IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Example of the corresponding generated structure in
command-lines.h for the first lvresize prototype
(these structures are never edited directly):
commands[83].name = "lvresize";
commands[83].command_line_id = "lvresize_by_size";
commands[83].command_line_enum = lvresize_by_size_CMD;
commands[83].fn = lvresize;
commands[83].ro_count = 1;
commands[83].rp_count = 1;
commands[83].oo_count = 22;
commands[83].op_count = 1;
commands[83].cmd_flags = 0;
commands[83].desc = "DESC: Resize an LV by a specified size.";
commands[83].usage = "lvresize --size Number[m|unit] LV"
" [ --resizefs, --poolmetadatasize Number[m|unit], COMMON_OPTIONS ]"
" [ PV ... ]";
commands[83].usage_common =
" [ --alloc contiguous|cling|cling_by_tags|normal|anywhere|inherit, --nosync, --reportformat String, --autobackup y|n, --stripes Number, --stripesize Number[k|unit], --nofsck, --commandprofile String, --config String, --debug, --driverloaded y|n, --help, --profile String, --quiet, --verbose, --version, --yes, --test, --force, --noudevsync ]";
commands[83].required_opt_args[0].opt = size_ARG;
commands[83].required_opt_args[0].def.val_bits = val_enum_to_bit(sizemb_VAL);
commands[83].required_pos_args[0].pos = 1;
commands[83].required_pos_args[0].def.val_bits = val_enum_to_bit(lv_VAL);
commands[83].optional_opt_args[0].opt = commandprofile_ARG;
commands[83].optional_opt_args[0].def.val_bits = val_enum_to_bit(string_VAL);
commands[83].optional_opt_args[1].opt = config_ARG;
commands[83].optional_opt_args[1].def.val_bits = val_enum_to_bit(string_VAL);
commands[83].optional_opt_args[2].opt = debug_ARG;
commands[83].optional_opt_args[3].opt = driverloaded_ARG;
commands[83].optional_opt_args[3].def.val_bits = val_enum_to_bit(bool_VAL);
commands[83].optional_opt_args[4].opt = help_ARG;
commands[83].optional_opt_args[5].opt = profile_ARG;
commands[83].optional_opt_args[5].def.val_bits = val_enum_to_bit(string_VAL);
commands[83].optional_opt_args[6].opt = quiet_ARG;
commands[83].optional_opt_args[7].opt = verbose_ARG;
commands[83].optional_opt_args[8].opt = version_ARG;
commands[83].optional_opt_args[9].opt = yes_ARG;
commands[83].optional_opt_args[10].opt = test_ARG;
commands[83].optional_opt_args[11].opt = alloc_ARG;
commands[83].optional_opt_args[11].def.val_bits = val_enum_to_bit(alloc_VAL);
commands[83].optional_opt_args[12].opt = autobackup_ARG;
commands[83].optional_opt_args[12].def.val_bits = val_enum_to_bit(bool_VAL);
commands[83].optional_opt_args[13].opt = force_ARG;
commands[83].optional_opt_args[14].opt = nofsck_ARG;
commands[83].optional_opt_args[15].opt = nosync_ARG;
commands[83].optional_opt_args[16].opt = noudevsync_ARG;
commands[83].optional_opt_args[17].opt = reportformat_ARG;
commands[83].optional_opt_args[17].def.val_bits = val_enum_to_bit(string_VAL);
commands[83].optional_opt_args[18].opt = resizefs_ARG;
commands[83].optional_opt_args[19].opt = stripes_ARG;
commands[83].optional_opt_args[19].def.val_bits = val_enum_to_bit(number_VAL);
commands[83].optional_opt_args[20].opt = stripesize_ARG;
commands[83].optional_opt_args[20].def.val_bits = val_enum_to_bit(sizekb_VAL);
commands[83].optional_opt_args[21].opt = poolmetadatasize_ARG;
commands[83].optional_opt_args[21].def.val_bits = val_enum_to_bit(sizemb_VAL);
commands[83].optional_pos_args[0].pos = 2;
commands[83].optional_pos_args[0].def.val_bits = val_enum_to_bit(pv_VAL);
commands[83].optional_pos_args[0].def.flags = ARG_DEF_FLAG_MAY_REPEAT;
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
$ lvresize --help
lvresize - Resize a logical volume
Resize an LV by a specified size.
lvresize --size Number[m|unit] LV
[ --resizefs,
--poolmetadatasize Number[m|unit],
COMMON_OPTIONS ]
[ PV ... ]
Resize a pool metadata SubLV by a specified size.
lvresize --poolmetadatasize Number[m|unit] LV_thinpool
[ COMMON_OPTIONS ]
[ PV ... ]
Common options:
[ --alloc contiguous|cling|cling_by_tags|normal|anywhere|inherit,
--nosync,
--reportformat String,
--autobackup y|n,
--stripes Number,
--stripesize Number[k|unit],
--nofsck,
--commandprofile String,
--config String,
--debug,
--driverloaded y|n,
--help,
--profile String,
--quiet,
--verbose,
--version,
--yes,
--test,
--force,
--noudevsync ]
(Use --help --help for usage notes.)
$ lvresize --poolmetadatasize 4
Failed to find a matching command definition.
Closest command usage is:
lvresize --poolmetadatasize Number[m|unit] LV_thinpool
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
So, this first phase validates every user-entered command
against the set of command prototypes, then calls the existing
implementation. The second phase can associate an implementation
function with each definition, and take further advantage of the
known operation to avoid the complicated option analysis.
The lvm fullreport works per VG and as such, the vg, lv, pv, seg and
pvseg subreport is done for each VG. However, if the PV is not part of
any VG yet, we still want to display pv and pvseg subreports for these
"orphan" PVs - so enable this for lvm fullreport's process_each_vg call.
The lvmetad connection is created within the
init_connections() path during command startup,
rather than via the old lvmetad_active() check.
The old lvmetad_active() checks are replaced
with lvmetad_used() which is a simple check that
tests if the command is using/connected to lvmetad.
The old lvmetad_set_active(cmd, 0) calls, which
stopped the command from using lvmetad (to revert to
disk scanning), are replaced with lvmetad_make_unused(cmd).
Pass the single vgname as a new process_each_vg arg
instead of setting a cmd flag to tell process_each_vg
to take only the first vgname arg from argv.
Other commands with different argv formats will be
able to use it this way.
Add a new arg to lockd_start_vg() that indicates
it is being called for a new lockd VG, so that
lvmlockd knows the lockspace being started is new.
(Will be used by a following commit.)
Remove the existing lock type using the same functions
used to remove the lockd components during vgremove.
This results in a "clean" VG and lvmlockd state after
the vgchange, i.e. no bits left over from previous
lock type.
The unlock call will fail in expected and normal cases,
and should not cause the command to fail. (An actual
unlock in the lock manager should never fail.)
The vgchange/lvchange activation commands read the VG, and
don't write it, so they acquire a shared VG lock from lvmlockd.
When other commands fail to acquire a shared VG lock from
lvmlockd, a warning is printed and they continue without it.
(Without it, the VG metadata they display from lvmetad may
not be up to date.)
vgchange/lvchange -a shouldn't continue without the shared
lock for a couple reasons:
. Usually they will just continue on and fail to acquire the
LV locks for activation, so continuing is pointless.
. More importantly, without the sh VG lock, the VG metadata
used by the command may be stale, and the LV locks shown
in the VG metadata may no longer be current. In the
case of sanlock, this would result in odd, unpredictable
errors when lvmlockd doesn't find the expected lock on
disk. In the case of dlm, the invalid LV lock could be
granted for the non-existing LV.
The solution is to not continue after the shared lock fails,
in the same way that a command fails if an exclusive lock fails.
When lvm is built without lvmlockd support, vgcreate using a
shared lock type would succeed and create a local VG (the
--shared option was effectively ignored). Make it fail.
Fix the same issue when using vgchange to change a VG to a
shared lock type.
Make the error messages consistent.
Both lock_start filters were being skipped when any lock-opt
values were used. The "auto" lock-opt should cause the
auto_lock_start_list to be used. The lock_start_list should
always be used.
The behavior of lock_start_list/auto_lock_start_list are tested
and verified to behave like volume_list/auto_activation_volume_list.
Since the default was changed to wait for lock-start to finish,
the "wait" and "autowait" lock-opt values are not needed, but a
new "autonowait" is added to the existing "nowait" avoid the
default waiting.
The "exported" state of the VG can be useful with lockd VGs
because the exported state keeps a VG from being used in general.
It's a way to keep a VG protected and out of the way.
Also fix the command flags: ALL_VGS_IS_DEFAULT is not true for
vgimport/vgexport, since they both return errors immediately if
no VG args are specified. LOCKD_VG_SH is not true for vgexport
beause it must use an ex lock to write the VG.
Set ACCESS_NEEDS_SYSTEM_ID VG status flag whenever there is
a non-lvm1 system_id set. Prevents concurrent access from
older LVM2 versions.
Not set on VGs that bear a system_id only due to conversion
from lvm1 metadata.
In log messages refer to it as system ID (not System ID).
Do not put quotes around the system_id string when printing.
On the command line use systemid.
In code, metadata, and config files use system_id.
In lvmsystemid refer to the concept/entity as system_id.
cmirror uses the CPG library to pass messages around the cluster and maintain
its bitmaps. When a cluster mirror starts-up, it must send the current state
to any joining members - a checkpoint. When mirrors are large (or the region
size is small), the bitmap size can exceed the message limit of the CPG
library. When this happens, the CPG library returns CPG_ERR_TRY_AGAIN.
(This is also a bug in CPG, since the message will never be successfully sent.)
There is an outstanding bug (bug 682771) that is meant to lift this message
length restriction in CPG, but for now we work around the issue by increasing
the mirror region size. This limits the size of the bitmap and avoids any
issues we would otherwise have around checkpointing.
Since this issue only affects cluster mirrors, the region size adjustments
are only made on cluster mirrors. This patch handles cluster mirror issues
involving pvmove, lvconvert (from linear to mirror), and lvcreate. It also
ensures that when users convert a VG from single-machine to clustered, any
mirrors with too many regions (i.e. a bitmap that would be too large to
properly checkpoint) are trapped.
When checking whether the system ID permits access to a VG, check for
each permitted situation first, and only then issue the appropriate
error message. Always issue a message for now. (We'll try to
suppress some of those later when the VG concerned wasn't explicitly
requested.)
Add more messages to try to ensure every return code is checked and
every error path (and only an error path) contains a log_error().
Add self-correction to vgchange -c to deal with situations where
the cluster state and system ID state are out-of-sync (e.g. if
old tools were used).
This patch replaces "void *handle" with "struct processing_handle *handle"
in process_each_*, process_single_* and related functions.
The struct processing_handle consists of two handles inside now:
- the "struct selection_handle *selection_handle" used for
applying selection criteria while processing process_each_*,
process_single_* and related functions (patches using this
logic will follow)
- the "void* custom_handle" (this is actually the original handle
used before this patch - a pointer to custom data passed into
process_each_*, process_single_* and related functions).
Tool will use internal activation of unused cache pool to
clear metadata area before next use of cache-pool.
So allow to deactivation unused pool in case some error
case happend and we were not able to deactivation pool
right after metadata wipe.