1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-03 05:18:29 +03:00
lvm2/lib/locking/no_locking.c

117 lines
3.2 KiB
C
Raw Normal View History

/*
2008-01-30 17:00:02 +03:00
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2007 Red Hat, Inc. All rights reserved.
*
2004-03-30 23:35:44 +04:00
* This file is part of LVM2.
*
2004-03-30 23:35:44 +04:00
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
2004-03-30 23:35:44 +04:00
*
* You should have received a copy of the GNU Lesser General Public License
2004-03-30 23:35:44 +04:00
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
2002-11-18 17:01:16 +03:00
#include "lib.h"
#include "locking.h"
#include "locking_types.h"
#include "lvm-string.h"
#include "activate.h"
#include <signal.h>
/*
* No locking
*/
static void _no_fin_locking(void)
{
}
2003-05-06 16:03:13 +04:00
static void _no_reset_locking(void)
{
}
static int _no_lock_resource(struct cmd_context *cmd, const char *resource,
uint32_t flags, struct logical_volume *lv)
{
switch (flags & LCK_SCOPE_MASK) {
case LCK_VG:
if (!strcmp(resource, VG_SYNC_NAMES))
fs_unlock();
break;
case LCK_LV:
switch (flags & LCK_TYPE_MASK) {
2004-05-05 16:03:07 +04:00
case LCK_NULL:
return lv_deactivate(cmd, resource, lv_ondisk(lv));
case LCK_UNLOCK:
return lv_resume_if_active(cmd, resource, (flags & LCK_ORIGIN_ONLY) ? 1: 0, 0, (flags & LCK_REVERT) ? 1 : 0, lv_ondisk(lv));
case LCK_READ:
activation: flag temporary LVs internally Add LV_TEMPORARY flag for LVs with limited existence during command execution. Such LVs are temporary in way that they need to be activated, some action done and then removed immediately. Such LVs are just like any normal LV - the only difference is that they are removed during LVM command execution. This is also the case for LVs representing future pool metadata spare LVs which we need to initialize by using the usual LV before they are declared as pool metadata spare. We can optimize some other parts like udev to do a better job if it knows that the LV is temporary and any processing on it is just useless. This flag is orthogonal to LV_NOSCAN flag introduced recently as LV_NOSCAN flag is primarily used to mark an LV for the scanning to be avoided before the zeroing of the device happens. The LV_TEMPORARY flag makes a difference between a full-fledged LV visible in the system and the LV just used as a temporary overlay for some action that needs to be done on underlying PVs. For example: lvcreate --thinpool POOL --zero n -L 1G vg - first, the usual LV is created to do a clean up for pool metadata spare. The LV is activated, zeroed, deactivated. - between "activated" and "zeroed" stage, the LV_NOSCAN flag is used to avoid any scanning in udev - betwen "zeroed" and "deactivated" stage, we need to avoid the WATCH udev rule, but since the LV is just a usual LV, we can't make a difference. The LV_TEMPORARY internal LV flag helps here. If we create the LV with this flag, the DM_UDEV_DISABLE_DISK_RULES and DM_UDEV_DISABLE_OTHER_RULES flag are set (just like as it is with "invisible" and non-top-level LVs) - udev is directed to skip WATCH rule use. - if the LV_TEMPORARY flag was not used, there would normally be a WATCH event generated once the LV is closed after "zeroed" stage. This will make problems with immediated deactivation that follows.
2013-10-23 16:06:39 +04:00
return lv_activate_with_filter(cmd, resource, 0, lv->status & LV_NOSCAN ? 1 : 0,
lv->status & LV_TEMPORARY ? 1 : 0, lv_ondisk(lv));
case LCK_WRITE:
return lv_suspend_if_active(cmd, resource, (flags & LCK_ORIGIN_ONLY) ? 1 : 0, 0, lv_ondisk(lv), lv);
case LCK_EXCL:
activation: flag temporary LVs internally Add LV_TEMPORARY flag for LVs with limited existence during command execution. Such LVs are temporary in way that they need to be activated, some action done and then removed immediately. Such LVs are just like any normal LV - the only difference is that they are removed during LVM command execution. This is also the case for LVs representing future pool metadata spare LVs which we need to initialize by using the usual LV before they are declared as pool metadata spare. We can optimize some other parts like udev to do a better job if it knows that the LV is temporary and any processing on it is just useless. This flag is orthogonal to LV_NOSCAN flag introduced recently as LV_NOSCAN flag is primarily used to mark an LV for the scanning to be avoided before the zeroing of the device happens. The LV_TEMPORARY flag makes a difference between a full-fledged LV visible in the system and the LV just used as a temporary overlay for some action that needs to be done on underlying PVs. For example: lvcreate --thinpool POOL --zero n -L 1G vg - first, the usual LV is created to do a clean up for pool metadata spare. The LV is activated, zeroed, deactivated. - between "activated" and "zeroed" stage, the LV_NOSCAN flag is used to avoid any scanning in udev - betwen "zeroed" and "deactivated" stage, we need to avoid the WATCH udev rule, but since the LV is just a usual LV, we can't make a difference. The LV_TEMPORARY internal LV flag helps here. If we create the LV with this flag, the DM_UDEV_DISABLE_DISK_RULES and DM_UDEV_DISABLE_OTHER_RULES flag are set (just like as it is with "invisible" and non-top-level LVs) - udev is directed to skip WATCH rule use. - if the LV_TEMPORARY flag was not used, there would normally be a WATCH event generated once the LV is closed after "zeroed" stage. This will make problems with immediated deactivation that follows.
2013-10-23 16:06:39 +04:00
return lv_activate_with_filter(cmd, resource, 1, lv->status & LV_NOSCAN ? 1 : 0,
lv->status & LV_TEMPORARY ? 1 : 0, lv_ondisk(lv));
default:
break;
}
break;
default:
log_error("Unrecognised lock scope: %d",
flags & LCK_SCOPE_MASK);
return 0;
}
return 1;
}
static int _no_query_resource(const char *resource, int *mode)
{
log_very_verbose("Locking is disabled: Treating lock %s as not held.",
resource);
return 1;
}
static int _readonly_lock_resource(struct cmd_context *cmd,
const char *resource,
uint32_t flags, struct logical_volume *lv)
{
if ((flags & LCK_TYPE_MASK) == LCK_WRITE &&
(flags & LCK_SCOPE_MASK) == LCK_VG &&
!(flags & LCK_CACHE) &&
strcmp(resource, VG_GLOBAL)) {
log_error("Read-only locking type set. "
"Write locks are prohibited.");
return 0;
}
return _no_lock_resource(cmd, resource, flags, lv);
}
int init_no_locking(struct locking_type *locking, struct cmd_context *cmd __attribute__((unused)),
int suppress_messages)
{
locking->lock_resource = _no_lock_resource;
locking->query_resource = _no_query_resource;
2003-05-06 16:03:13 +04:00
locking->reset_locking = _no_reset_locking;
locking->fin_locking = _no_fin_locking;
locking->flags = LCK_CLUSTERED;
return 1;
}
int init_readonly_locking(struct locking_type *locking, struct cmd_context *cmd __attribute__((unused)),
int suppress_messages)
{
locking->lock_resource = _readonly_lock_resource;
locking->query_resource = _no_query_resource;
locking->reset_locking = _no_reset_locking;
locking->fin_locking = _no_fin_locking;
locking->flags = 0;
return 1;
}