1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-03 05:18:29 +03:00
lvm2/driver/device-mapper/device-mapper.c

708 lines
14 KiB
C
Raw Normal View History

/*
* device-mapper.c
*
* Copyright (C) 2001 Sistina Software
*
* This software is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2, or (at
* your option) any later version.
*
* This software is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with GNU CC; see the file COPYING. If not, write to
* the Free Software Foundation, 59 Temple Place - Suite 330,
* Boston, MA 02111-1307, USA.
*/
/*
* Changelog
*
* 14/08/2001 - First Version [Joe Thornber]
*/
/* TODO:
*
* dm_ctr_fn should provide the sector sizes, and hardsector_sizes set
* to the smallest of these.
*/
#include <linux/version.h>
#include <linux/major.h>
#include <linux/iobuf.h>
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/compatmac.h>
#include <linux/cache.h>
#include <linux/device-mapper.h>
/*
* defines for blk.h
*/
#define MAJOR_NR DM_BLK_MAJOR
#define DEVICE_OFF(device)
#define LOCAL_END_REQUEST
#define MAX_DEPTH 16
#define NODE_SIZE L1_CACHE_BYTES
#define KEYS_PER_NODE (NODE_SIZE / sizeof(offset_t))
#include <linux/blk.h>
/*
* FIXME: write description
*/
#define MAX_DEVICES 64
#define DEFAULT_READ_AHEAD 64
#define WARN(f, x...) printk(KERN_WARNING "%s " f, _name , ## x)
const char *_name = "device-mapper";
int _version[3] = {1, 0, 0};
struct mapper {
char *name;
dm_ctr_fn ctr;
dm_dtr_fn dtr;
dm_map_fn map;
struct mapper *next;
};
struct mapped_device {
int in_use;
spinlock_t lock;
kdev_t dev;
atomic_t pending;
int depth;
int counts[MAX_DEPTH]; /* in nodes */
offset_t *index[MAX_DEPTH];
int num_targets;
dm_map_fn *targets;
void **contexts;
};
static int _dev_count = 0;
static struct mapped_device _devices[MAX_DEVICES];
static spinlock_t _mappers_lock = SPIN_LOCK_UNLOCKED;
static struct mapper *_mappers;
/* block device arrays */
static int _block_size[MAX_DEVICES];
static int _blksize_size[MAX_DEVICES];
static int _hardsect_size[MAX_DEVICES];
static int _ctl_open(struct inode *inode, struct file *file);
static int _ctl_close(struct inode *inode, struct file *file);
static int _ctl_ioctl(struct inode *inode, struct file *file,
uint command, ulong a);
static struct file_operations _ctl_fops = {
open: _ctl_open,
release: _ctl_close,
ioctl: _ctl_ioctl,
};
static int _blk_open(struct inode *inode, struct file *file);
static int _blk_close(struct inode *inode, struct file *file);
static int _blk_ioctl(struct inode *inode, struct file *file,
uint command, ulong a);
static struct block_device_operations _blk_dops = {
open: _blk_open,
release: _blk_close,
ioctl: _blk_ioctl
};
static void _init_mds(void);
static struct mapped_device *_build_map(struct device_table *t);
static int _request_fn(request_queue_t *q, int rw, struct buffer_head *bh);
static int _register_std_targets(void);
static struct mapped_device *_get_free_md(void);
static void _put_free_md(struct mapped_device *md);
static int _setup_targets(struct mapped_device *md, struct device_table *t);
static int _setup_btree(struct mapped_device *md, struct device_table *t);
static int _setup_btree_index(int l, struct mapped_device *md);
struct mapper *_find_mapper(const char *name);
/*
* setup and teardown the driver
*/
static int _init(void)
{
_init_mds();
if (!_register_std_targets())
return -EIO; /* FIXME: better error value */
/* set up the arrays */
read_ahead[MAJOR_NR] = DEFAULT_READ_AHEAD;
blk_size[MAJOR_NR] = _block_size;
blksize_size[MAJOR_NR] = _blksize_size;
hardsect_size[MAJOR_NR] = _hardsect_size;
if (register_chrdev(DM_CTL_MAJOR, _name, &_ctl_fops) < 0) {
printk(KERN_ERR "%s - register_chrdev failed\n", _name);
return -EIO;
}
if (register_blkdev(MAJOR_NR, _name, &_blk_dops) < 0) {
printk(KERN_ERR "%s -- register_blkdev failed\n", _name);
if (unregister_chrdev(DM_CTL_MAJOR, _name) < 0)
printk(KERN_ERR "%s - unregister_chrdev failed\n",
_name);
return -EIO;
}
blk_queue_make_request(BLK_DEFAULT_QUEUE(MAJOR_NR), _request_fn);
printk(KERN_INFO "%s(%d, %d, %d) successfully initialised\n", _name,
_version[0], _version[1], _version[2]);
return 0;
}
static void _fin(void)
{
if (unregister_chrdev(DM_CTL_MAJOR, _name) < 0)
printk(KERN_ERR "%s - unregister_chrdev failed\n", _name);
if (unregister_blkdev(MAJOR_NR, _name) < 0)
printk(KERN_ERR "%s -- unregister_blkdev failed\n", _name);
read_ahead[MAJOR_NR] = 0;
blk_size[MAJOR_NR] = 0;
blksize_size[MAJOR_NR] = 0;
hardsect_size[MAJOR_NR] = 0;
printk(KERN_INFO "%s(%d, %d, %d) successfully finalised\n", _name,
_version[0], _version[1], _version[2]);
}
/*
* character device fns
*/
static int _ctl_open(struct inode *inode, struct file *file)
{
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
MOD_INC_USE_COUNT;
return 0;
}
static int _ctl_close(struct inode *inode, struct file *file)
{
MOD_DEC_USE_COUNT;
return 0;
}
static int _ctl_ioctl(struct inode *inode, struct file *file,
uint command, ulong a)
{
struct device_table info;
if (copy_from_user(&info, (void *) a, sizeof(info)))
return -EFAULT;
switch (command) {
case MAPPED_DEVICE_CREATE:
/* FIXME: copy arrays */
_build_map(&info);
break;
case MAPPED_DEVICE_DESTROY:
/* FIXME: finish */
break;
default:
printk(KERN_WARNING "%s -- _ctl_ioctl: unknown command 0x%x\n",
_name, command);
return -EINVAL;
}
return 0;
}
/*
* block device functions
*/
static int _blk_open(struct inode *inode, struct file *file)
{
int minor = MINOR(inode->i_rdev);
struct mapped_device *md = _devices + minor;
if (minor >= MAX_DEVICES)
return -ENXIO;
spin_lock(&md->lock);
if (!md->in_use) {
spin_unlock(&md->lock);
return -ENXIO;
}
md->in_use++;
spin_unlock(&md->lock);
MOD_INC_USE_COUNT;
return 0;
}
static int _blk_close(struct inode *inode, struct file *file)
{
int minor = MINOR(inode->i_rdev);
struct mapped_device *md = _devices + minor;
if (minor >= MAX_DEVICES)
return -ENXIO;
spin_lock(&md->lock);
if (md->in_use <= 1) {
WARN("reference count in mapped_device incorrect\n");
spin_unlock(&md->lock);
return -ENXIO;
}
md->in_use--;
spin_unlock(&md->lock);
MOD_INC_USE_COUNT;
return 0;
}
static int _blk_ioctl(struct inode *inode, struct file *file,
uint command, ulong a)
{
/* FIXME: check in the latest Rubini that all expected ioctl's
are supported */
int minor = MINOR(inode->i_rdev);
long size;
switch (command) {
case BLKGETSIZE:
size = _block_size[minor] * 1024 / _hardsect_size[minor];
if (copy_to_user((void *) a, &size, sizeof(long)))
return -EFAULT;
break;
case BLKFLSBUF:
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
fsync_dev(inode->i_rdev);
invalidate_buffers(inode->i_rdev);
return 0;
case BLKRAGET:
if (copy_to_user((void *) a, &read_ahead[MAJOR(inode->i_rdev)],
sizeof(long)))
return -EFAULT;
return 0;
case BLKRASET:
if (!capable(CAP_SYS_ADMIN))
return -EACCES;
read_ahead[MAJOR(inode->i_rdev)] = a;
return 0;
case BLKRRPART:
return -EINVAL;
default:
printk(KERN_WARNING "%s - unknown block ioctl %d\n",
_name, command);
return -EINVAL;
}
return 0;
}
static int _request_fn(request_queue_t *q, int rw, struct buffer_head *bh)
{
struct mapped_device *md;
offset_t *node;
int i = 0, l, next_node = 0, ret = 0;
int minor = MINOR(bh->b_dev);
dm_map_fn fn;
void *context;
if (minor >= MAX_DEVICES)
return -ENXIO;
md = _devices + minor;
if (MINOR(md->dev != minor))
return -ENXIO;
for (l = 0; l < md->depth; l++) {
next_node = ((KEYS_PER_NODE + 1) * next_node) + i;
node = md->index[l] + (next_node * KEYS_PER_NODE);
for (i = 0; i < KEYS_PER_NODE; i++)
if (node[i] >= bh->b_rsector)
break;
}
next_node = (KEYS_PER_NODE * next_node) + i;
fn = md->targets[next_node];
context = md->contexts[next_node];
if (fn) {
if ((ret = fn(bh, context)))
atomic_inc(&md->pending);
} else
buffer_IO_error(bh);
return ret;
}
static struct mapped_device *_build_map(struct device_table *t)
{
struct mapped_device *md = _get_free_md();
if (!md)
return 0;
if (!_setup_targets(md, t))
goto bad;
if (!_setup_btree(md, t))
goto bad;
return md;
bad:
_put_free_md(md);
return 0;
}
static inline void *__aligned(size_t s, unsigned int align)
{
return vmalloc(s);
}
static inline void __free_aligned(void *ptr)
{
vfree(ptr);
}
static int _setup_targets(struct mapped_device *md, struct device_table *t)
{
int i;
offset_t low = 0;
md->num_targets = t->count;
md->targets = __aligned(sizeof(*md->targets) * md->num_targets,
NODE_SIZE);
for (i = 0; i < md->num_targets; i++) {
struct mapper *m = _find_mapper(t->map[i].type);
if (!m)
return 0;
if (!m->ctr(low, t->map[i].high + 1,
t->map[i].context, md->contexts + i)) {
WARN("contructor for '%s' failed\n", m->name);
return 0;
}
md->targets[i] = m->map;
}
return 1;
}
static inline ulong _round_up(ulong n, ulong size)
{
ulong r = n % size;
return ((n / size) + (r ? 1 : 0)) * size;
}
static inline ulong _div_up(ulong n, ulong size)
{
return _round_up(n, size) / size;
}
static int _setup_btree(struct mapped_device *md, struct device_table *t)
{
int n, i;
offset_t *k;
/* how many indexes will the btree have ? */
for (n = _div_up(md->num_targets, KEYS_PER_NODE), i = 1; n != 1; i++)
n = _div_up(n, KEYS_PER_NODE + 1);
md->depth = i;
md->counts[md->depth - 1] = _div_up(md->num_targets, KEYS_PER_NODE);
while (--i)
md->counts[i - 1] = _div_up(md->counts[i], KEYS_PER_NODE + 1);
for (i = 0; i < md->depth; i++) {
size_t s = NODE_SIZE * md->counts[i];
md->index[i] = __aligned(s, NODE_SIZE);
memset(md->index[i], -1, s);
}
/* bottom layer is easy */
for (k = md->index[md->depth - 1], i = 0; i < md->num_targets; i++)
k[i] = t->map[i].high;
/* fill in higher levels */
for (i = md->depth - 1; i; i--)
_setup_btree_index(i - 1, md);
return 1;
}
static offset_t __high(struct mapped_device *md, int l, int n)
{
while (1) {
if (n >= md->counts[l])
return (offset_t) -1;
if (l == md->depth - 1)
return md->index[l][((n + 1) * KEYS_PER_NODE) - 1];
l++;
n = (n + 1) * (KEYS_PER_NODE + 1) - 1;
}
}
static int _setup_btree_index(int l, struct mapped_device *md)
{
int n, c, cn;
for (n = 0, cn = 0; n < md->counts[l]; n++) {
offset_t *k = md->index[l] + (n * KEYS_PER_NODE);
for (c = 0; c < KEYS_PER_NODE; c++)
k[c] = __high(md, l + 1, cn++);
cn++;
}
return 1;
}
static void _init_mds(void)
{
int i;
_dev_count = 0;
memset(_devices, 0, sizeof(_devices));
for (i = 0; i < MAX_DEVICES; i++) {
_devices[i].lock = SPIN_LOCK_UNLOCKED;
_devices[i].dev = MKDEV(MAJOR_NR, i);
}
}
static struct mapped_device *_get_free_md(void)
{
int i;
struct mapped_device *m;
for (i = 0; i < MAX_DEVICES; i++) {
m = _devices + i;
spin_lock(&m->lock);
if (!m->in_use) {
m->in_use = 1;
spin_unlock(m);
return m;
}
spin_unlock(&m->lock);
}
WARN("no free devices available\n");
return 0;
}
static void _put_free_md(struct mapped_device *md)
{
int i;
spin_lock(&md->lock);
for (i = 0; i < md->depth; i++)
__free_aligned(md->index[i]);
__free_aligned(md->targets);
__free_aligned(md->contexts);
/* FIXME: check this is the correct length */
memset(&md->depth, 0,
sizeof(*md) - ((void *) &md->depth - (void *) md));
md->in_use = 0;
spin_unlock(&md->lock);
}
int register_mapping_type(const char *name, dm_ctr_fn ctr,
dm_dtr_fn dtr, dm_map_fn map)
{
struct mapper *m;
if (_find_mapper(name)) {
WARN("mapper(%s) already registered\n", name);
return -1; /* FIXME: what's a good return value ? */
}
/* FIXME: There's a race between the last check and insertion */
if ((m = kmalloc(sizeof(*m) + strlen(name) + 1, GFP_KERNEL))) {
WARN("couldn't allocate memory for mapper\n");
return -ENOMEM;
}
m->name = (char *) (m + 1);
m->ctr = ctr;
m->dtr = dtr;
m->map = map;
spin_lock(&_mappers_lock);
m->next = _mappers;
_mappers = m;
spin_unlock(&_mappers_lock);
return 0;
}
struct mapper *_find_mapper(const char *name)
{
struct mapper *m;
spin_lock(&_mappers_lock);
for (m = _mappers; m && strcmp(m->name, name); m = m->next)
;
spin_unlock(&_mappers_lock);
return m;
}
/*
* now for a couple of simple targets:
*
* 'io-err' target always fails an io, useful for bringing up LV's
* that have holes in them.
*
* 'linear' target maps a linear range of a device
*/
int _io_err_ctr(offset_t b, offset_t e, const char *context, void **result)
{
/* this takes no arguments */
*result = 0;
return 1;
}
void _io_err_dtr(void *c)
{
/* empty */
}
int _io_err_map(struct buffer_head *bh, void *context)
{
buffer_IO_error(bh);
return 0;
}
struct linear_c {
kdev_t dev;
int offset; /* FIXME: we need a signed offset type */
};
int _linear_ctr(offset_t b, offset_t e, const char *context, void **result)
{
/* context string should be of the form:
* <major> <minor> <offset>
*/
char *ptr = (char *) context;
struct linear_c *lc;
int major, minor, start;
/* FIXME: somewhat verbose */
major = simple_strtol(context, &ptr, 10);
if (ptr == context)
return 0;
context = ptr;
minor = simple_strtol(context, &ptr, 10);
if (ptr == context)
return 0;
context = ptr;
start = simple_strtoul(context, &ptr, 10);
if (ptr == context)
return 0;
if (!(lc = kmalloc(sizeof(lc), GFP_KERNEL))) {
WARN("couldn't allocate memory for linear context\n");
return 0;
}
lc->dev = MKDEV(major, minor);
lc->offset = start - b;
/* FIXME: we should open the PV */
*result = lc;
return 1;
}
void _linear_dtr(void *c)
{
kfree(c);
}
int _linear_map(struct buffer_head *bh, void *context)
{
struct linear_c *lc = (struct linear_c *) context;
bh->b_rdev = lc->dev;
bh->b_rsector = bh->b_rsector + lc->offset;
return 1;
}
static int _register_std_targets(void)
{
int ret;
#define xx(n, fn) \
if ((ret = register_mapping_type(n, \
fn ## _ctr, fn ## _dtr, fn ## _map) < 0)) return ret
xx("io-err", _io_err);
xx("linear", _linear);
#undef xx
return 0;
}
/*
* module hooks
*/
module_init(_init);
module_exit(_fin);
/*
* Local variables:
* c-file-style: "linux"
* End:
*/