1
0
mirror of git://sourceware.org/git/lvm2.git synced 2024-12-22 17:35:59 +03:00

Include a copy of kernel DM documentation in doc/kernel

This commit is contained in:
Alasdair Kergon 2011-11-15 13:54:20 +00:00
parent 26ab12e69d
commit dddf30e354
17 changed files with 1360 additions and 0 deletions

View File

@ -1,5 +1,6 @@
Version 1.02.68 -
==================================
Include a copy of kernel DM documentation in doc/kernel.
Improve man page style for dmsetup.
Fix _get_proc_number to be tolerant of malformed /proc/misc entries.
Add ExecReload to dm-event.service for systemd to reload dmeventd properly.

76
doc/kernel/crypt.txt Normal file
View File

@ -0,0 +1,76 @@
dm-crypt
=========
Device-Mapper's "crypt" target provides transparent encryption of block devices
using the kernel crypto API.
Parameters: <cipher> <key> <iv_offset> <device path> \
<offset> [<#opt_params> <opt_params>]
<cipher>
Encryption cipher and an optional IV generation mode.
(In format cipher[:keycount]-chainmode-ivopts:ivmode).
Examples:
des
aes-cbc-essiv:sha256
twofish-ecb
/proc/crypto contains supported crypto modes
<key>
Key used for encryption. It is encoded as a hexadecimal number.
You can only use key sizes that are valid for the selected cipher.
<keycount>
Multi-key compatibility mode. You can define <keycount> keys and
then sectors are encrypted according to their offsets (sector 0 uses key0;
sector 1 uses key1 etc.). <keycount> must be a power of two.
<iv_offset>
The IV offset is a sector count that is added to the sector number
before creating the IV.
<device path>
This is the device that is going to be used as backend and contains the
encrypted data. You can specify it as a path like /dev/xxx or a device
number <major>:<minor>.
<offset>
Starting sector within the device where the encrypted data begins.
<#opt_params>
Number of optional parameters. If there are no optional parameters,
the optional paramaters section can be skipped or #opt_params can be zero.
Otherwise #opt_params is the number of following arguments.
Example of optional parameters section:
1 allow_discards
allow_discards
Block discard requests (a.k.a. TRIM) are passed through the crypt device.
The default is to ignore discard requests.
WARNING: Assess the specific security risks carefully before enabling this
option. For example, allowing discards on encrypted devices may lead to
the leak of information about the ciphertext device (filesystem type,
used space etc.) if the discarded blocks can be located easily on the
device later.
Example scripts
===============
LUKS (Linux Unified Key Setup) is now the preferred way to set up disk
encryption with dm-crypt using the 'cryptsetup' utility, see
http://code.google.com/p/cryptsetup/
[[
#!/bin/sh
# Create a crypt device using dmsetup
dmsetup create crypt1 --table "0 `blockdev --getsize $1` crypt aes-cbc-essiv:sha256 babebabebabebabebabebabebabebabe 0 $1 0"
]]
[[
#!/bin/sh
# Create a crypt device using cryptsetup and LUKS header with default cipher
cryptsetup luksFormat $1
cryptsetup luksOpen $1 crypt1
]]

26
doc/kernel/delay.txt Normal file
View File

@ -0,0 +1,26 @@
dm-delay
========
Device-Mapper's "delay" target delays reads and/or writes
and maps them to different devices.
Parameters:
<device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
With separate write parameters, the first set is only used for reads.
Delays are specified in milliseconds.
Example scripts
===============
[[
#!/bin/sh
# Create device delaying rw operation for 500ms
echo "0 `blockdev --getsize $1` delay $1 0 500" | dmsetup create delayed
]]
[[
#!/bin/sh
# Create device delaying only write operation for 500ms and
# splitting reads and writes to different devices $1 $2
echo "0 `blockdev --getsize $1` delay $1 0 0 $2 0 500" | dmsetup create delayed
]]

53
doc/kernel/flakey.txt Normal file
View File

@ -0,0 +1,53 @@
dm-flakey
=========
This target is the same as the linear target except that it exhibits
unreliable behaviour periodically. It's been found useful in simulating
failing devices for testing purposes.
Starting from the time the table is loaded, the device is available for
<up interval> seconds, then exhibits unreliable behaviour for <down
interval> seconds, and then this cycle repeats.
Also, consider using this in combination with the dm-delay target too,
which can delay reads and writes and/or send them to different
underlying devices.
Table parameters
----------------
<dev path> <offset> <up interval> <down interval> \
[<num_features> [<feature arguments>]]
Mandatory parameters:
<dev path>: Full pathname to the underlying block-device, or a
"major:minor" device-number.
<offset>: Starting sector within the device.
<up interval>: Number of seconds device is available.
<down interval>: Number of seconds device returns errors.
Optional feature parameters:
If no feature parameters are present, during the periods of
unreliability, all I/O returns errors.
drop_writes:
All write I/O is silently ignored.
Read I/O is handled correctly.
corrupt_bio_byte <Nth_byte> <direction> <value> <flags>:
During <down interval>, replace <Nth_byte> of the data of
each matching bio with <value>.
<Nth_byte>: The offset of the byte to replace.
Counting starts at 1, to replace the first byte.
<direction>: Either 'r' to corrupt reads or 'w' to corrupt writes.
'w' is incompatible with drop_writes.
<value>: The value (from 0-255) to write.
<flags>: Perform the replacement only if bio->bi_rw has all the
selected flags set.
Examples:
corrupt_bio_byte 32 r 1 0
- replaces the 32nd byte of READ bios with the value 1
corrupt_bio_byte 224 w 0 32
- replaces the 224th byte of REQ_META (=32) bios with the value 0

75
doc/kernel/io.txt Normal file
View File

@ -0,0 +1,75 @@
dm-io
=====
Dm-io provides synchronous and asynchronous I/O services. There are three
types of I/O services available, and each type has a sync and an async
version.
The user must set up an io_region structure to describe the desired location
of the I/O. Each io_region indicates a block-device along with the starting
sector and size of the region.
struct io_region {
struct block_device *bdev;
sector_t sector;
sector_t count;
};
Dm-io can read from one io_region or write to one or more io_regions. Writes
to multiple regions are specified by an array of io_region structures.
The first I/O service type takes a list of memory pages as the data buffer for
the I/O, along with an offset into the first page.
struct page_list {
struct page_list *next;
struct page *page;
};
int dm_io_sync(unsigned int num_regions, struct io_region *where, int rw,
struct page_list *pl, unsigned int offset,
unsigned long *error_bits);
int dm_io_async(unsigned int num_regions, struct io_region *where, int rw,
struct page_list *pl, unsigned int offset,
io_notify_fn fn, void *context);
The second I/O service type takes an array of bio vectors as the data buffer
for the I/O. This service can be handy if the caller has a pre-assembled bio,
but wants to direct different portions of the bio to different devices.
int dm_io_sync_bvec(unsigned int num_regions, struct io_region *where,
int rw, struct bio_vec *bvec,
unsigned long *error_bits);
int dm_io_async_bvec(unsigned int num_regions, struct io_region *where,
int rw, struct bio_vec *bvec,
io_notify_fn fn, void *context);
The third I/O service type takes a pointer to a vmalloc'd memory buffer as the
data buffer for the I/O. This service can be handy if the caller needs to do
I/O to a large region but doesn't want to allocate a large number of individual
memory pages.
int dm_io_sync_vm(unsigned int num_regions, struct io_region *where, int rw,
void *data, unsigned long *error_bits);
int dm_io_async_vm(unsigned int num_regions, struct io_region *where, int rw,
void *data, io_notify_fn fn, void *context);
Callers of the asynchronous I/O services must include the name of a completion
callback routine and a pointer to some context data for the I/O.
typedef void (*io_notify_fn)(unsigned long error, void *context);
The "error" parameter in this callback, as well as the "*error" parameter in
all of the synchronous versions, is a bitset (instead of a simple error value).
In the case of an write-I/O to multiple regions, this bitset allows dm-io to
indicate success or failure on each individual region.
Before using any of the dm-io services, the user should call dm_io_get()
and specify the number of pages they expect to perform I/O on concurrently.
Dm-io will attempt to resize its mempool to make sure enough pages are
always available in order to avoid unnecessary waiting while performing I/O.
When the user is finished using the dm-io services, they should call
dm_io_put() and specify the same number of pages that were given on the
dm_io_get() call.

47
doc/kernel/kcopyd.txt Normal file
View File

@ -0,0 +1,47 @@
kcopyd
======
Kcopyd provides the ability to copy a range of sectors from one block-device
to one or more other block-devices, with an asynchronous completion
notification. It is used by dm-snapshot and dm-mirror.
Users of kcopyd must first create a client and indicate how many memory pages
to set aside for their copy jobs. This is done with a call to
kcopyd_client_create().
int kcopyd_client_create(unsigned int num_pages,
struct kcopyd_client **result);
To start a copy job, the user must set up io_region structures to describe
the source and destinations of the copy. Each io_region indicates a
block-device along with the starting sector and size of the region. The source
of the copy is given as one io_region structure, and the destinations of the
copy are given as an array of io_region structures.
struct io_region {
struct block_device *bdev;
sector_t sector;
sector_t count;
};
To start the copy, the user calls kcopyd_copy(), passing in the client
pointer, pointers to the source and destination io_regions, the name of a
completion callback routine, and a pointer to some context data for the copy.
int kcopyd_copy(struct kcopyd_client *kc, struct io_region *from,
unsigned int num_dests, struct io_region *dests,
unsigned int flags, kcopyd_notify_fn fn, void *context);
typedef void (*kcopyd_notify_fn)(int read_err, unsigned int write_err,
void *context);
When the copy completes, kcopyd will call the user's completion routine,
passing back the user's context pointer. It will also indicate if a read or
write error occurred during the copy.
When a user is done with all their copy jobs, they should call
kcopyd_client_destroy() to delete the kcopyd client, which will release the
associated memory pages.
void kcopyd_client_destroy(struct kcopyd_client *kc);

61
doc/kernel/linear.txt Normal file
View File

@ -0,0 +1,61 @@
dm-linear
=========
Device-Mapper's "linear" target maps a linear range of the Device-Mapper
device onto a linear range of another device. This is the basic building
block of logical volume managers.
Parameters: <dev path> <offset>
<dev path>: Full pathname to the underlying block-device, or a
"major:minor" device-number.
<offset>: Starting sector within the device.
Example scripts
===============
[[
#!/bin/sh
# Create an identity mapping for a device
echo "0 `blockdev --getsize $1` linear $1 0" | dmsetup create identity
]]
[[
#!/bin/sh
# Join 2 devices together
size1=`blockdev --getsize $1`
size2=`blockdev --getsize $2`
echo "0 $size1 linear $1 0
$size1 $size2 linear $2 0" | dmsetup create joined
]]
[[
#!/usr/bin/perl -w
# Split a device into 4M chunks and then join them together in reverse order.
my $name = "reverse";
my $extent_size = 4 * 1024 * 2;
my $dev = $ARGV[0];
my $table = "";
my $count = 0;
if (!defined($dev)) {
die("Please specify a device.\n");
}
my $dev_size = `blockdev --getsize $dev`;
my $extents = int($dev_size / $extent_size) -
(($dev_size % $extent_size) ? 1 : 0);
while ($extents > 0) {
my $this_start = $count * $extent_size;
$extents--;
$count++;
my $this_offset = $extents * $extent_size;
$table .= "$this_start $extent_size linear $dev $this_offset\n";
}
`echo \"$table\" | dmsetup create $name`;
]]

54
doc/kernel/log.txt Normal file
View File

@ -0,0 +1,54 @@
Device-Mapper Logging
=====================
The device-mapper logging code is used by some of the device-mapper
RAID targets to track regions of the disk that are not consistent.
A region (or portion of the address space) of the disk may be
inconsistent because a RAID stripe is currently being operated on or
a machine died while the region was being altered. In the case of
mirrors, a region would be considered dirty/inconsistent while you
are writing to it because the writes need to be replicated for all
the legs of the mirror and may not reach the legs at the same time.
Once all writes are complete, the region is considered clean again.
There is a generic logging interface that the device-mapper RAID
implementations use to perform logging operations (see
dm_dirty_log_type in include/linux/dm-dirty-log.h). Various different
logging implementations are available and provide different
capabilities. The list includes:
Type Files
==== =====
disk drivers/md/dm-log.c
core drivers/md/dm-log.c
userspace drivers/md/dm-log-userspace* include/linux/dm-log-userspace.h
The "disk" log type
-------------------
This log implementation commits the log state to disk. This way, the
logging state survives reboots/crashes.
The "core" log type
-------------------
This log implementation keeps the log state in memory. The log state
will not survive a reboot or crash, but there may be a small boost in
performance. This method can also be used if no storage device is
available for storing log state.
The "userspace" log type
------------------------
This log type simply provides a way to export the log API to userspace,
so log implementations can be done there. This is done by forwarding most
logging requests to userspace, where a daemon receives and processes the
request.
The structure used for communication between kernel and userspace are
located in include/linux/dm-log-userspace.h. Due to the frequency,
diversity, and 2-way communication nature of the exchanges between
kernel and userspace, 'connector' is used as the interface for
communication.
There are currently two userspace log implementations that leverage this
framework - "clustered-disk" and "clustered-core". These implementations
provide a cluster-coherent log for shared-storage. Device-mapper mirroring
can be used in a shared-storage environment when the cluster log implementations
are employed.

View File

@ -0,0 +1,84 @@
Introduction
============
The more-sophisticated device-mapper targets require complex metadata
that is managed in kernel. In late 2010 we were seeing that various
different targets were rolling their own data strutures, for example:
- Mikulas Patocka's multisnap implementation
- Heinz Mauelshagen's thin provisioning target
- Another btree-based caching target posted to dm-devel
- Another multi-snapshot target based on a design of Daniel Phillips
Maintaining these data structures takes a lot of work, so if possible
we'd like to reduce the number.
The persistent-data library is an attempt to provide a re-usable
framework for people who want to store metadata in device-mapper
targets. It's currently used by the thin-provisioning target and an
upcoming hierarchical storage target.
Overview
========
The main documentation is in the header files which can all be found
under drivers/md/persistent-data.
The block manager
-----------------
dm-block-manager.[hc]
This provides access to the data on disk in fixed sized-blocks. There
is a read/write locking interface to prevent concurrent accesses, and
keep data that is being used in the cache.
Clients of persistent-data are unlikely to use this directly.
The transaction manager
-----------------------
dm-transaction-manager.[hc]
This restricts access to blocks and enforces copy-on-write semantics.
The only way you can get hold of a writable block through the
transaction manager is by shadowing an existing block (ie. doing
copy-on-write) or allocating a fresh one. Shadowing is elided within
the same transaction so performance is reasonable. The commit method
ensures that all data is flushed before it writes the superblock.
On power failure your metadata will be as it was when last committed.
The Space Maps
--------------
dm-space-map.h
dm-space-map-metadata.[hc]
dm-space-map-disk.[hc]
On-disk data structures that keep track of reference counts of blocks.
Also acts as the allocator of new blocks. Currently two
implementations: a simpler one for managing blocks on a different
device (eg. thinly-provisioned data blocks); and one for managing
the metadata space. The latter is complicated by the need to store
its own data within the space it's managing.
The data structures
-------------------
dm-btree.[hc]
dm-btree-remove.c
dm-btree-spine.c
dm-btree-internal.h
Currently there is only one data structure, a hierarchical btree.
There are plans to add more. For example, something with an
array-like interface would see a lot of use.
The btree is 'hierarchical' in that you can define it to be composed
of nested btrees, and take multiple keys. For example, the
thin-provisioning target uses a btree with two levels of nesting.
The first maps a device id to a mapping tree, and that in turn maps a
virtual block to a physical block.
Values stored in the btrees can have arbitrary size. Keys are always
64bits, although nesting allows you to use multiple keys.

View File

@ -0,0 +1,39 @@
dm-queue-length
===============
dm-queue-length is a path selector module for device-mapper targets,
which selects a path with the least number of in-flight I/Os.
The path selector name is 'queue-length'.
Table parameters for each path: [<repeat_count>]
<repeat_count>: The number of I/Os to dispatch using the selected
path before switching to the next path.
If not given, internal default is used. To check
the default value, see the activated table.
Status for each path: <status> <fail-count> <in-flight>
<status>: 'A' if the path is active, 'F' if the path is failed.
<fail-count>: The number of path failures.
<in-flight>: The number of in-flight I/Os on the path.
Algorithm
=========
dm-queue-length increments/decrements 'in-flight' when an I/O is
dispatched/completed respectively.
dm-queue-length selects a path with the minimum 'in-flight'.
Examples
========
In case that 2 paths (sda and sdb) are used with repeat_count == 128.
# echo "0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128" \
dmsetup create test
#
# dmsetup table
test: 0 10 multipath 0 0 1 1 queue-length 0 2 1 8:0 128 8:16 128
#
# dmsetup status
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 1 8:0 A 0 0 8:16 A 0 0

108
doc/kernel/raid.txt Normal file
View File

@ -0,0 +1,108 @@
dm-raid
-------
The device-mapper RAID (dm-raid) target provides a bridge from DM to MD.
It allows the MD RAID drivers to be accessed using a device-mapper
interface.
The target is named "raid" and it accepts the following parameters:
<raid_type> <#raid_params> <raid_params> \
<#raid_devs> <metadata_dev0> <dev0> [.. <metadata_devN> <devN>]
<raid_type>:
raid1 RAID1 mirroring
raid4 RAID4 dedicated parity disk
raid5_la RAID5 left asymmetric
- rotating parity 0 with data continuation
raid5_ra RAID5 right asymmetric
- rotating parity N with data continuation
raid5_ls RAID5 left symmetric
- rotating parity 0 with data restart
raid5_rs RAID5 right symmetric
- rotating parity N with data restart
raid6_zr RAID6 zero restart
- rotating parity zero (left-to-right) with data restart
raid6_nr RAID6 N restart
- rotating parity N (right-to-left) with data restart
raid6_nc RAID6 N continue
- rotating parity N (right-to-left) with data continuation
Refererence: Chapter 4 of
http://www.snia.org/sites/default/files/SNIA_DDF_Technical_Position_v2.0.pdf
<#raid_params>: The number of parameters that follow.
<raid_params> consists of
Mandatory parameters:
<chunk_size>: Chunk size in sectors. This parameter is often known as
"stripe size". It is the only mandatory parameter and
is placed first.
followed by optional parameters (in any order):
[sync|nosync] Force or prevent RAID initialization.
[rebuild <idx>] Rebuild drive number idx (first drive is 0).
[daemon_sleep <ms>]
Interval between runs of the bitmap daemon that
clear bits. A longer interval means less bitmap I/O but
resyncing after a failure is likely to take longer.
[min_recovery_rate <kB/sec/disk>] Throttle RAID initialization
[max_recovery_rate <kB/sec/disk>] Throttle RAID initialization
[write_mostly <idx>] Drive index is write-mostly
[max_write_behind <sectors>] See '-write-behind=' (man mdadm)
[stripe_cache <sectors>] Stripe cache size (higher RAIDs only)
[region_size <sectors>]
The region_size multiplied by the number of regions is the
logical size of the array. The bitmap records the device
synchronisation state for each region.
<#raid_devs>: The number of devices composing the array.
Each device consists of two entries. The first is the device
containing the metadata (if any); the second is the one containing the
data.
If a drive has failed or is missing at creation time, a '-' can be
given for both the metadata and data drives for a given position.
Example tables
--------------
# RAID4 - 4 data drives, 1 parity (no metadata devices)
# No metadata devices specified to hold superblock/bitmap info
# Chunk size of 1MiB
# (Lines separated for easy reading)
0 1960893648 raid \
raid4 1 2048 \
5 - 8:17 - 8:33 - 8:49 - 8:65 - 8:81
# RAID4 - 4 data drives, 1 parity (with metadata devices)
# Chunk size of 1MiB, force RAID initialization,
# min recovery rate at 20 kiB/sec/disk
0 1960893648 raid \
raid4 4 2048 sync min_recovery_rate 20 \
5 8:17 8:18 8:33 8:34 8:49 8:50 8:65 8:66 8:81 8:82
'dmsetup table' displays the table used to construct the mapping.
The optional parameters are always printed in the order listed
above with "sync" or "nosync" always output ahead of the other
arguments, regardless of the order used when originally loading the table.
Arguments that can be repeated are ordered by value.
'dmsetup status' yields information on the state and health of the
array.
The output is as follows:
1: <s> <l> raid \
2: <raid_type> <#devices> <1 health char for each dev> <resync_ratio>
Line 1 is the standard output produced by device-mapper.
Line 2 is produced by the raid target, and best explained by example:
0 1960893648 raid raid4 5 AAAAA 2/490221568
Here we can see the RAID type is raid4, there are 5 devices - all of
which are 'A'live, and the array is 2/490221568 complete with recovery.
Faulty or missing devices are marked 'D'. Devices that are out-of-sync
are marked 'a'.

View File

@ -0,0 +1,91 @@
dm-service-time
===============
dm-service-time is a path selector module for device-mapper targets,
which selects a path with the shortest estimated service time for
the incoming I/O.
The service time for each path is estimated by dividing the total size
of in-flight I/Os on a path with the performance value of the path.
The performance value is a relative throughput value among all paths
in a path-group, and it can be specified as a table argument.
The path selector name is 'service-time'.
Table parameters for each path: [<repeat_count> [<relative_throughput>]]
<repeat_count>: The number of I/Os to dispatch using the selected
path before switching to the next path.
If not given, internal default is used. To check
the default value, see the activated table.
<relative_throughput>: The relative throughput value of the path
among all paths in the path-group.
The valid range is 0-100.
If not given, minimum value '1' is used.
If '0' is given, the path isn't selected while
other paths having a positive value are available.
Status for each path: <status> <fail-count> <in-flight-size> \
<relative_throughput>
<status>: 'A' if the path is active, 'F' if the path is failed.
<fail-count>: The number of path failures.
<in-flight-size>: The size of in-flight I/Os on the path.
<relative_throughput>: The relative throughput value of the path
among all paths in the path-group.
Algorithm
=========
dm-service-time adds the I/O size to 'in-flight-size' when the I/O is
dispatched and subtracts when completed.
Basically, dm-service-time selects a path having minimum service time
which is calculated by:
('in-flight-size' + 'size-of-incoming-io') / 'relative_throughput'
However, some optimizations below are used to reduce the calculation
as much as possible.
1. If the paths have the same 'relative_throughput', skip
the division and just compare the 'in-flight-size'.
2. If the paths have the same 'in-flight-size', skip the division
and just compare the 'relative_throughput'.
3. If some paths have non-zero 'relative_throughput' and others
have zero 'relative_throughput', ignore those paths with zero
'relative_throughput'.
If such optimizations can't be applied, calculate service time, and
compare service time.
If calculated service time is equal, the path having maximum
'relative_throughput' may be better. So compare 'relative_throughput'
then.
Examples
========
In case that 2 paths (sda and sdb) are used with repeat_count == 128
and sda has an average throughput 1GB/s and sdb has 4GB/s,
'relative_throughput' value may be '1' for sda and '4' for sdb.
# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4" \
dmsetup create test
#
# dmsetup table
test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 1 8:16 128 4
#
# dmsetup status
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 1 8:16 A 0 0 4
Or '2' for sda and '8' for sdb would be also true.
# echo "0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8" \
dmsetup create test
#
# dmsetup table
test: 0 10 multipath 0 0 1 1 service-time 0 2 2 8:0 128 2 8:16 128 8
#
# dmsetup status
test: 0 10 multipath 2 0 0 0 1 1 E 0 2 2 8:0 A 0 0 2 8:16 A 0 0 8

168
doc/kernel/snapshot.txt Normal file
View File

@ -0,0 +1,168 @@
Device-mapper snapshot support
==============================
Device-mapper allows you, without massive data copying:
*) To create snapshots of any block device i.e. mountable, saved states of
the block device which are also writable without interfering with the
original content;
*) To create device "forks", i.e. multiple different versions of the
same data stream.
*) To merge a snapshot of a block device back into the snapshot's origin
device.
In the first two cases, dm copies only the chunks of data that get
changed and uses a separate copy-on-write (COW) block device for
storage.
For snapshot merge the contents of the COW storage are merged back into
the origin device.
There are three dm targets available:
snapshot, snapshot-origin, and snapshot-merge.
*) snapshot-origin <origin>
which will normally have one or more snapshots based on it.
Reads will be mapped directly to the backing device. For each write, the
original data will be saved in the <COW device> of each snapshot to keep
its visible content unchanged, at least until the <COW device> fills up.
*) snapshot <origin> <COW device> <persistent?> <chunksize>
A snapshot of the <origin> block device is created. Changed chunks of
<chunksize> sectors will be stored on the <COW device>. Writes will
only go to the <COW device>. Reads will come from the <COW device> or
from <origin> for unchanged data. <COW device> will often be
smaller than the origin and if it fills up the snapshot will become
useless and be disabled, returning errors. So it is important to monitor
the amount of free space and expand the <COW device> before it fills up.
<persistent?> is P (Persistent) or N (Not persistent - will not survive
after reboot).
The difference is that for transient snapshots less metadata must be
saved on disk - they can be kept in memory by the kernel.
* snapshot-merge <origin> <COW device> <persistent> <chunksize>
takes the same table arguments as the snapshot target except it only
works with persistent snapshots. This target assumes the role of the
"snapshot-origin" target and must not be loaded if the "snapshot-origin"
is still present for <origin>.
Creates a merging snapshot that takes control of the changed chunks
stored in the <COW device> of an existing snapshot, through a handover
procedure, and merges these chunks back into the <origin>. Once merging
has started (in the background) the <origin> may be opened and the merge
will continue while I/O is flowing to it. Changes to the <origin> are
deferred until the merging snapshot's corresponding chunk(s) have been
merged. Once merging has started the snapshot device, associated with
the "snapshot" target, will return -EIO when accessed.
How snapshot is used by LVM2
============================
When you create the first LVM2 snapshot of a volume, four dm devices are used:
1) a device containing the original mapping table of the source volume;
2) a device used as the <COW device>;
3) a "snapshot" device, combining #1 and #2, which is the visible snapshot
volume;
4) the "original" volume (which uses the device number used by the original
source volume), whose table is replaced by a "snapshot-origin" mapping
from device #1.
A fixed naming scheme is used, so with the following commands:
lvcreate -L 1G -n base volumeGroup
lvcreate -L 100M --snapshot -n snap volumeGroup/base
we'll have this situation (with volumes in above order):
# dmsetup table|grep volumeGroup
volumeGroup-base-real: 0 2097152 linear 8:19 384
volumeGroup-snap-cow: 0 204800 linear 8:19 2097536
volumeGroup-snap: 0 2097152 snapshot 254:11 254:12 P 16
volumeGroup-base: 0 2097152 snapshot-origin 254:11
# ls -lL /dev/mapper/volumeGroup-*
brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
brw------- 1 root root 254, 12 29 ago 18:15 /dev/mapper/volumeGroup-snap-cow
brw------- 1 root root 254, 13 29 ago 18:15 /dev/mapper/volumeGroup-snap
brw------- 1 root root 254, 10 29 ago 18:14 /dev/mapper/volumeGroup-base
How snapshot-merge is used by LVM2
==================================
A merging snapshot assumes the role of the "snapshot-origin" while
merging. As such the "snapshot-origin" is replaced with
"snapshot-merge". The "-real" device is not changed and the "-cow"
device is renamed to <origin name>-cow to aid LVM2's cleanup of the
merging snapshot after it completes. The "snapshot" that hands over its
COW device to the "snapshot-merge" is deactivated (unless using lvchange
--refresh); but if it is left active it will simply return I/O errors.
A snapshot will merge into its origin with the following command:
lvconvert --merge volumeGroup/snap
we'll now have this situation:
# dmsetup table|grep volumeGroup
volumeGroup-base-real: 0 2097152 linear 8:19 384
volumeGroup-base-cow: 0 204800 linear 8:19 2097536
volumeGroup-base: 0 2097152 snapshot-merge 254:11 254:12 P 16
# ls -lL /dev/mapper/volumeGroup-*
brw------- 1 root root 254, 11 29 ago 18:15 /dev/mapper/volumeGroup-base-real
brw------- 1 root root 254, 12 29 ago 18:16 /dev/mapper/volumeGroup-base-cow
brw------- 1 root root 254, 10 29 ago 18:16 /dev/mapper/volumeGroup-base
How to determine when a merging is complete
===========================================
The snapshot-merge and snapshot status lines end with:
<sectors_allocated>/<total_sectors> <metadata_sectors>
Both <sectors_allocated> and <total_sectors> include both data and metadata.
During merging, the number of sectors allocated gets smaller and
smaller. Merging has finished when the number of sectors holding data
is zero, in other words <sectors_allocated> == <metadata_sectors>.
Here is a practical example (using a hybrid of lvm and dmsetup commands):
# lvs
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup owi-a- 4.00g
snap volumeGroup swi-a- 1.00g base 18.97
# dmsetup status volumeGroup-snap
0 8388608 snapshot 397896/2097152 1560
^^^^ metadata sectors
# lvconvert --merge -b volumeGroup/snap
Merging of volume snap started.
# lvs volumeGroup/snap
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup Owi-a- 4.00g 17.23
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 281688/2097152 1104
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 180480/2097152 712
# dmsetup status volumeGroup-base
0 8388608 snapshot-merge 16/2097152 16
Merging has finished.
# lvs
LV VG Attr LSize Origin Snap% Move Log Copy% Convert
base volumeGroup owi-a- 4.00g

58
doc/kernel/striped.txt Normal file
View File

@ -0,0 +1,58 @@
dm-stripe
=========
Device-Mapper's "striped" target is used to create a striped (i.e. RAID-0)
device across one or more underlying devices. Data is written in "chunks",
with consecutive chunks rotating among the underlying devices. This can
potentially provide improved I/O throughput by utilizing several physical
devices in parallel.
Parameters: <num devs> <chunk size> [<dev path> <offset>]+
<num devs>: Number of underlying devices.
<chunk size>: Size of each chunk of data. Must be a power-of-2 and at
least as large as the system's PAGE_SIZE.
<dev path>: Full pathname to the underlying block-device, or a
"major:minor" device-number.
<offset>: Starting sector within the device.
One or more underlying devices can be specified. The striped device size must
be a multiple of the chunk size and a multiple of the number of underlying
devices.
Example scripts
===============
[[
#!/usr/bin/perl -w
# Create a striped device across any number of underlying devices. The device
# will be called "stripe_dev" and have a chunk-size of 128k.
my $chunk_size = 128 * 2;
my $dev_name = "stripe_dev";
my $num_devs = @ARGV;
my @devs = @ARGV;
my ($min_dev_size, $stripe_dev_size, $i);
if (!$num_devs) {
die("Specify at least one device\n");
}
$min_dev_size = `blockdev --getsize $devs[0]`;
for ($i = 1; $i < $num_devs; $i++) {
my $this_size = `blockdev --getsize $devs[$i]`;
$min_dev_size = ($min_dev_size < $this_size) ?
$min_dev_size : $this_size;
}
$stripe_dev_size = $min_dev_size * $num_devs;
$stripe_dev_size -= $stripe_dev_size % ($chunk_size * $num_devs);
$table = "0 $stripe_dev_size striped $num_devs $chunk_size";
for ($i = 0; $i < $num_devs; $i++) {
$table .= " $devs[$i] 0";
}
`echo $table | dmsetup create $dev_name`;
]]

View File

@ -0,0 +1,285 @@
Introduction
============
This document descibes a collection of device-mapper targets that
between them implement thin-provisioning and snapshots.
The main highlight of this implementation, compared to the previous
implementation of snapshots, is that it allows many virtual devices to
be stored on the same data volume. This simplifies administration and
allows the sharing of data between volumes, thus reducing disk usage.
Another significant feature is support for an arbitrary depth of
recursive snapshots (snapshots of snapshots of snapshots ...). The
previous implementation of snapshots did this by chaining together
lookup tables, and so performance was O(depth). This new
implementation uses a single data structure to avoid this degradation
with depth. Fragmentation may still be an issue, however, in some
scenarios.
Metadata is stored on a separate device from data, giving the
administrator some freedom, for example to:
- Improve metadata resilience by storing metadata on a mirrored volume
but data on a non-mirrored one.
- Improve performance by storing the metadata on SSD.
Status
======
These targets are very much still in the EXPERIMENTAL state. Please
do not yet rely on them in production. But do experiment and offer us
feedback. Different use cases will have different performance
characteristics, for example due to fragmentation of the data volume.
If you find this software is not performing as expected please mail
dm-devel@redhat.com with details and we'll try our best to improve
things for you.
Userspace tools for checking and repairing the metadata are under
development.
Cookbook
========
This section describes some quick recipes for using thin provisioning.
They use the dmsetup program to control the device-mapper driver
directly. End users will be advised to use a higher-level volume
manager such as LVM2 once support has been added.
Pool device
-----------
The pool device ties together the metadata volume and the data volume.
It maps I/O linearly to the data volume and updates the metadata via
two mechanisms:
- Function calls from the thin targets
- Device-mapper 'messages' from userspace which control the creation of new
virtual devices amongst other things.
Setting up a fresh pool device
------------------------------
Setting up a pool device requires a valid metadata device, and a
data device. If you do not have an existing metadata device you can
make one by zeroing the first 4k to indicate empty metadata.
dd if=/dev/zero of=$metadata_dev bs=4096 count=1
The amount of metadata you need will vary according to how many blocks
are shared between thin devices (i.e. through snapshots). If you have
less sharing than average you'll need a larger-than-average metadata device.
As a guide, we suggest you calculate the number of bytes to use in the
metadata device as 48 * $data_dev_size / $data_block_size but round it up
to 2MB if the answer is smaller. The largest size supported is 16GB.
If you're creating large numbers of snapshots which are recording large
amounts of change, you may need find you need to increase this.
Reloading a pool table
----------------------
You may reload a pool's table, indeed this is how the pool is resized
if it runs out of space. (N.B. While specifying a different metadata
device when reloading is not forbidden at the moment, things will go
wrong if it does not route I/O to exactly the same on-disk location as
previously.)
Using an existing pool device
-----------------------------
dmsetup create pool \
--table "0 20971520 thin-pool $metadata_dev $data_dev \
$data_block_size $low_water_mark"
$data_block_size gives the smallest unit of disk space that can be
allocated at a time expressed in units of 512-byte sectors. People
primarily interested in thin provisioning may want to use a value such
as 1024 (512KB). People doing lots of snapshotting may want a smaller value
such as 128 (64KB). If you are not zeroing newly-allocated data,
a larger $data_block_size in the region of 256000 (128MB) is suggested.
$data_block_size must be the same for the lifetime of the
metadata device.
$low_water_mark is expressed in blocks of size $data_block_size. If
free space on the data device drops below this level then a dm event
will be triggered which a userspace daemon should catch allowing it to
extend the pool device. Only one such event will be sent.
Resuming a device with a new table itself triggers an event so the
userspace daemon can use this to detect a situation where a new table
already exceeds the threshold.
Thin provisioning
-----------------
i) Creating a new thinly-provisioned volume.
To create a new thinly- provisioned volume you must send a message to an
active pool device, /dev/mapper/pool in this example.
dmsetup message /dev/mapper/pool 0 "create_thin 0"
Here '0' is an identifier for the volume, a 24-bit number. It's up
to the caller to allocate and manage these identifiers. If the
identifier is already in use, the message will fail with -EEXIST.
ii) Using a thinly-provisioned volume.
Thinly-provisioned volumes are activated using the 'thin' target:
dmsetup create thin --table "0 2097152 thin /dev/mapper/pool 0"
The last parameter is the identifier for the thinp device.
Internal snapshots
------------------
i) Creating an internal snapshot.
Snapshots are created with another message to the pool.
N.B. If the origin device that you wish to snapshot is active, you
must suspend it before creating the snapshot to avoid corruption.
This is NOT enforced at the moment, so please be careful!
dmsetup suspend /dev/mapper/thin
dmsetup message /dev/mapper/pool 0 "create_snap 1 0"
dmsetup resume /dev/mapper/thin
Here '1' is the identifier for the volume, a 24-bit number. '0' is the
identifier for the origin device.
ii) Using an internal snapshot.
Once created, the user doesn't have to worry about any connection
between the origin and the snapshot. Indeed the snapshot is no
different from any other thinly-provisioned device and can be
snapshotted itself via the same method. It's perfectly legal to
have only one of them active, and there's no ordering requirement on
activating or removing them both. (This differs from conventional
device-mapper snapshots.)
Activate it exactly the same way as any other thinly-provisioned volume:
dmsetup create snap --table "0 2097152 thin /dev/mapper/pool 1"
Deactivation
------------
All devices using a pool must be deactivated before the pool itself
can be.
dmsetup remove thin
dmsetup remove snap
dmsetup remove pool
Reference
=========
'thin-pool' target
------------------
i) Constructor
thin-pool <metadata dev> <data dev> <data block size (sectors)> \
<low water mark (blocks)> [<number of feature args> [<arg>]*]
Optional feature arguments:
- 'skip_block_zeroing': skips the zeroing of newly-provisioned blocks.
Data block size must be between 64KB (128 sectors) and 1GB
(2097152 sectors) inclusive.
ii) Status
<transaction id> <used metadata blocks>/<total metadata blocks>
<used data blocks>/<total data blocks> <held metadata root>
transaction id:
A 64-bit number used by userspace to help synchronise with metadata
from volume managers.
used data blocks / total data blocks
If the number of free blocks drops below the pool's low water mark a
dm event will be sent to userspace. This event is edge-triggered and
it will occur only once after each resume so volume manager writers
should register for the event and then check the target's status.
held metadata root:
The location, in sectors, of the metadata root that has been
'held' for userspace read access. '-' indicates there is no
held root. This feature is not yet implemented so '-' is
always returned.
iii) Messages
create_thin <dev id>
Create a new thinly-provisioned device.
<dev id> is an arbitrary unique 24-bit identifier chosen by
the caller.
create_snap <dev id> <origin id>
Create a new snapshot of another thinly-provisioned device.
<dev id> is an arbitrary unique 24-bit identifier chosen by
the caller.
<origin id> is the identifier of the thinly-provisioned device
of which the new device will be a snapshot.
delete <dev id>
Deletes a thin device. Irreversible.
trim <dev id> <new size in sectors>
Delete mappings from the end of a thin device. Irreversible.
You might want to use this if you're reducing the size of
your thinly-provisioned device. In many cases, due to the
sharing of blocks between devices, it is not possible to
determine in advance how much space 'trim' will release. (In
future a userspace tool might be able to perform this
calculation.)
set_transaction_id <current id> <new id>
Userland volume managers, such as LVM, need a way to
synchronise their external metadata with the internal metadata of the
pool target. The thin-pool target offers to store an
arbitrary 64-bit transaction id and return it on the target's
status line. To avoid races you must provide what you think
the current transaction id is when you change it with this
compare-and-swap message.
'thin' target
-------------
i) Constructor
thin <pool dev> <dev id>
pool dev:
the thin-pool device, e.g. /dev/mapper/my_pool or 253:0
dev id:
the internal device identifier of the device to be
activated.
The pool doesn't store any size against the thin devices. If you
load a thin target that is smaller than you've been using previously,
then you'll have no access to blocks mapped beyond the end. If you
load a target that is bigger than before, then extra blocks will be
provisioned as and when needed.
If you wish to reduce the size of your thin device and potentially
regain some space then send the 'trim' message to the pool.
ii) Status
<nr mapped sectors> <highest mapped sector>

97
doc/kernel/uevent.txt Normal file
View File

@ -0,0 +1,97 @@
The device-mapper uevent code adds the capability to device-mapper to create
and send kobject uevents (uevents). Previously device-mapper events were only
available through the ioctl interface. The advantage of the uevents interface
is the event contains environment attributes providing increased context for
the event avoiding the need to query the state of the device-mapper device after
the event is received.
There are two functions currently for device-mapper events. The first function
listed creates the event and the second function sends the event(s).
void dm_path_uevent(enum dm_uevent_type event_type, struct dm_target *ti,
const char *path, unsigned nr_valid_paths)
void dm_send_uevents(struct list_head *events, struct kobject *kobj)
The variables added to the uevent environment are:
Variable Name: DM_TARGET
Uevent Action(s): KOBJ_CHANGE
Type: string
Description:
Value: Name of device-mapper target that generated the event.
Variable Name: DM_ACTION
Uevent Action(s): KOBJ_CHANGE
Type: string
Description:
Value: Device-mapper specific action that caused the uevent action.
PATH_FAILED - A path has failed.
PATH_REINSTATED - A path has been reinstated.
Variable Name: DM_SEQNUM
Uevent Action(s): KOBJ_CHANGE
Type: unsigned integer
Description: A sequence number for this specific device-mapper device.
Value: Valid unsigned integer range.
Variable Name: DM_PATH
Uevent Action(s): KOBJ_CHANGE
Type: string
Description: Major and minor number of the path device pertaining to this
event.
Value: Path name in the form of "Major:Minor"
Variable Name: DM_NR_VALID_PATHS
Uevent Action(s): KOBJ_CHANGE
Type: unsigned integer
Description:
Value: Valid unsigned integer range.
Variable Name: DM_NAME
Uevent Action(s): KOBJ_CHANGE
Type: string
Description: Name of the device-mapper device.
Value: Name
Variable Name: DM_UUID
Uevent Action(s): KOBJ_CHANGE
Type: string
Description: UUID of the device-mapper device.
Value: UUID. (Empty string if there isn't one.)
An example of the uevents generated as captured by udevmonitor is shown
below.
1.) Path failure.
UEVENT[1192521009.711215] change@/block/dm-3
ACTION=change
DEVPATH=/block/dm-3
SUBSYSTEM=block
DM_TARGET=multipath
DM_ACTION=PATH_FAILED
DM_SEQNUM=1
DM_PATH=8:32
DM_NR_VALID_PATHS=0
DM_NAME=mpath2
DM_UUID=mpath-35333333000002328
MINOR=3
MAJOR=253
SEQNUM=1130
2.) Path reinstate.
UEVENT[1192521132.989927] change@/block/dm-3
ACTION=change
DEVPATH=/block/dm-3
SUBSYSTEM=block
DM_TARGET=multipath
DM_ACTION=PATH_REINSTATED
DM_SEQNUM=2
DM_PATH=8:32
DM_NR_VALID_PATHS=1
DM_NAME=mpath2
DM_UUID=mpath-35333333000002328
MINOR=3
MAJOR=253
SEQNUM=1131

37
doc/kernel/zero.txt Normal file
View File

@ -0,0 +1,37 @@
dm-zero
=======
Device-Mapper's "zero" target provides a block-device that always returns
zero'd data on reads and silently drops writes. This is similar behavior to
/dev/zero, but as a block-device instead of a character-device.
Dm-zero has no target-specific parameters.
One very interesting use of dm-zero is for creating "sparse" devices in
conjunction with dm-snapshot. A sparse device reports a device-size larger
than the amount of actual storage space available for that device. A user can
write data anywhere within the sparse device and read it back like a normal
device. Reads to previously unwritten areas will return a zero'd buffer. When
enough data has been written to fill up the actual storage space, the sparse
device is deactivated. This can be very useful for testing device and
filesystem limitations.
To create a sparse device, start by creating a dm-zero device that's the
desired size of the sparse device. For this example, we'll assume a 10TB
sparse device.
TEN_TERABYTES=`expr 10 \* 1024 \* 1024 \* 1024 \* 2` # 10 TB in sectors
echo "0 $TEN_TERABYTES zero" | dmsetup create zero1
Then create a snapshot of the zero device, using any available block-device as
the COW device. The size of the COW device will determine the amount of real
space available to the sparse device. For this example, we'll assume /dev/sdb1
is an available 10GB partition.
echo "0 $TEN_TERABYTES snapshot /dev/mapper/zero1 /dev/sdb1 p 128" | \
dmsetup create sparse1
This will create a 10TB sparse device called /dev/mapper/sparse1 that has
10GB of actual storage space available. If more than 10GB of data is written
to this device, it will start returning I/O errors.