CMD */
uint16_t command_index ; /* position in commands[] */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
2024-05-12 17:46:02 +03:00
uint16_t lvm_command_enum ; /* position in command_names[] */
uint16_t cmd_flags ; /* CMD_FLAG_ */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
/* definitions of opt/pos args */
/* required args following an --opt */
struct opt_arg required_opt_args [ CMD_RO_ARGS ] ;
/* optional args following an --opt */
struct opt_arg optional_opt_args [ CMD_OO_ARGS ] ;
/* required positional args */
struct pos_arg required_pos_args [ CMD_RP_ARGS ] ;
/* optional positional args */
struct pos_arg optional_pos_args [ CMD_OP_ARGS ] ;
/* unused opt args, are ignored instead of causing an error */
struct opt_arg ignore_opt_args [ CMD_IO_ARGS ] ;
struct cmd_rule rules [ CMD_MAX_RULES ] ;
2021-04-21 01:03:09 +03:00
/* usually only one autotype, in one case there are two */
char * autotype ;
char * autotype2 ;
2024-03-28 19:19:44 +03:00
uint16_t any_ro_count ;
2019-06-10 19:35:26 +03:00
2024-03-28 19:19:44 +03:00
uint16_t ro_count ;
uint16_t oo_count ;
uint16_t rp_count ;
uint16_t op_count ;
uint16_t io_count ;
uint16_t rule_count ;
2017-01-13 23:51:50 +03:00
2024-03-28 19:19:44 +03:00
uint16_t pos_count ; /* temp counter used by create-command */
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
} ;
2017-03-07 20:47:44 +03:00
/* see global opt_names[] */
struct opt_name {
2024-05-18 02:38:18 +03:00
const char * desc ;
const char long_opt [ 27 ] ; /* --foo */
2017-03-07 20:47:44 +03:00
const char short_opt ; /* -f */
2024-05-01 13:45:10 +03:00
uint16_t opt_enum ; /* foo_ARG */
2024-03-28 19:19:44 +03:00
uint16_t val_enum ; /* xyz_VAL when --foo takes a val like "--foo xyz" */
uint16_t flags ;
2024-03-27 03:03:08 +03:00
uint16_t prio ;
2017-03-07 20:47:44 +03:00
} ;
/* see global val_names[] */
struct val_name {
int ( * fn ) ( struct cmd_context * cmd , struct arg_values * av ) ; /* foo_arg() */
const char * usage ;
2024-05-17 18:01:09 +03:00
const char name [ 30 ] ; /* FooVal */
2024-05-22 18:15:20 +03:00
uint16_t name_len ; /* sizeof(FooVal) - 1 */
2024-05-17 18:01:09 +03:00
uint16_t val_enum ; /* foo_VAL */
2017-03-07 20:47:44 +03:00
} ;
2017-03-07 21:08:23 +03:00
/* see global lv_props[] */
struct lv_prop {
2024-05-13 02:01:18 +03:00
const char name [ 30 ] ; /* "lv_is_foo" */
2024-03-27 03:03:08 +03:00
uint16_t lvp_enum ; /* is_foo_LVP */
2017-03-07 21:08:23 +03:00
} ;
/* see global lv_types[] */
struct lv_type {
2024-05-13 02:11:05 +03:00
const char name [ 30 ] ; /* "foo" */
2024-03-27 03:03:08 +03:00
uint16_t lvt_enum ; /* foo_LVT */
2017-03-07 21:08:23 +03:00
} ;
2017-04-29 00:27:19 +03:00
int define_commands ( struct cmd_context * cmdtool , const char * run_name ) ;
2024-05-12 17:00:48 +03:00
unsigned command_id_to_enum ( const char * str ) ;
const char * command_enum ( unsigned command_enum ) ;
2017-03-02 18:37:54 +03:00
void print_usage ( struct command * cmd , int longhelp , int desc_first ) ;
2024-04-28 19:14:27 +03:00
void print_usage_common_cmd ( const struct command_name * cname , struct command * cmd ) ;
void print_usage_common_lvm ( const struct command_name * cname , struct command * cmd ) ;
void print_usage_notes ( const struct command_name * cname ) ;
2017-02-21 20:40:51 +03:00
void factor_common_options ( void ) ;
2024-05-22 18:31:28 +03:00
int command_has_alternate_extents ( const struct command_name * cname ) ;
2024-05-01 15:36:28 +03:00
int configure_command_option_values ( const struct command_name * cname , int arg_enum , int val_enum ) ;
2024-04-28 19:14:27 +03:00
const struct command_name * find_command_name ( const char * name ) ;
2017-02-10 20:36:11 +03:00
commands: new method for defining commands
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
2016-08-12 23:52:18 +03:00
# endif