1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-06 17:18:29 +03:00
lvm2/lib/device/bcache.h

112 lines
3.0 KiB
C
Raw Normal View History

/*
* Copyright (C) 2018 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef BCACHE_H
#define BCACHE_H
#include <stdint.h>
2018-02-01 12:54:56 +03:00
#include <stdbool.h>
#include "libdevmapper.h"
/*----------------------------------------------------------------*/
typedef uint64_t block_address;
typedef uint64_t sector_t;
struct bcache;
struct block {
/* clients may only access these three fields */
int fd;
uint64_t index;
void *data;
struct bcache *cache;
struct dm_list list;
struct dm_list hash;
unsigned flags;
unsigned ref_count;
int error;
};
struct bcache *bcache_create(sector_t block_size, unsigned nr_cache_blocks);
void bcache_destroy(struct bcache *cache);
enum bcache_get_flags {
/*
* The block will be zeroed before get_block returns it. This
* potentially avoids a read if the block is not already in the cache.
* GF_DIRTY is implicit.
*/
GF_ZERO = (1 << 0),
/*
* Indicates the caller is intending to change the data in the block, a
* writeback will occur after the block is released.
*/
GF_DIRTY = (1 << 1)
};
typedef uint64_t block_address;
unsigned bcache_nr_cache_blocks(struct bcache *cache);
/*
* Use the prefetch method to take advantage of asynchronous IO. For example,
* if you wanted to read a block from many devices concurrently you'd do
* something like this:
*
* dm_list_iterate_items (dev, &devices)
* bcache_prefetch(cache, dev->fd, block);
*
* dm_list_iterate_items (dev, &devices) {
* if (!bcache_get(cache, dev->fd, block, &b))
* fail();
*
* process_block(b);
* }
*
* It's slightly sub optimal, since you may not run the gets in the order that
* they complete. But we're talking a very small difference, and it's worth it
* to keep callbacks out of this interface.
*/
void bcache_prefetch(struct bcache *cache, int fd, block_address index);
/*
* Returns true on success.
*/
bool bcache_get(struct bcache *cache, int fd, block_address index,
unsigned flags, struct block **result);
void bcache_put(struct block *b);
int bcache_flush(struct bcache *cache);
/*
* Removes a block from the cache. If the block is dirty it will be written
* back first. If the block is currently held a warning will be issued, and it
* will not be removed.
*/
void bcache_invalidate(struct bcache *cache, int fd, block_address index);
/*
* Invalidates all blocks on the given descriptor. Call this before closing
* the descriptor to make sure everything is written back.
*/
void bcache_invalidate_fd(struct bcache *cache, int fd);
/*----------------------------------------------------------------*/
#endif