1
0
mirror of git://sourceware.org/git/lvm2.git synced 2025-01-31 05:47:43 +03:00
lvm2/tools/pvcreate.c

162 lines
4.5 KiB
C
Raw Normal View History

2001-10-01 15:29:39 +00:00
/*
2004-03-30 19:35:44 +00:00
* Copyright (C) 2001-2004 Sistina Software, Inc. All rights reserved.
* Copyright (C) 2004-2009 Red Hat, Inc. All rights reserved.
2001-11-07 08:50:07 +00:00
*
2004-03-30 19:35:44 +00:00
* This file is part of LVM2.
2001-11-07 08:50:07 +00:00
*
2004-03-30 19:35:44 +00:00
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
2001-11-07 08:50:07 +00:00
*
* You should have received a copy of the GNU Lesser General Public License
2004-03-30 19:35:44 +00:00
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
2001-10-01 15:29:39 +00:00
*/
#include "tools.h"
/*
* Intial sanity checking of recovery-related command-line arguments.
* These args are: --restorefile, --uuid, and --physicalvolumesize
*
* Output arguments:
* pp: structure allocated by caller, fields written / validated here
*/
static int _pvcreate_restore_params_from_args(struct cmd_context *cmd, int argc,
struct pvcreate_params *pp)
{
pp->restorefile = arg_str_value(cmd, restorefile_ARG, NULL);
if (arg_is_set(cmd, restorefile_ARG) && !arg_is_set(cmd, uuidstr_ARG)) {
2002-11-18 14:04:08 +00:00
log_error("--uuid is required with --restorefile");
return 0;
2002-11-18 14:04:08 +00:00
}
if (!arg_is_set(cmd, restorefile_ARG) && arg_is_set(cmd, uuidstr_ARG)) {
if (!arg_is_set(cmd, norestorefile_ARG) &&
find_config_tree_bool(cmd, devices_require_restorefile_with_uuid_CFG, NULL)) {
log_error("--restorefile is required with --uuid");
return 0;
}
}
if (arg_is_set(cmd, uuidstr_ARG) && argc != 1) {
log_error("Can only set uuid on one volume at once");
return 0;
}
if (arg_is_set(cmd, uuidstr_ARG)) {
pp->uuid_str = arg_str_value(cmd, uuidstr_ARG, "");
if (!id_read_format(&pp->pva.id, pp->uuid_str))
return 0;
pp->pva.idp = &pp->pva.id;
}
if (arg_sign_value(cmd, setphysicalvolumesize_ARG, SIGN_NONE) == SIGN_MINUS) {
log_error("Physical volume size may not be negative");
return 0;
}
pp->pva.size = arg_uint64_value(cmd, setphysicalvolumesize_ARG, UINT64_C(0));
if (arg_is_set(cmd, restorefile_ARG) || arg_is_set(cmd, uuidstr_ARG))
pp->zero = 0;
return 1;
}
static int _pvcreate_restore_params_from_backup(struct cmd_context *cmd,
struct pvcreate_params *pp)
{
struct volume_group *vg;
struct pv_list *existing_pvl;
/*
* When restoring a PV, params need to be read from a backup file.
*/
if (!pp->restorefile)
return 1;
if (!(vg = backup_read_vg(cmd, NULL, pp->restorefile))) {
log_error("Unable to read volume group from %s", pp->restorefile);
return 0;
}
if (!(existing_pvl = find_pv_in_vg_by_uuid(vg, &pp->pva.id))) {
release_vg(vg);
log_error("Can't find uuid %s in backup file %s",
pp->uuid_str, pp->restorefile);
return 0;
}
pp->pva.ba_start = pv_ba_start(existing_pvl->pv);
pp->pva.ba_size = pv_ba_size(existing_pvl->pv);
pp->pva.pe_start = pv_pe_start(existing_pvl->pv);
pp->pva.extent_size = pv_pe_size(existing_pvl->pv);
pp->pva.extent_count = pv_pe_count(existing_pvl->pv);
release_vg(vg);
return 1;
}
int pvcreate(struct cmd_context *cmd, int argc, char **argv)
{
struct processing_handle *handle;
struct pvcreate_params pp;
int ret;
/*
* Five kinds of pvcreate param values:
* 1. defaults
* 2. recovery-related command line args
* 3. recovery-related args from backup file
* 4. normal command line args
* (this also checks some settings from 2 & 3)
* 5. argc/argv free args specifying devices
*/
pvcreate_params_set_defaults(&pp);
if (!_pvcreate_restore_params_from_args(cmd, argc, &pp))
return EINVALID_CMD_LINE;
if (!_pvcreate_restore_params_from_backup(cmd, &pp))
return EINVALID_CMD_LINE;
if (!pvcreate_params_from_args(cmd, &pp))
return EINVALID_CMD_LINE;
/*
* If --metadatasize was not given with --restorefile, set it to pe_start.
* Later code treats this as a maximum size and reduces it to fit.
*/
if (!arg_is_set(cmd, metadatasize_ARG) && arg_is_set(cmd, restorefile_ARG))
pp.pva.pvmetadatasize = pp.pva.pe_start;
/* FIXME Also needs to check any 2nd metadata area isn't inside the data area! */
pp.pv_count = argc;
pp.pv_names = argv;
locking: unify global lock for flock and lockd There have been two file locks used to protect lvm "global state": "ORPHANS" and "GLOBAL". Commands that used the ORPHAN flock in exclusive mode: pvcreate, pvremove, vgcreate, vgextend, vgremove, vgcfgrestore Commands that used the ORPHAN flock in shared mode: vgimportclone, pvs, pvscan, pvresize, pvmove, pvdisplay, pvchange, fullreport Commands that used the GLOBAL flock in exclusive mode: pvchange, pvscan, vgimportclone, vgscan Commands that used the GLOBAL flock in shared mode: pvscan --cache, pvs The ORPHAN lock covers the important cases of serializing the use of orphan PVs. It also partially covers the reporting of orphan PVs (although not correctly as explained below.) The GLOBAL lock doesn't seem to have a clear purpose (it may have eroded over time.) Neither lock correctly protects the VG namespace, or orphan PV properties. To simplify and correct these issues, the two separate flocks are combined into the one GLOBAL flock, and this flock is used from the locking sites that are in place for the lvmlockd global lock. The logic behind the lvmlockd (distributed) global lock is that any command that changes "global state" needs to take the global lock in ex mode. Global state in lvm is: the list of VG names, the set of orphan PVs, and any properties of orphan PVs. Reading this global state can use the global lock in sh mode to ensure it doesn't change while being reported. The locking of global state now looks like: lockd_global() previously named lockd_gl(), acquires the distributed global lock through lvmlockd. This is unchanged. It serializes distributed lvm commands that are changing global state. This is a no-op when lvmlockd is not in use. lockf_global() acquires an flock on a local file. It serializes local lvm commands that are changing global state. lock_global() first calls lockf_global() to acquire the local flock for global state, and if this succeeds, it calls lockd_global() to acquire the distributed lock for global state. Replace instances of lockd_gl() with lock_global(), so that the existing sites for lvmlockd global state locking are now also used for local file locking of global state. Remove the previous file locking calls lock_vol(GLOBAL) and lock_vol(ORPHAN). The following commands which change global state are now serialized with the exclusive global flock: pvchange (of orphan), pvresize (of orphan), pvcreate, pvremove, vgcreate, vgextend, vgremove, vgreduce, vgrename, vgcfgrestore, vgimportclone, vgmerge, vgsplit Commands that use a shared flock to read global state (and will be serialized against the prior list) are those that use process_each functions that are based on processing a list of all VG names, or all PVs. The list of all VGs or all PVs is global state and the shared lock prevents those lists from changing while the command is processing them. The ORPHAN lock previously attempted to produce an accurate listing of orphan PVs, but it was only acquired at the end of the command during the fake vg_read of the fake orphan vg. This is not when orphan PVs were determined; they were determined by elimination beforehand by processing all real VGs, and subtracting the PVs in the real VGs from the list of all PVs that had been identified during the initial scan. This is fixed by holding the single global lock in shared mode while processing all VGs to determine the list of orphan PVs.
2019-04-18 15:01:19 -05:00
/* Needed to change the set of orphan PVs. */
if (!lock_global(cmd, "ex"))
return_ECMD_FAILED;
clear_hint_file(cmd);
device usage based on devices file The devices file /etc/lvm/devices/system.devices is a list of devices that lvm can use. This is the default system devices file, which is specified in lvm.conf devices/devicesfile. The command option --devicesfile <filename> allows lvm to be used with a different set of devices. This allows different applications to use lvm on different sets of devices, e.g. system devices do not need to be exposed to an application using lvm on its own devices, and application devices do not need to be exposed to the system. In most cases (with limited exceptions), lvm will not read or use a device not listed in the devices file. When the devices file is used, the regex filter is not used, and the filter settings in lvm.conf are ignored. filter-deviceid is used when the devices file is enabled, and rejects any device that does not match an entry in the devices file. Set use_devicesfile=0 in lvm.conf or set --devicesfile "" on the command line to disable the use of a devices file. When disabled, lvm will see and use any device on the system that passes the regex filter (and other standard filters.) A device ID, e.g. wwid or serial number from sysfs, is a unique ID that identifies a device. The device ID is generally independent of the device content, and lvm can get the device ID without reading the device. The device ID is used in the devices file as the primary method of identifying device entries, and is also included in VG metadata for PVs. Each device_id has a device_id_type which indicates where the device_id comes from, e.g. "sys_wwid" means the device_id comes from the sysfs wwid file. Others are sys_serial, mpath_uuid, loop_file, md_uuid, devname. (devname is the device path, which is a fallback when no other proper device_id_type is available.) filter-deviceid permits lvm to use only devices on the system that have a device_id matching a devices file entry. Using the device_id, lvm can determine the set of devices to use without reading any devices, so the devices file will constrain lvm in two ways: 1. it limits the devices that lvm will read. 2. it limits the devices that lvm will use. In some uncommon cases, e.g. when devices have no unique ID and device_id has to fall back to using the devname, lvm may need to read all devices on the system to determine which ones correspond to the devices file entries. In this case, the devices file does not limit the devices that lvm reads, but it does limit the devices that lvm uses. pvcreate/vgcreate/vgextend are not constrained by the devices file, and will look outside it to find the new PV. They assign the new PV a device_id and add it to the devices file. It is also possible to explicitly add new PVs to the devices file before using them in pvcreate/etc, in which case these commands would not need to look outside the devices file for the new device. vgimportdevices VG looks at all devices on the system to find an existing VG and add its devices to the devices file. The command is not limited by an existing devices file. The command will also add device_ids to the VG metadata if the VG does not yet include device_ids. vgimportdevices -a imports devices for all accessible VGs. Since vgimportdevices does not limit itself to devices in an existing devices file, the lvm.conf regex filter applies. Adding --foreign will import devices for foreign VGs, but device_ids are not added to foreign VGs. Incomplete VGs are not imported. The lvmdevices command manages the devices file. The primary purpose is to edit the devices file, but it will read PV headers to find/check PVIDs. (It does not read, process or modify VG metadata.) lvmdevices . Displays devices file entries. lvmdevices --check . Checks devices file entries. lvmdevices --update . Updates devices file entries. lvmdevices --adddev <devname> . Adds devices_file entry (reads pv header). lvmdevices --deldev <devname> . Removes devices file entry. lvmdevices --addpvid <pvid> . Reads pv header of all devices to find <pvid>, and if found adds devices file entry. lvmdevices --delpvid <pvid> . Removes devices file entry. The vgimportclone command has a new option --importdevices that does the equivalent of vgimportdevices with the cloned devices that are being imported. The devices are "uncloned" (new vgname and pvids) while at the same time adding the devices to the devices file. This allows cloned PVs to be imported without duplicate PVs ever appearing on the system. The command option --devices <devnames> allows a specific list of devices to be exposed to the lvm command, overriding the devices file.
2020-06-23 13:25:41 -05:00
cmd->create_edit_devices_file = 1;
lvmcache_label_scan(cmd);
if (!(handle = init_processing_handle(cmd, NULL))) {
log_error("Failed to initialize processing handle.");
return ECMD_FAILED;
}
if (!pvcreate_each_device(cmd, handle, &pp))
ret = ECMD_FAILED;
else
ret = ECMD_PROCESSED;
2001-10-01 15:29:39 +00:00
destroy_processing_handle(cmd, handle);
2003-10-21 22:06:07 +00:00
return ret;
2001-10-01 15:29:39 +00:00
}