1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-21 13:34:40 +03:00
lvm2/lib/device/bcache.c

1179 lines
25 KiB
C
Raw Normal View History

/*
* Copyright (C) 2018 Red Hat, Inc. All rights reserved.
*
* This file is part of LVM2.
*
* This copyrighted material is made available to anyone wishing to use,
* modify, copy, or redistribute it subject to the terms and conditions
* of the GNU Lesser General Public License v.2.1.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <stdbool.h>
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <libaio.h>
#include <unistd.h>
#include <linux/fs.h>
#include <sys/ioctl.h>
#include <sys/user.h>
#include "bcache.h"
#include "dm-logging.h"
#include "log.h"
#define SECTOR_SHIFT 9L
//----------------------------------------------------------------
static void log_sys_warn(const char *syscall)
{
log_warn("%s failed: %s", syscall, strerror(errno));
}
// Assumes the list is not empty.
static inline struct dm_list *_list_pop(struct dm_list *head)
{
struct dm_list *l;
l = head->n;
dm_list_del(l);
return l;
}
//----------------------------------------------------------------
struct control_block {
struct dm_list list;
void *context;
struct iocb cb;
};
struct cb_set {
struct dm_list free;
struct dm_list allocated;
struct control_block *vec;
} control_block_set;
static struct cb_set *_cb_set_create(unsigned nr)
{
int i;
struct cb_set *cbs = dm_malloc(sizeof(*cbs));
if (!cbs)
return NULL;
cbs->vec = dm_malloc(nr * sizeof(*cbs->vec));
if (!cbs->vec) {
dm_free(cbs);
return NULL;
}
dm_list_init(&cbs->free);
dm_list_init(&cbs->allocated);
for (i = 0; i < nr; i++)
dm_list_add(&cbs->free, &cbs->vec[i].list);
return cbs;
}
static void _cb_set_destroy(struct cb_set *cbs)
{
// We know this is always called after a wait_all. So there should
// never be in flight IO.
if (!dm_list_empty(&cbs->allocated)) {
// bail out
log_error("async io still in flight");
return;
}
dm_free(cbs->vec);
dm_free(cbs);
}
static struct control_block *_cb_alloc(struct cb_set *cbs, void *context)
{
struct control_block *cb;
if (dm_list_empty(&cbs->free))
return NULL;
cb = dm_list_item(_list_pop(&cbs->free), struct control_block);
cb->context = context;
dm_list_add(&cbs->allocated, &cb->list);
return cb;
}
static void _cb_free(struct cb_set *cbs, struct control_block *cb)
{
dm_list_del(&cb->list);
dm_list_add_h(&cbs->free, &cb->list);
}
static struct control_block *_iocb_to_cb(struct iocb *icb)
{
return dm_list_struct_base(icb, struct control_block, cb);
}
//----------------------------------------------------------------
// FIXME: write a sync engine too
struct async_engine {
struct io_engine e;
io_context_t aio_context;
struct cb_set *cbs;
};
static struct async_engine *_to_async(struct io_engine *e)
{
return container_of(e, struct async_engine, e);
}
static void _async_destroy(struct io_engine *ioe)
{
int r;
struct async_engine *e = _to_async(ioe);
_cb_set_destroy(e->cbs);
// io_destroy is really slow
r = io_destroy(e->aio_context);
if (r)
log_sys_warn("io_destroy");
dm_free(e);
}
static bool _async_issue(struct io_engine *ioe, enum dir d, int fd,
sector_t sb, sector_t se, void *data, void *context)
{
int r;
struct iocb *cb_array[1];
struct control_block *cb;
struct async_engine *e = _to_async(ioe);
if (((uint64_t) data) & (PAGE_SIZE - 1)) {
log_warn("misaligned data buffer");
return false;
}
cb = _cb_alloc(e->cbs, context);
if (!cb) {
log_warn("couldn't allocate control block");
return false;
}
memset(&cb->cb, 0, sizeof(cb->cb));
cb->cb.aio_fildes = (int) fd;
cb->cb.u.c.buf = data;
cb->cb.u.c.offset = sb << SECTOR_SHIFT;
cb->cb.u.c.nbytes = (se - sb) << SECTOR_SHIFT;
cb->cb.aio_lio_opcode = (d == DIR_READ) ? IO_CMD_PREAD : IO_CMD_PWRITE;
cb_array[0] = &cb->cb;
2018-02-20 18:33:27 +03:00
do {
r = io_submit(e->aio_context, 1, cb_array);
} while (r == -EAGAIN);
if (r < 0) {
log_sys_warn("io_submit");
_cb_free(e->cbs, cb);
return false;
}
return true;
}
#define MAX_IO 1024
#define MAX_EVENT 64
static bool _async_wait(struct io_engine *ioe, io_complete_fn fn)
{
int i, r;
struct io_event event[MAX_EVENT];
struct control_block *cb;
struct async_engine *e = _to_async(ioe);
memset(&event, 0, sizeof(event));
2018-02-20 18:33:27 +03:00
do {
r = io_getevents(e->aio_context, 1, MAX_EVENT, event, NULL);
} while (r == -EINTR);
if (r < 0) {
log_sys_warn("io_getevents");
return false;
}
for (i = 0; i < r; i++) {
struct io_event *ev = event + i;
cb = _iocb_to_cb((struct iocb *) ev->obj);
if (ev->res == cb->cb.u.c.nbytes)
fn((void *) cb->context, 0);
else if ((int) ev->res < 0)
fn(cb->context, (int) ev->res);
2018-02-20 18:33:27 +03:00
// FIXME: dct added this. a short read is ok?!
else if (ev->res >= (1 << SECTOR_SHIFT)) {
/* minimum acceptable read is 1 sector */
fn((void *) cb->context, 0);
} else {
fn(cb->context, -ENODATA);
}
_cb_free(e->cbs, cb);
}
return true;
}
2018-02-20 18:33:27 +03:00
static unsigned _async_max_io(struct io_engine *e)
{
2018-02-20 18:33:27 +03:00
return MAX_IO;
}
2018-02-20 18:33:27 +03:00
struct io_engine *create_async_io_engine(void)
{
int r;
struct async_engine *e = dm_malloc(sizeof(*e));
if (!e)
return NULL;
e->e.destroy = _async_destroy;
e->e.issue = _async_issue;
e->e.wait = _async_wait;
e->e.max_io = _async_max_io;
e->aio_context = 0;
2018-02-20 18:33:27 +03:00
r = io_setup(MAX_IO, &e->aio_context);
if (r < 0) {
log_warn("io_setup failed");
dm_free(e);
return NULL;
}
2018-02-20 18:33:27 +03:00
e->cbs = _cb_set_create(MAX_IO);
if (!e->cbs) {
log_warn("couldn't create control block set");
dm_free(e);
return NULL;
}
return &e->e;
}
//----------------------------------------------------------------
#define MIN_BLOCKS 16
#define WRITEBACK_LOW_THRESHOLD_PERCENT 33
#define WRITEBACK_HIGH_THRESHOLD_PERCENT 66
//----------------------------------------------------------------
static void *_alloc_aligned(size_t len, size_t alignment)
{
void *result = NULL;
int r = posix_memalign(&result, alignment, len);
if (r)
return NULL;
return result;
}
//----------------------------------------------------------------
static bool _test_flags(struct block *b, unsigned bits)
{
return (b->flags & bits) != 0;
}
static void _set_flags(struct block *b, unsigned bits)
{
b->flags |= bits;
}
static void _clear_flags(struct block *b, unsigned bits)
{
b->flags &= ~bits;
}
//----------------------------------------------------------------
enum block_flags {
BF_IO_PENDING = (1 << 0),
BF_DIRTY = (1 << 1),
};
struct bcache {
sector_t block_sectors;
uint64_t nr_data_blocks;
uint64_t nr_cache_blocks;
unsigned max_io;
struct io_engine *engine;
void *raw_data;
struct block *raw_blocks;
/*
* Lists that categorise the blocks.
*/
unsigned nr_locked;
unsigned nr_dirty;
unsigned nr_io_pending;
struct dm_list free;
struct dm_list errored;
struct dm_list dirty;
struct dm_list clean;
struct dm_list io_pending;
/*
* Hash table.
*/
unsigned nr_buckets;
unsigned hash_mask;
struct dm_list *buckets;
/*
* Statistics
*/
unsigned read_hits;
unsigned read_misses;
unsigned write_zeroes;
unsigned write_hits;
unsigned write_misses;
unsigned prefetches;
};
//----------------------------------------------------------------
/* 2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */
#define GOLDEN_RATIO_PRIME_64 0x9e37fffffffc0001UL
static unsigned _hash(struct bcache *cache, int fd, uint64_t index)
{
uint64_t h = (index << 10) & fd;
h *= GOLDEN_RATIO_PRIME_64;
return h & cache->hash_mask;
}
static struct block *_hash_lookup(struct bcache *cache, int fd, uint64_t index)
{
struct block *b;
unsigned h = _hash(cache, fd, index);
dm_list_iterate_items_gen (b, cache->buckets + h, hash)
2018-02-06 18:10:44 +03:00
if (b->fd == fd && b->index == index)
return b;
return NULL;
}
static void _hash_insert(struct block *b)
{
unsigned h = _hash(b->cache, b->fd, b->index);
dm_list_add_h(b->cache->buckets + h, &b->hash);
}
static inline void _hash_remove(struct block *b)
{
dm_list_del(&b->hash);
}
/*
* Must return a power of 2.
*/
static unsigned _calc_nr_buckets(unsigned nr_blocks)
{
unsigned r = 8;
unsigned n = nr_blocks / 4;
if (n < 8)
n = 8;
while (r < n)
r <<= 1;
return r;
}
static bool _hash_table_init(struct bcache *cache, unsigned nr_entries)
{
unsigned i;
cache->nr_buckets = _calc_nr_buckets(nr_entries);
cache->hash_mask = cache->nr_buckets - 1;
cache->buckets = dm_malloc(cache->nr_buckets * sizeof(*cache->buckets));
if (!cache->buckets)
return false;
for (i = 0; i < cache->nr_buckets; i++)
dm_list_init(cache->buckets + i);
return true;
}
static void _hash_table_exit(struct bcache *cache)
{
dm_free(cache->buckets);
}
//----------------------------------------------------------------
static bool _init_free_list(struct bcache *cache, unsigned count)
{
unsigned i;
size_t block_size = cache->block_sectors << SECTOR_SHIFT;
unsigned char *data =
(unsigned char *) _alloc_aligned(count * block_size, PAGE_SIZE);
/* Allocate the data for each block. We page align the data. */
if (!data)
return false;
cache->raw_data = data;
cache->raw_blocks = dm_malloc(count * sizeof(*cache->raw_blocks));
if (!cache->raw_blocks)
dm_free(cache->raw_data);
for (i = 0; i < count; i++) {
struct block *b = cache->raw_blocks + i;
b->cache = cache;
b->data = data + (block_size * i);
dm_list_add(&cache->free, &b->list);
}
return true;
}
static void _exit_free_list(struct bcache *cache)
{
dm_free(cache->raw_data);
dm_free(cache->raw_blocks);
}
static struct block *_alloc_block(struct bcache *cache)
{
if (dm_list_empty(&cache->free))
return NULL;
return dm_list_struct_base(_list_pop(&cache->free), struct block, list);
}
/*----------------------------------------------------------------
* Clean/dirty list management.
* Always use these methods to ensure nr_dirty_ is correct.
*--------------------------------------------------------------*/
static void _unlink_block(struct block *b)
{
if (_test_flags(b, BF_DIRTY))
b->cache->nr_dirty--;
dm_list_del(&b->list);
}
static void _link_block(struct block *b)
{
struct bcache *cache = b->cache;
if (_test_flags(b, BF_DIRTY)) {
dm_list_add(&cache->dirty, &b->list);
cache->nr_dirty++;
} else
dm_list_add(&cache->clean, &b->list);
}
static void _relink(struct block *b)
{
_unlink_block(b);
_link_block(b);
}
/*----------------------------------------------------------------
* Low level IO handling
*
* We cannot have two concurrent writes on the same block.
* eg, background writeback, put with dirty, flush?
*
* To avoid this we introduce some restrictions:
*
* i) A held block can never be written back.
* ii) You cannot get a block until writeback has completed.
*
*--------------------------------------------------------------*/
static void _complete_io(void *context, int err)
{
struct block *b = context;
struct bcache *cache = b->cache;
b->error = err;
_clear_flags(b, BF_IO_PENDING);
cache->nr_io_pending--;
/*
* b is on the io_pending list, so we don't want to use unlink_block.
* Which would incorrectly adjust nr_dirty.
*/
dm_list_del(&b->list);
if (b->error) {
log_warn("bcache io error %d fd %d", b->error, b->fd);
dm_list_add(&cache->errored, &b->list);
2018-02-20 18:33:27 +03:00
} else {
_clear_flags(b, BF_DIRTY);
_link_block(b);
}
}
/*
* |b->list| should be valid (either pointing to itself, on one of the other
* lists.
*/
2018-02-20 18:33:27 +03:00
static void _issue_low_level(struct block *b, enum dir d)
{
struct bcache *cache = b->cache;
sector_t sb = b->index * cache->block_sectors;
sector_t se = sb + cache->block_sectors;
if (_test_flags(b, BF_IO_PENDING))
2018-02-20 18:33:27 +03:00
return;
2018-02-20 18:33:27 +03:00
b->io_dir = d;
_set_flags(b, BF_IO_PENDING);
dm_list_move(&cache->io_pending, &b->list);
if (!cache->engine->issue(cache->engine, d, b->fd, sb, se, b->data, b)) {
2018-04-06 21:11:39 +03:00
/* FIXME: if io_submit() set an errno, return that instead of EIO? */
_complete_io(b, -EIO);
2018-02-20 18:33:27 +03:00
return;
}
}
2018-02-20 18:33:27 +03:00
static inline void _issue_read(struct block *b)
{
2018-02-20 18:33:27 +03:00
_issue_low_level(b, DIR_READ);
}
2018-02-20 18:33:27 +03:00
static inline void _issue_write(struct block *b)
{
2018-02-20 18:33:27 +03:00
_issue_low_level(b, DIR_WRITE);
}
static bool _wait_io(struct bcache *cache)
{
return cache->engine->wait(cache->engine, _complete_io);
}
/*----------------------------------------------------------------
* High level IO handling
*--------------------------------------------------------------*/
static void _wait_all(struct bcache *cache)
{
while (!dm_list_empty(&cache->io_pending))
_wait_io(cache);
}
static void _wait_specific(struct block *b)
{
while (_test_flags(b, BF_IO_PENDING))
_wait_io(b->cache);
}
static unsigned _writeback(struct bcache *cache, unsigned count)
{
unsigned actual = 0;
struct block *b, *tmp;
dm_list_iterate_items_gen_safe (b, tmp, &cache->dirty, list) {
if (actual == count)
break;
// We can't writeback anything that's still in use.
if (!b->ref_count) {
_issue_write(b);
actual++;
}
}
return actual;
}
/*----------------------------------------------------------------
* High level allocation
*--------------------------------------------------------------*/
static struct block *_find_unused_clean_block(struct bcache *cache)
{
struct block *b;
dm_list_iterate_items (b, &cache->clean) {
if (!b->ref_count) {
_unlink_block(b);
_hash_remove(b);
return b;
}
}
return NULL;
}
static struct block *_new_block(struct bcache *cache, int fd, block_address index, bool can_wait)
{
struct block *b;
b = _alloc_block(cache);
while (!b && !dm_list_empty(&cache->clean)) {
b = _find_unused_clean_block(cache);
if (!b) {
if (can_wait) {
if (dm_list_empty(&cache->io_pending))
_writeback(cache, 16); // FIXME: magic number
_wait_io(cache);
} else {
log_error("bcache no new blocks for fd %d index %u",
fd, (uint32_t)index);
return NULL;
}
}
}
if (b) {
dm_list_init(&b->list);
dm_list_init(&b->hash);
b->flags = 0;
b->fd = fd;
b->index = index;
b->ref_count = 0;
b->error = 0;
_hash_insert(b);
}
#if 0
if (!b) {
log_error("bcache no new blocks for fd %d index %u "
"clean %u free %u dirty %u pending %u nr_data_blocks %u nr_cache_blocks %u",
fd, (uint32_t)index,
dm_list_size(&cache->clean),
dm_list_size(&cache->free),
dm_list_size(&cache->dirty),
dm_list_size(&cache->io_pending),
(uint32_t)cache->nr_data_blocks,
(uint32_t)cache->nr_cache_blocks);
}
#endif
return b;
}
/*----------------------------------------------------------------
* Block reference counting
*--------------------------------------------------------------*/
static void _zero_block(struct block *b)
{
b->cache->write_zeroes++;
memset(b->data, 0, b->cache->block_sectors << SECTOR_SHIFT);
_set_flags(b, BF_DIRTY);
}
static void _hit(struct block *b, unsigned flags)
{
struct bcache *cache = b->cache;
if (flags & (GF_ZERO | GF_DIRTY))
cache->write_hits++;
else
cache->read_hits++;
_relink(b);
}
static void _miss(struct bcache *cache, unsigned flags)
{
if (flags & (GF_ZERO | GF_DIRTY))
cache->write_misses++;
else
cache->read_misses++;
}
static struct block *_lookup_or_read_block(struct bcache *cache,
int fd, block_address index,
unsigned flags)
{
struct block *b = _hash_lookup(cache, fd, index);
if (b) {
// FIXME: this is insufficient. We need to also catch a read
// lock of a write locked block. Ref count needs to distinguish.
if (b->ref_count && (flags & (GF_DIRTY | GF_ZERO))) {
log_warn("concurrent write lock attempted");
return NULL;
}
if (_test_flags(b, BF_IO_PENDING)) {
_miss(cache, flags);
_wait_specific(b);
} else
_hit(b, flags);
_unlink_block(b);
if (flags & GF_ZERO)
_zero_block(b);
} else {
_miss(cache, flags);
b = _new_block(cache, fd, index, true);
if (b) {
if (flags & GF_ZERO)
_zero_block(b);
else {
_issue_read(b);
_wait_specific(b);
// we know the block is clean and unerrored.
_unlink_block(b);
}
}
}
if (b) {
if (flags & (GF_DIRTY | GF_ZERO))
_set_flags(b, BF_DIRTY);
_link_block(b);
return b;
}
return NULL;
}
static void _preemptive_writeback(struct bcache *cache)
{
// FIXME: this ignores those blocks that are in the error state. Track
// nr_clean instead?
unsigned nr_available = cache->nr_cache_blocks - (cache->nr_dirty - cache->nr_io_pending);
if (nr_available < (WRITEBACK_LOW_THRESHOLD_PERCENT * cache->nr_cache_blocks / 100))
_writeback(cache, (WRITEBACK_HIGH_THRESHOLD_PERCENT * cache->nr_cache_blocks / 100) - nr_available);
}
/*----------------------------------------------------------------
* Public interface
*--------------------------------------------------------------*/
struct bcache *bcache_create(sector_t block_sectors, unsigned nr_cache_blocks,
struct io_engine *engine)
{
struct bcache *cache;
unsigned max_io = engine->max_io(engine);
if (!nr_cache_blocks) {
log_warn("bcache must have at least one cache block");
return NULL;
}
if (!block_sectors) {
log_warn("bcache must have a non zero block size");
return NULL;
}
if (block_sectors & ((PAGE_SIZE >> SECTOR_SHIFT) - 1)) {
log_warn("bcache block size must be a multiple of page size");
return NULL;
}
cache = dm_malloc(sizeof(*cache));
if (!cache)
return NULL;
cache->block_sectors = block_sectors;
cache->nr_cache_blocks = nr_cache_blocks;
cache->max_io = nr_cache_blocks < max_io ? nr_cache_blocks : max_io;
cache->engine = engine;
cache->nr_locked = 0;
cache->nr_dirty = 0;
cache->nr_io_pending = 0;
dm_list_init(&cache->free);
dm_list_init(&cache->errored);
dm_list_init(&cache->dirty);
dm_list_init(&cache->clean);
dm_list_init(&cache->io_pending);
if (!_hash_table_init(cache, nr_cache_blocks)) {
cache->engine->destroy(cache->engine);
dm_free(cache);
return NULL;
}
cache->read_hits = 0;
cache->read_misses = 0;
cache->write_zeroes = 0;
cache->write_hits = 0;
cache->write_misses = 0;
cache->prefetches = 0;
if (!_init_free_list(cache, nr_cache_blocks)) {
cache->engine->destroy(cache->engine);
_hash_table_exit(cache);
dm_free(cache);
return NULL;
}
return cache;
}
void bcache_destroy(struct bcache *cache)
{
if (cache->nr_locked)
log_warn("some blocks are still locked");
bcache_flush(cache);
_wait_all(cache);
_exit_free_list(cache);
_hash_table_exit(cache);
cache->engine->destroy(cache->engine);
dm_free(cache);
}
unsigned bcache_nr_cache_blocks(struct bcache *cache)
{
return cache->nr_cache_blocks;
}
unsigned bcache_max_prefetches(struct bcache *cache)
{
return cache->max_io;
}
void bcache_prefetch(struct bcache *cache, int fd, block_address index)
{
struct block *b = _hash_lookup(cache, fd, index);
if (!b) {
if (cache->nr_io_pending < cache->max_io) {
b = _new_block(cache, fd, index, false);
if (b) {
cache->prefetches++;
_issue_read(b);
}
}
}
}
static void _recycle_block(struct bcache *cache, struct block *b)
{
_unlink_block(b);
_hash_remove(b);
dm_list_add(&cache->free, &b->list);
}
bool bcache_get(struct bcache *cache, int fd, block_address index,
2018-04-06 21:11:39 +03:00
unsigned flags, struct block **result, int *error)
{
struct block *b;
b = _lookup_or_read_block(cache, fd, index, flags);
if (b) {
if (b->error) {
*error = b->error;
if (b->io_dir == DIR_READ) {
// Now we know the read failed we can just forget
// about this block, since there's no dirty data to
// be written back.
_recycle_block(cache, b);
}
return false;
}
if (!b->ref_count)
cache->nr_locked++;
b->ref_count++;
*result = b;
return true;
}
*result = NULL;
2018-04-06 21:11:39 +03:00
if (error)
*error = -BCACHE_NO_BLOCK;
log_error("bcache failed to get block %u fd %d", (uint32_t)index, fd);
return false;
}
2018-02-20 00:40:44 +03:00
static void _put_ref(struct block *b)
{
if (!b->ref_count) {
log_warn("ref count on bcache block already zero");
return;
}
b->ref_count--;
if (!b->ref_count)
b->cache->nr_locked--;
2018-02-20 00:40:44 +03:00
}
void bcache_put(struct block *b)
{
_put_ref(b);
if (_test_flags(b, BF_DIRTY))
_preemptive_writeback(b->cache);
}
2018-02-20 18:33:27 +03:00
bool bcache_flush(struct bcache *cache)
{
2018-02-20 18:33:27 +03:00
// Only dirty data is on the errored list, since bad read blocks get
// recycled straight away. So we put these back on the dirty list, and
// try and rewrite everything.
dm_list_splice(&cache->dirty, &cache->errored);
while (!dm_list_empty(&cache->dirty)) {
struct block *b = dm_list_item(_list_pop(&cache->dirty), struct block);
if (b->ref_count || _test_flags(b, BF_IO_PENDING)) {
// The superblock may well be still locked.
continue;
}
_issue_write(b);
}
_wait_all(cache);
2018-02-20 18:33:27 +03:00
return dm_list_empty(&cache->errored);
}
/*
* You can safely call this with a NULL block.
*/
static bool _invalidate_block(struct bcache *cache, struct block *b)
{
if (!b)
return true;
if (_test_flags(b, BF_IO_PENDING))
_wait_specific(b);
if (b->ref_count) {
log_warn("bcache_invalidate: block (%d, %llu) still held",
b->fd, (unsigned long long) index);
return false;
}
if (_test_flags(b, BF_DIRTY)) {
_issue_write(b);
_wait_specific(b);
if (b->error)
return false;
}
_recycle_block(cache, b);
return true;
}
bool bcache_invalidate(struct bcache *cache, int fd, block_address index)
{
return _invalidate_block(cache, _hash_lookup(cache, fd, index));
}
// FIXME: switch to a trie, or maybe 1 hash table per fd? To save iterating
// through the whole cache.
bool bcache_invalidate_fd(struct bcache *cache, int fd)
{
struct block *b, *tmp;
bool r = true;
// Start writing back any dirty blocks on this fd.
dm_list_iterate_items_safe (b, tmp, &cache->dirty)
if (b->fd == fd)
_issue_write(b);
_wait_all(cache);
// Everything should be in the clean list now.
dm_list_iterate_items_safe (b, tmp, &cache->clean)
if (b->fd == fd)
r = _invalidate_block(cache, b) && r;
return r;
}
static void byte_range_to_block_range(struct bcache *cache, off_t start, size_t len,
block_address *bb, block_address *be)
{
block_address block_size = cache->block_sectors << SECTOR_SHIFT;
*bb = start / block_size;
*be = (start + len + block_size - 1) / block_size;
}
void bcache_prefetch_bytes(struct bcache *cache, int fd, off_t start, size_t len)
{
block_address bb, be;
byte_range_to_block_range(cache, start, len, &bb, &be);
while (bb < be) {
bcache_prefetch(cache, fd, bb);
bb++;
}
}
static off_t _min(off_t lhs, off_t rhs)
{
2018-02-08 20:16:19 +03:00
if (rhs < lhs)
return rhs;
return lhs;
}
// These functions are all utilities, they should only use the public
// interface to bcache.
// FIXME: there's common code that can be factored out of these 3
bool bcache_read_bytes(struct bcache *cache, int fd, off_t start, size_t len, void *data)
{
struct block *b;
block_address bb, be, i;
unsigned char *udata = data;
off_t block_size = cache->block_sectors << SECTOR_SHIFT;
int errors = 0;
byte_range_to_block_range(cache, start, len, &bb, &be);
for (i = bb; i < be; i++)
bcache_prefetch(cache, fd, i);
for (i = bb; i < be; i++) {
2018-04-06 21:11:39 +03:00
if (!bcache_get(cache, fd, i, 0, &b, NULL)) {
log_error("bcache_read_bytes failed to get block %u fd %d bb %u be %u",
2018-04-06 21:11:39 +03:00
(uint32_t)i, fd, (uint32_t)bb, (uint32_t)be);
errors++;
continue;
}
if (i == bb) {
off_t block_offset = start % block_size;
size_t blen = _min(block_size - block_offset, len);
memcpy(udata, ((unsigned char *) b->data) + block_offset, blen);
len -= blen;
udata += blen;
} else {
size_t blen = _min(block_size, len);
memcpy(udata, b->data, blen);
len -= blen;
udata += blen;
}
bcache_put(b);
}
return errors ? false : true;
}
2018-02-20 00:40:44 +03:00
bool bcache_write_bytes(struct bcache *cache, int fd, off_t start, size_t len, void *data)
{
struct block *b;
block_address bb, be, i;
unsigned char *udata = data;
off_t block_size = cache->block_sectors << SECTOR_SHIFT;
int errors = 0;
byte_range_to_block_range(cache, start, len, &bb, &be);
for (i = bb; i < be; i++)
bcache_prefetch(cache, fd, i);
for (i = bb; i < be; i++) {
if (!bcache_get(cache, fd, i, GF_DIRTY, &b, NULL)) {
log_error("bcache_write_bytes failed to get block %u fd %d bb %u be %u",
(uint32_t)i, fd, (uint32_t)bb, (uint32_t)be);
2018-02-20 00:40:44 +03:00
errors++;
continue;
2018-02-20 00:40:44 +03:00
}
if (i == bb) {
off_t block_offset = start % block_size;
size_t blen = _min(block_size - block_offset, len);
memcpy(((unsigned char *) b->data) + block_offset, udata, blen);
len -= blen;
udata += blen;
} else {
size_t blen = _min(block_size, len);
memcpy(b->data, udata, blen);
len -= blen;
udata += blen;
}
bcache_put(b);
2018-02-20 00:40:44 +03:00
}
return errors ? false : true;
}
bool bcache_write_zeros(struct bcache *cache, int fd, off_t start, size_t len)
{
struct block *b;
block_address bb, be, i;
off_t block_size = cache->block_sectors << SECTOR_SHIFT;
int errors = 0;
2018-02-20 00:40:44 +03:00
byte_range_to_block_range(cache, start, len, &bb, &be);
for (i = bb; i < be; i++)
bcache_prefetch(cache, fd, i);
2018-02-20 00:40:44 +03:00
for (i = bb; i < be; i++) {
if (!bcache_get(cache, fd, i, GF_DIRTY, &b, NULL)) {
log_error("bcache_write_bytes failed to get block %u fd %d bb %u be %u",
(uint32_t)i, fd, (uint32_t)bb, (uint32_t)be);
errors++;
continue;
}
2018-02-20 00:40:44 +03:00
if (i == bb) {
off_t block_offset = start % block_size;
size_t blen = _min(block_size - block_offset, len);
memset(((unsigned char *) b->data) + block_offset, 0, blen);
len -= blen;
} else {
size_t blen = _min(block_size, len);
memset(b->data, 0, blen);
len -= blen;
}
2018-02-20 00:40:44 +03:00
bcache_put(b);
2018-02-20 00:40:44 +03:00
}
return errors ? false : true;
2018-02-20 00:40:44 +03:00
}
//----------------------------------------------------------------