1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-06 17:18:29 +03:00
lvm2/tools/vgsplit.c

789 lines
20 KiB
C
Raw Normal View History

2002-05-31 23:30:51 +04:00
/*
2008-01-30 17:00:02 +03:00
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2009,2016 Red Hat, Inc. All rights reserved.
2002-05-31 23:30:51 +04:00
*
2004-03-30 23:35:44 +04:00
* This file is part of LVM2.
2002-05-31 23:30:51 +04:00
*
2004-03-30 23:35:44 +04:00
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
2002-05-31 23:30:51 +04:00
*
* You should have received a copy of the GNU Lesser General Public License
2004-03-30 23:35:44 +04:00
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
2002-05-31 23:30:51 +04:00
*/
#include "tools.h"
2005-04-07 16:39:44 +04:00
static int _lv_is_in_vg(struct volume_group *vg, struct logical_volume *lv)
{
if (!lv || lv->vg != vg)
return 0;
2005-04-07 16:39:44 +04:00
return 1;
2005-04-07 16:39:44 +04:00
}
static struct dm_list *_lvh_in_vg(struct logical_volume *lv, struct volume_group *vg)
{
struct dm_list *lvh;
dm_list_iterate(lvh, &vg->lvs)
if (lv == dm_list_item(lvh, struct lv_list)->lv)
return lvh;
return NULL;
}
static int _lv_tree_move(struct dm_list *lvh,
struct dm_list **lvht,
struct volume_group *vg_from,
struct volume_group *vg_to)
{
uint32_t s;
struct logical_volume *lv = dm_list_item(lvh, struct lv_list)->lv;
struct lv_segment *seg = first_seg(lv);
struct dm_list *lvh1;
/* Update the list pointer refering to the item moving to @vg_to. */
if (lvh == *lvht)
2016-07-12 17:25:06 +03:00
*lvht = dm_list_next(lvh, lvh);
dm_list_move(&vg_to->lvs, lvh);
lv->vg = vg_to;
lv->lvid.id[0] = lv->vg->id;
if (seg)
for (s = 0; s < seg->area_count; s++)
if (seg_type(seg, s) == AREA_LV && seg_lv(seg, s)) {
if ((lvh1 = _lvh_in_vg(seg_lv(seg, s), vg_from))) {
if (!_lv_tree_move(lvh1, lvht, vg_from, vg_to))
return 0;
} else if (!_lvh_in_vg(seg_lv(seg, s), vg_to))
return 0;
}
return 1;
}
static int _move_one_lv(struct volume_group *vg_from,
struct volume_group *vg_to,
struct dm_list *lvh,
struct dm_list **lvht)
{
struct logical_volume *lv = dm_list_item(lvh, struct lv_list)->lv;
struct logical_volume *parent_lv;
if (lv_is_active(lv)) {
if ((parent_lv = lv_parent(lv)))
log_error("Logical volume %s (part of %s) must be inactive.", display_lvname(lv), parent_lv->name);
else
log_error("Logical volume %s must be inactive.", display_lvname(lv));
return 0;
}
/* Bail out, if any allocations of @lv are still on PVs of @vg_from */
if (lv_is_on_pvs(lv, &vg_from->pvs)) {
log_error("Can't split LV %s between "
"two Volume Groups", lv->name);
return 0;
}
if (!_lv_tree_move(lvh, lvht, vg_from, vg_to))
return 0;
/* Moved pool metadata spare LV */
if (vg_from->pool_metadata_spare_lv == lv) {
vg_to->pool_metadata_spare_lv = lv;
vg_from->pool_metadata_spare_lv = NULL;
}
return 1;
}
2005-04-07 16:39:44 +04:00
2002-05-31 23:30:51 +04:00
static int _move_lvs(struct volume_group *vg_from, struct volume_group *vg_to)
{
struct dm_list *lvh, *lvht;
2002-05-31 23:30:51 +04:00
struct logical_volume *lv;
2002-11-18 17:04:08 +03:00
struct lv_segment *seg;
2002-05-31 23:30:51 +04:00
struct physical_volume *pv;
struct volume_group *vg_with;
unsigned s;
2002-05-31 23:30:51 +04:00
dm_list_iterate_safe(lvh, lvht, &vg_from->lvs) {
lv = dm_list_item(lvh, struct lv_list)->lv;
2002-05-31 23:30:51 +04:00
2016-12-13 02:09:15 +03:00
if (lv_is_snapshot(lv))
2005-04-07 16:39:44 +04:00
continue;
if (lv_is_raid(lv))
continue;
if (lv_is_mirrored(lv))
continue;
if (lv_is_thin_pool(lv) ||
lv_is_thin_volume(lv))
continue;
if (lv_is_cache(lv) || lv_is_cache_pool(lv))
/* further checks by _move_cache() */
continue;
2002-05-31 23:30:51 +04:00
/* Ensure all the PVs used by this LV remain in the same */
/* VG as each other */
vg_with = NULL;
dm_list_iterate_items(seg, &lv->segments) {
for (s = 0; s < seg->area_count; s++) {
/* FIXME Check AREA_LV too */
2005-06-01 20:51:55 +04:00
if (seg_type(seg, s) != AREA_PV)
continue;
2005-06-01 20:51:55 +04:00
pv = seg_pv(seg, s);
2002-05-31 23:30:51 +04:00
if (vg_with) {
if (!pv_is_in_vg(vg_with, pv)) {
log_error("Can't split Logical "
"Volume %s between "
"two Volume Groups",
2002-05-31 23:30:51 +04:00
lv->name);
return 0;
}
continue;
}
if (pv_is_in_vg(vg_from, pv)) {
2002-05-31 23:30:51 +04:00
vg_with = vg_from;
continue;
}
if (pv_is_in_vg(vg_to, pv)) {
2002-05-31 23:30:51 +04:00
vg_with = vg_to;
continue;
}
log_error("Physical Volume %s not found",
pv_dev_name(pv));
2002-05-31 23:30:51 +04:00
return 0;
}
2005-04-07 16:39:44 +04:00
}
2002-05-31 23:30:51 +04:00
if (vg_with == vg_from)
continue;
/* Move this LV */
if (!_move_one_lv(vg_from, vg_to, lvh, &lvht))
2008-04-15 18:57:12 +04:00
return_0;
2002-05-31 23:30:51 +04:00
}
/* FIXME Ensure no LVs contain segs pointing at LVs in the other VG */
2002-05-31 23:30:51 +04:00
return 1;
}
/*
* Move the hidden / internal "snapshotN" LVs.from 'vg_from' to 'vg_to'.
*/
2005-04-07 16:39:44 +04:00
static int _move_snapshots(struct volume_group *vg_from,
struct volume_group *vg_to)
2002-05-31 23:30:51 +04:00
{
struct dm_list *lvh, *lvht;
2005-04-07 16:39:44 +04:00
struct logical_volume *lv;
struct lv_segment *seg;
int cow_from = 0;
int origin_from = 0;
2002-05-31 23:30:51 +04:00
dm_list_iterate_safe(lvh, lvht, &vg_from->lvs) {
lv = dm_list_item(lvh, struct lv_list)->lv;
2002-05-31 23:30:51 +04:00
2016-12-13 02:09:15 +03:00
if (!lv_is_snapshot(lv))
2005-04-07 16:39:44 +04:00
continue;
2002-05-31 23:30:51 +04:00
dm_list_iterate_items(seg, &lv->segments) {
2005-04-07 16:39:44 +04:00
cow_from = _lv_is_in_vg(vg_from, seg->cow);
origin_from = _lv_is_in_vg(vg_from, seg->origin);
if (cow_from && origin_from)
continue;
if ((!cow_from && origin_from) ||
(cow_from && !origin_from)) {
log_error("Can't split snapshot %s between"
" two Volume Groups", seg->cow->name);
return 0;
}
2005-04-07 16:39:44 +04:00
/*
* At this point, the cow and origin should already be
* in vg_to.
*/
if (_lv_is_in_vg(vg_to, seg->cow) &&
_lv_is_in_vg(vg_to, seg->origin)) {
if (!_move_one_lv(vg_from, vg_to, lvh, &lvht))
2008-04-15 18:57:12 +04:00
return_0;
}
}
2005-04-07 16:39:44 +04:00
2002-05-31 23:30:51 +04:00
}
return 1;
}
static int _move_mirrors(struct volume_group *vg_from,
struct volume_group *vg_to)
{
struct dm_list *lvh, *lvht;
struct logical_volume *lv;
struct lv_segment *seg, *log_seg;
unsigned s, seg_in, log_in;
dm_list_iterate_safe(lvh, lvht, &vg_from->lvs) {
lv = dm_list_item(lvh, struct lv_list)->lv;
if (lv_is_raid(lv))
continue;
if (!lv_is_mirrored(lv))
continue;
/* Ignore, if no allocations on PVs of @vg_to */
if (!lv_is_on_pvs(lv, &vg_to->pvs))
continue;
2008-01-30 17:00:02 +03:00
seg = first_seg(lv);
seg_in = 0;
for (s = 0; s < seg->area_count; s++)
if (_lv_is_in_vg(vg_to, seg_lv(seg, s)))
2013-06-13 16:10:49 +04:00
seg_in++;
log_in = !seg->log_lv;
if (seg->log_lv) {
log_seg = first_seg(seg->log_lv);
if (seg_is_mirrored(log_seg)) {
log_in = 1;
/* Ensure each log dev is in vg_to */
for (s = 0; s < log_seg->area_count; s++)
log_in = log_in &&
_lv_is_in_vg(vg_to,
seg_lv(log_seg, s));
} else
log_in = _lv_is_in_vg(vg_to, seg->log_lv);
}
2008-01-30 17:00:02 +03:00
if ((seg_in && seg_in < seg->area_count) ||
(seg_in && seg->log_lv && !log_in) ||
(!seg_in && seg->log_lv && log_in)) {
log_error("Can't split mirror %s between "
"two Volume Groups", lv->name);
return 0;
}
if (seg_in == seg->area_count && log_in) {
if (!_move_one_lv(vg_from, vg_to, lvh, &lvht))
2008-04-15 18:57:12 +04:00
return_0;
}
}
return 1;
}
/*
* Check for any RAID LVs with allocations on PVs of @vg_to.
*
* If these don't have any allocations on PVs of @vg_from,
* move their whole lv stack across to @vg_to including the
* top-level RAID LV.
*/
static int _move_raids(struct volume_group *vg_from,
struct volume_group *vg_to)
{
struct dm_list *lvh, *lvht;
struct logical_volume *lv;
dm_list_iterate_safe(lvh, lvht, &vg_from->lvs) {
lv = dm_list_item(lvh, struct lv_list)->lv;
if (!lv_is_raid(lv))
continue;
/* Ignore, if no allocations on PVs of @vg_to */
if (!lv_is_on_pvs(lv, &vg_to->pvs))
continue;
/* If allocations are on PVs of @vg_to -> move RAID LV stack across */
if (!_move_one_lv(vg_from, vg_to, lvh, &lvht))
return_0;
}
return 1;
}
static int _move_thins(struct volume_group *vg_from,
struct volume_group *vg_to)
{
struct dm_list *lvh, *lvht;
struct logical_volume *lv, *data_lv;
struct lv_segment *seg;
dm_list_iterate_safe(lvh, lvht, &vg_from->lvs) {
lv = dm_list_item(lvh, struct lv_list)->lv;
if (lv_is_thin_volume(lv)) {
seg = first_seg(lv);
data_lv = seg_lv(first_seg(seg->pool_lv), 0);
/* Ignore, if no allocations on PVs of @vg_to */
if (!lv_is_on_pvs(data_lv, &vg_to->pvs) &&
(seg->external_lv && !lv_is_on_pvs(seg->external_lv, &vg_to->pvs)))
continue;
if ((_lv_is_in_vg(vg_to, data_lv) ||
_lv_is_in_vg(vg_to, seg->external_lv))) {
if (_lv_is_in_vg(vg_from, seg->external_lv) ||
_lv_is_in_vg(vg_from, data_lv)) {
log_error("Can't split external origin %s "
"and pool %s between two Volume Groups.",
2017-06-27 00:58:06 +03:00
display_lvname(seg->external_lv),
display_lvname(seg->pool_lv));
return 0;
}
if (!_move_one_lv(vg_from, vg_to, lvh, &lvht))
return_0;
}
} else if (lv_is_thin_pool(lv)) {
seg = first_seg(lv);
data_lv = seg_lv(seg, 0);
/* Ignore, if no allocations on PVs of @vg_to */
if (!lv_is_on_pvs(data_lv, &vg_to->pvs))
continue;
if (_lv_is_in_vg(vg_to, data_lv) ||
_lv_is_in_vg(vg_to, seg->metadata_lv)) {
if (_lv_is_in_vg(vg_from, seg->metadata_lv) ||
_lv_is_in_vg(vg_from, data_lv)) {
log_error("Can't split pool data and metadata %s "
"between two Volume Groups.",
lv->name);
return 0;
}
if (!_move_one_lv(vg_from, vg_to, lvh, &lvht))
return_0;
}
}
}
return 1;
}
static int _move_cache(struct volume_group *vg_from,
struct volume_group *vg_to)
{
int is_moving;
struct dm_list *lvh, *lvht;
struct logical_volume *lv, *data, *meta, *orig;
struct lv_segment *seg, *cache_seg;
dm_list_iterate_safe(lvh, lvht, &vg_from->lvs) {
lv = dm_list_item(lvh, struct lv_list)->lv;
data = meta = orig = NULL;
seg = first_seg(lv);
if (!lv_is_cache(lv) && !lv_is_cache_pool(lv))
continue;
/*
* FIXME: The code seems to move cache LVs fine, but it
* hasn't been well tested and it causes problems
* when just splitting PVs that don't contain
* cache LVs.
* Waiting for next release before fixing and enabling.
*/
log_error("Unable to split VG while it contains cache LVs");
return 0;
/* NOTREACHED */
if (lv_is_cache(lv)) {
orig = seg_lv(seg, 0);
data = seg_lv(first_seg(seg->pool_lv), 0);
meta = first_seg(seg->pool_lv)->metadata_lv;
/* Ensure all components are coming along */
is_moving = _lv_is_in_vg(vg_to, orig);
} else {
if (!dm_list_empty(&seg->lv->segs_using_this_lv) &&
!(cache_seg = get_only_segment_using_this_lv(seg->lv)))
return_0;
orig = seg_lv(cache_seg, 0);
data = seg_lv(seg, 0);
meta = seg->metadata_lv;
if (_lv_is_in_vg(vg_to, data) ||
_lv_is_in_vg(vg_to, meta))
is_moving = 1;
}
if (!lv_is_on_pvs(data, &vg_to->pvs))
continue;
if (!lv_is_on_pvs(meta, &vg_to->pvs))
continue;
if (orig && (_lv_is_in_vg(vg_to, orig) != is_moving)) {
log_error("Can't split %s and its origin (%s)"
" into separate VGs", lv->name, orig->name);
return 0;
}
if (data && (_lv_is_in_vg(vg_to, data) != is_moving)) {
log_error("Can't split %s and its cache pool"
" data LV (%s) into separate VGs",
lv->name, data->name);
return 0;
}
if (meta && (_lv_is_in_vg(vg_to, meta) != is_moving)) {
log_error("Can't split %s and its cache pool"
" metadata LV (%s) into separate VGs",
lv->name, meta->name);
return 0;
}
if (!_move_one_lv(vg_from, vg_to, lvh, &lvht))
return_0;
}
return 1;
}
/*
* Create or open the destination of the vgsplit operation.
* Returns
* - non-NULL: VG handle w/VG lock held
* - NULL: no VG lock held
*/
static struct volume_group *_vgsplit_to(struct cmd_context *cmd,
const char *vg_name_to,
int *existing_vg)
{
struct volume_group *vg_to = NULL;
log_verbose("Checking for new volume group \"%s\"", vg_name_to);
/*
* First try to create a new VG. If we cannot create it,
* and we get FAILED_EXIST (we will not be holding a lock),
* a VG must already exist with this name. We then try to
* read the existing VG - the vgsplit will be into an existing VG.
*
* Otherwise, if the lock was successful, it must be the case that
* we obtained a WRITE lock and could not find the vgname in the
* system. Thus, the split will be into a new VG.
*/
vg_to = vg_lock_and_create(cmd, vg_name_to);
if (vg_read_error(vg_to) == FAILED_LOCKING) {
log_error("Can't get lock for %s", vg_name_to);
release_vg(vg_to);
return NULL;
}
if (vg_read_error(vg_to) == FAILED_EXIST) {
*existing_vg = 1;
release_vg(vg_to);
2015-03-05 23:00:44 +03:00
vg_to = vg_read_for_update(cmd, vg_name_to, NULL, 0, 0);
if (vg_read_error(vg_to)) {
release_vg(vg_to);
return_NULL;
}
} else if (vg_read_error(vg_to) == SUCCESS) {
*existing_vg = 0;
}
return vg_to;
}
/*
* Open the source of the vgsplit operation.
* Returns
* - non-NULL: VG handle w/VG lock held
* - NULL: no VG lock held
*/
static struct volume_group *_vgsplit_from(struct cmd_context *cmd,
const char *vg_name_from)
{
struct volume_group *vg_from;
log_verbose("Checking for volume group \"%s\"", vg_name_from);
2015-03-05 23:00:44 +03:00
vg_from = vg_read_for_update(cmd, vg_name_from, NULL, 0, 0);
if (vg_read_error(vg_from)) {
release_vg(vg_from);
return NULL;
}
2015-03-05 23:00:44 +03:00
if (is_lockd_type(vg_from->lock_type)) {
log_error("vgsplit not allowed for lock_type %s", vg_from->lock_type);
unlock_and_release_vg(cmd, vg_from, vg_name_from);
return NULL;
}
return vg_from;
}
/*
* Has the user given an option related to a new vg as the split destination?
*/
static int _new_vg_option_specified(struct cmd_context *cmd)
{
return(arg_is_set(cmd, clustered_ARG) ||
arg_is_set(cmd, alloc_ARG) ||
arg_is_set(cmd, maxphysicalvolumes_ARG) ||
arg_is_set(cmd, maxlogicalvolumes_ARG) ||
arg_is_set(cmd, vgmetadatacopies_ARG));
}
2002-05-31 23:30:51 +04:00
int vgsplit(struct cmd_context *cmd, int argc, char **argv)
{
struct vgcreate_params vp_new;
struct vgcreate_params vp_def;
const char *vg_name_from, *vg_name_to;
struct volume_group *vg_to = NULL, *vg_from = NULL;
2002-05-31 23:30:51 +04:00
int opt;
2009-06-10 15:21:10 +04:00
int existing_vg = 0;
int r = ECMD_FAILED;
const char *lv_name;
int lock_vg_from_first = 1;
2002-05-31 23:30:51 +04:00
if ((arg_is_set(cmd, name_ARG) + argc) < 3) {
log_error("Existing VG, new VG and either physical volumes "
"or logical volume required.");
2002-05-31 23:30:51 +04:00
return EINVALID_CMD_LINE;
}
if (arg_is_set(cmd, name_ARG) && (argc > 2)) {
log_error("A logical volume name cannot be given with "
"physical volumes.");
return ECMD_FAILED;
}
2015-03-05 23:00:44 +03:00
/* Needed change the global VG namespace. */
if (!lockd_gl(cmd, "ex", LDGL_UPDATE_NAMES))
return_ECMD_FAILED;
if (arg_is_set(cmd, name_ARG))
lv_name = arg_value(cmd, name_ARG);
else
lv_name = NULL;
vg_name_from = skip_dev_dir(cmd, argv[0], NULL);
vg_name_to = skip_dev_dir(cmd, argv[1], NULL);
2002-05-31 23:30:51 +04:00
argc -= 2;
argv += 2;
if (!strcmp(vg_name_to, vg_name_from)) {
log_error("Duplicate volume group name \"%s\"", vg_name_from);
return ECMD_FAILED;
}
lvmcache_label_scan(cmd);
lvmcache_seed_infos_from_lvmetad(cmd);
if (strcmp(vg_name_to, vg_name_from) < 0)
lock_vg_from_first = 0;
if (lock_vg_from_first) {
if (!(vg_from = _vgsplit_from(cmd, vg_name_from)))
return_ECMD_FAILED;
/*
* Set metadata format of original VG.
* NOTE: We must set the format before calling vg_lock_and_create()
* since vg_lock_and_create() calls the per-format constructor.
*/
cmd->fmt = vg_from->fid->fmt;
if (!(vg_to = _vgsplit_to(cmd, vg_name_to, &existing_vg))) {
unlock_and_release_vg(cmd, vg_from, vg_name_from);
return_ECMD_FAILED;
}
} else {
if (!(vg_to = _vgsplit_to(cmd, vg_name_to, &existing_vg)))
return_ECMD_FAILED;
if (!(vg_from = _vgsplit_from(cmd, vg_name_from))) {
unlock_and_release_vg(cmd, vg_to, vg_name_to);
return_ECMD_FAILED;
}
Change vg_create() to take only minimal parameters and obtain a lock. vg_t *vg_create(struct cmd_context *cmd, const char *vg_name); This is the first step towards the API called to create a VG. Call vg_lock_newname() inside this function. Use _vg_make_handle() where possible. Now we have 2 ways to construct a volume group: 1) vg_read: Used when constructing an existing VG from disks 2) vg_create: Used when constructing a new VG Both of these interfaces obtain a lock, and return a vg_t *. The usage of _vg_make_handle() inside vg_create() doesn't fit perfectly but it's ok for now. Needs some cleanup though and I've noted "FIXME" in the code. Add the new vg_create() plus vg 'set' functions for non-default VG parameters in the following tools: - vgcreate: Fairly straightforward refactoring. We just moved vg_lock_newname inside vg_create so we check the return via vg_read_error. - vgsplit: The refactoring here is a bit more tricky. Originally we called vg_lock_newname and depending on the error code, we either read the existing vg or created the new one. Now vg_create() calls vg_lock_newname, so we first try to create the VG. If this fails with FAILED_EXIST, we can then do the vg_read. If the create succeeds, we check the input parameters and set any new values on the VG. TODO in future patches: 1. The VG_ORPHAN lock needs some thought. We may want to treat this as any other VG, and require the application to obtain a handle and pass it to other API calls (for example, vg_extend). Or, we may find that hiding the VG_ORPHAN lock inside other APIs is the way to go. I thought of placing the VG_ORPHAN lock inside vg_create() and tying it to the vg handle, but was not certain this was the right approach. 2. Cleanup error paths. Integrate vg_read_error() with vg_create and vg_read* error codes and/or the new error APIs. Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
2009-07-09 14:09:33 +04:00
if (cmd->fmt != vg_from->fid->fmt) {
/* In this case we don't know the vg_from->fid->fmt */
log_error("Unable to set new VG metadata type based on "
"source VG format - use -M option.");
goto bad;
}
}
if (existing_vg) {
if (_new_vg_option_specified(cmd)) {
log_error("Volume group \"%s\" exists, but new VG "
"option specified", vg_name_to);
goto bad;
}
if (!vgs_are_compatible(cmd, vg_from,vg_to))
2008-04-10 23:59:43 +04:00
goto_bad;
} else {
if (!vgcreate_params_set_defaults(cmd, &vp_def, vg_from)) {
r = EINVALID_CMD_LINE;
goto_bad;
}
vp_def.vg_name = vg_name_to;
if (!vgcreate_params_set_from_args(cmd, &vp_new, &vp_def)) {
r = EINVALID_CMD_LINE;
goto_bad;
}
if (!vgcreate_params_validate(cmd, &vp_new)) {
r = EINVALID_CMD_LINE;
goto_bad;
}
Change vg_create() to take only minimal parameters and obtain a lock. vg_t *vg_create(struct cmd_context *cmd, const char *vg_name); This is the first step towards the API called to create a VG. Call vg_lock_newname() inside this function. Use _vg_make_handle() where possible. Now we have 2 ways to construct a volume group: 1) vg_read: Used when constructing an existing VG from disks 2) vg_create: Used when constructing a new VG Both of these interfaces obtain a lock, and return a vg_t *. The usage of _vg_make_handle() inside vg_create() doesn't fit perfectly but it's ok for now. Needs some cleanup though and I've noted "FIXME" in the code. Add the new vg_create() plus vg 'set' functions for non-default VG parameters in the following tools: - vgcreate: Fairly straightforward refactoring. We just moved vg_lock_newname inside vg_create so we check the return via vg_read_error. - vgsplit: The refactoring here is a bit more tricky. Originally we called vg_lock_newname and depending on the error code, we either read the existing vg or created the new one. Now vg_create() calls vg_lock_newname, so we first try to create the VG. If this fails with FAILED_EXIST, we can then do the vg_read. If the create succeeds, we check the input parameters and set any new values on the VG. TODO in future patches: 1. The VG_ORPHAN lock needs some thought. We may want to treat this as any other VG, and require the application to obtain a handle and pass it to other API calls (for example, vg_extend). Or, we may find that hiding the VG_ORPHAN lock inside other APIs is the way to go. I thought of placing the VG_ORPHAN lock inside vg_create() and tying it to the vg handle, but was not certain this was the right approach. 2. Cleanup error paths. Integrate vg_read_error() with vg_create and vg_read* error codes and/or the new error APIs. Signed-off-by: Dave Wysochanski <dwysocha@redhat.com>
2009-07-09 14:09:33 +04:00
if (!vg_set_extent_size(vg_to, vp_new.extent_size) ||
!vg_set_max_lv(vg_to, vp_new.max_lv) ||
!vg_set_max_pv(vg_to, vp_new.max_pv) ||
!vg_set_alloc_policy(vg_to, vp_new.alloc) ||
!vg_set_clustered(vg_to, vp_new.clustered) ||
!vg_set_system_id(vg_to, vp_new.system_id) ||
!vg_set_mda_copies(vg_to, vp_new.vgmetadatacopies))
2008-04-10 23:59:43 +04:00
goto_bad;
}
2002-05-31 23:30:51 +04:00
/* Archive vg_from before changing it */
if (!archive(vg_from))
2008-04-10 23:59:43 +04:00
goto_bad;
2002-05-31 23:30:51 +04:00
/* Move PVs across to new structure */
for (opt = 0; opt < argc; opt++) {
dm_unescape_colons_and_at_signs(argv[opt], NULL, NULL);
if (!move_pv(vg_from, vg_to, argv[opt]))
2008-04-10 23:59:43 +04:00
goto_bad;
}
/* If an LV given on the cmdline, move used_by PVs */
if (lv_name && !move_pvs_used_by_lv(vg_from, vg_to, lv_name))
2008-04-10 23:59:43 +04:00
goto_bad;
2002-05-31 23:30:51 +04:00
/*
* First move any required RAID LVs across recursively.
* Reject if they get split between VGs.
*
* This moves the whole LV stack across, thus _move_lvs() below
* ain't hit any of their MetaLVs/DataLVs any more but'll still
* work for all other type specific moves following it.
*/
if (!(_move_raids(vg_from, vg_to)))
2008-04-10 23:59:43 +04:00
goto_bad;
2002-05-31 23:30:51 +04:00
/* Move required sub LVs across, checking consistency */
if (!(_move_lvs(vg_from, vg_to)))
goto_bad;
/* Move required mirrors across */
if (!(_move_mirrors(vg_from, vg_to)))
2008-04-10 23:59:43 +04:00
goto_bad;
2009-10-26 13:01:56 +03:00
/* Move required pools across */
if (!(_move_thins(vg_from, vg_to)))
goto_bad;
/* Move required cache LVs across */
if (!(_move_cache(vg_from, vg_to)))
goto_bad;
/* Move required snapshots across */
if (!(_move_snapshots(vg_from, vg_to)))
goto_bad;
/* Split metadata areas and check if both vgs have at least one area */
if (!(vg_split_mdas(cmd, vg_from, vg_to)) && vg_from->pv_count) {
log_error("Cannot split: Nowhere to store metadata for new Volume Group");
goto bad;
}
/* Set proper name for all PVs in new VG */
if (!vg_rename(cmd, vg_to, vg_name_to))
2008-04-10 23:59:43 +04:00
goto_bad;
2002-11-18 17:04:08 +03:00
/* Set old VG name so the metadata operations recognise that the PVs are in an existing VG */
vg_to->old_name = vg_from->name;
2002-05-31 23:30:51 +04:00
/* store it on disks */
log_verbose("Writing out updated volume groups");
/*
* First, write out the new VG as EXPORTED. We do this first in case
* there is a crash - we will still have the new VG information, in an
* exported state. Recovery after this point would importing and removal
* of the new VG and redoing the vgsplit.
* FIXME: recover automatically or instruct the user?
*/
2002-05-31 23:30:51 +04:00
vg_to->status |= EXPORTED_VG;
if (!archive(vg_to))
2008-04-10 23:59:43 +04:00
goto_bad;
2002-05-31 23:30:51 +04:00
if (!vg_write(vg_to) || !vg_commit(vg_to))
2008-04-10 23:59:43 +04:00
goto_bad;
2002-05-31 23:30:51 +04:00
lvmetad: two phase vg_update Previously, a command sent lvmetad new VG metadata in vg_commit(). In vg_commit(), devices are suspended, so any memory allocation done by the command while sending to lvmetad, or by lvmetad while updating its cache could deadlock if memory reclaim was triggered. Now lvmetad is updated in unlock_vg(), after devices are resumed. The new method for updating VG metadata in lvmetad is in two phases: 1. In vg_write(), before devices are suspended, the command sends lvmetad a short message ("set_vg_info") telling it what the new VG seqno will be. lvmetad sees that the seqno is newer than the seqno of its cached VG, so it sets the INVALID flag for the cached VG. If sending the message to lvmetad fails, the command fails before the metadata is committed and the change is not made. If sending the message succeeds, vg_commit() is called. 2. In unlock_vg(), after devices are resumed, the command sends lvmetad the standard vg_update message with the new metadata. lvmetad sees that the seqno in the new metadata matches the seqno it saved from set_vg_info, and knows it has the latest copy, so it clears the INVALID flag for the cached VG. If a command fails between 1 and 2 (after committing the VG on disk, but before sending lvmetad the new metadata), the cached VG retains the INVALID flag in lvmetad. A subsequent command will read the cached VG from lvmetad, see the INVALID flag, ignore the cached copy, read the VG from disk instead, update the lvmetad copy with the latest copy from disk, (this clears the INVALID flag in lvmetad), and use the correct VG metadata for the command. (This INVALID mechanism already existed for use by lvmlockd.)
2016-06-08 22:42:03 +03:00
lvmetad_vg_update_finish(vg_to);
2002-05-31 23:30:51 +04:00
backup(vg_to);
/*
* Next, write out the updated old VG. If we crash after this point,
* recovery is a vgimport on the new VG.
2008-04-10 23:59:43 +04:00
* FIXME: recover automatically or instruct the user?
*/
if (vg_from->pv_count) {
if (!vg_write(vg_from) || !vg_commit(vg_from))
2008-04-10 23:59:43 +04:00
goto_bad;
2002-05-31 23:30:51 +04:00
lvmetad: two phase vg_update Previously, a command sent lvmetad new VG metadata in vg_commit(). In vg_commit(), devices are suspended, so any memory allocation done by the command while sending to lvmetad, or by lvmetad while updating its cache could deadlock if memory reclaim was triggered. Now lvmetad is updated in unlock_vg(), after devices are resumed. The new method for updating VG metadata in lvmetad is in two phases: 1. In vg_write(), before devices are suspended, the command sends lvmetad a short message ("set_vg_info") telling it what the new VG seqno will be. lvmetad sees that the seqno is newer than the seqno of its cached VG, so it sets the INVALID flag for the cached VG. If sending the message to lvmetad fails, the command fails before the metadata is committed and the change is not made. If sending the message succeeds, vg_commit() is called. 2. In unlock_vg(), after devices are resumed, the command sends lvmetad the standard vg_update message with the new metadata. lvmetad sees that the seqno in the new metadata matches the seqno it saved from set_vg_info, and knows it has the latest copy, so it clears the INVALID flag for the cached VG. If a command fails between 1 and 2 (after committing the VG on disk, but before sending lvmetad the new metadata), the cached VG retains the INVALID flag in lvmetad. A subsequent command will read the cached VG from lvmetad, see the INVALID flag, ignore the cached copy, read the VG from disk instead, update the lvmetad copy with the latest copy from disk, (this clears the INVALID flag in lvmetad), and use the correct VG metadata for the command. (This INVALID mechanism already existed for use by lvmlockd.)
2016-06-08 22:42:03 +03:00
lvmetad_vg_update_finish(vg_from);
backup(vg_from);
}
2002-05-31 23:30:51 +04:00
/*
* Finally, remove the EXPORTED flag from the new VG and write it out.
*/
if (!test_mode()) {
release_vg(vg_to);
vg_to = vg_read_for_update(cmd, vg_name_to, NULL,
2015-03-05 23:00:44 +03:00
READ_ALLOW_EXPORTED, 0);
if (vg_read_error(vg_to)) {
log_error("Volume group \"%s\" became inconsistent: "
"please fix manually", vg_name_to);
goto bad;
}
2002-11-18 17:04:08 +03:00
}
2002-05-31 23:30:51 +04:00
vg_to->status &= ~EXPORTED_VG;
2003-09-15 19:03:54 +04:00
if (!vg_write(vg_to) || !vg_commit(vg_to))
2008-04-10 23:59:43 +04:00
goto_bad;
2002-05-31 23:30:51 +04:00
lvmetad: two phase vg_update Previously, a command sent lvmetad new VG metadata in vg_commit(). In vg_commit(), devices are suspended, so any memory allocation done by the command while sending to lvmetad, or by lvmetad while updating its cache could deadlock if memory reclaim was triggered. Now lvmetad is updated in unlock_vg(), after devices are resumed. The new method for updating VG metadata in lvmetad is in two phases: 1. In vg_write(), before devices are suspended, the command sends lvmetad a short message ("set_vg_info") telling it what the new VG seqno will be. lvmetad sees that the seqno is newer than the seqno of its cached VG, so it sets the INVALID flag for the cached VG. If sending the message to lvmetad fails, the command fails before the metadata is committed and the change is not made. If sending the message succeeds, vg_commit() is called. 2. In unlock_vg(), after devices are resumed, the command sends lvmetad the standard vg_update message with the new metadata. lvmetad sees that the seqno in the new metadata matches the seqno it saved from set_vg_info, and knows it has the latest copy, so it clears the INVALID flag for the cached VG. If a command fails between 1 and 2 (after committing the VG on disk, but before sending lvmetad the new metadata), the cached VG retains the INVALID flag in lvmetad. A subsequent command will read the cached VG from lvmetad, see the INVALID flag, ignore the cached copy, read the VG from disk instead, update the lvmetad copy with the latest copy from disk, (this clears the INVALID flag in lvmetad), and use the correct VG metadata for the command. (This INVALID mechanism already existed for use by lvmlockd.)
2016-06-08 22:42:03 +03:00
lvmetad_vg_update_finish(vg_to);
2002-05-31 23:30:51 +04:00
backup(vg_to);
log_print_unless_silent("%s volume group \"%s\" successfully split from \"%s\"",
existing_vg ? "Existing" : "New",
vg_to->name, vg_from->name);
2002-05-31 23:30:51 +04:00
r = ECMD_PROCESSED;
bad:
/*
2011-04-29 04:21:13 +04:00
* vg_to references elements moved from vg_from
* so vg_to has to be freed first.
*/
unlock_and_release_vg(cmd, vg_to, vg_name_to);
unlock_and_release_vg(cmd, vg_from, vg_name_from);
return r;
2002-05-31 23:30:51 +04:00
}