IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
One vg struct is copied to another vg struct, rather than
importing vg metadata text to create the new vg struct.
Enable with global/vg_copy_internal="binary"
The cmd struct is now required in many more functions, and
it's added as a function arg for most direct dev-cache function
calls. The cmd struct is added to struct device (dev->cmd) so
that it can be accessed in many other cases where dev-cache
functions are being called from places where getting the cmd
struct is too difficult.
The list of dm devs was in the cmd struct and had a
different lifetime than the radix trees referencing
those dm devs. Now the list and radix trees are
created and destroyed together.
An OS installer can create system.devices for the system and
disks, but an OS image cannot create the system-specific
system.devices. The OS image can instead configure the
image so that lvm will create system.devices on first boot.
Image preparation steps to enable auto creation of system.devices:
- create empty file /etc/lvm/devices/auto-import-rootvg
- remove any existing /etc/lvm/devices/system.devices
- enable lvm-devices-import.path
- enable lvm-devices-import.service
On first boot of the prepared image:
- udev triggers vgchange -aay --autoactivation event <rootvg>
- vgchange activates LVs in the root VG
- vgchange finds the file /etc/lvm/devices/auto-import-rootvg,
and no /etc/lvm/devices/system.devices, so it creates
/run/lvm/lvm-devices-import
- lvm-devices-import.path is run when /run/lvm/lvm-devices-import
appears, and triggers lvm-devices-import.service
- lvm-devices-import.service runs vgimportdevices --rootvg --auto
- vgimportdevices finds /etc/lvm/devices/auto-import-rootvg,
and no system.devices, so it creates system.devices containing
PVs in the root VG, and removes /etc/lvm/devices/auto-import-rootvg
and /run/lvm/lvm-devices-import
Run directly, vgimportdevices --rootvg (without --auto), will create
a new system.devices for the root VG, or will add devices for the
root VG to an existing system.devices.
Do not modify flags field from 'strcut command_name' and
instead control this via cmd_context get_vgname_from_options.
Flag GET_VGNAME_FROM_OPTIONS is currently used only by lvconvert.
When reseting stream buffer - check for being run within valgrind
and only in this case skip this code.
Define VALGRIND_POOL was incorrectly used for this logic.
Create backup copies of system.devices in /etc/lvm/devices/backup
named system.devices-YYYYMMDD.HHMMSS.NNNN. NNNN is the version
counter from the file.
Each time that an lvm command writes a new system.devices file,
it also writes the same file in the backup directory.
A new comment line is added to system.devices with HASH=<num>
where <num> is a crc calculated from the uncommented lines in
system.devices. This lets lvm detect if the file has been
modified outside of lvm itself.
If system.devices is edited directly, the next time a command
reads the file, the crc will not match the HASH value. The
command will then rewrite system.devices with the correct HASH
value, and create a backup reflecting the edits.
A default limit of 50 backup files is kept, configurable by
lvm.conf devicesfile_backup_limit (set to 0 to disable backups.)
Add code to handle creation of thin-pool with VDO data backend
which can be seen as compressed deduplicated thin-pool.
To avoid need of changing to many internal APIs, pass the conversion
parameters for create thin-pool data volume via cmd_context.
Fix commit 847f1dd99c
"device_id: rewrite validation of devname entries"
which began calling device_ids_refresh() in cases where it
was unnecessary, leading to extra PV searches and warnings.
Specifically, a command like "lvs <vg>" would use the hints
file to scan only devices for the named VG. This means that
scanning other PVs would be skipped, and device IDs of those
PVs could not be validated because there are no PVID values
to verify. This missing info would cause messages about
the missing info, and would cause device_ids_refresh to
search for the PVs that had been intentionally skipped.
This is mainly useful in internal testing - but keep sysfs dir also
passed to filter.
Also drop use of static variable within sysfs filter and base whole
config at creation time.
If the system changes, locate PVs that appear on different devices,
and update the device IDs in the devices file. A system change is
detected by saving the DMI product_uuid or hostname in the devices
file, and comparing it to the current system value. If a root PV
is restored or copied to a new system with different devices, then
the product_uuid or hostname should change, and trigger lvm to
locate PVIDs from system.devices on new devices.
Coverity is complaining about unchecked strcpy here, which is
irelevant as we preallocate buffer to fit in copied string,
however we could actually reuse these size and use just memcpy().
So lets make some simple conversions.
"vgchange -aay --autoactivation event" is called by our udev rule.
When the udev rule runs, symlinks for devices may not all be created
yet. If the regex filter contains symlinks, it won't work correctly.
This command uses devices that already passed through pvscan. Since
pvscan applies the regex filter correctly, this command inherits the
filtering from pvscan and can skip the regex filter itself.
See the previous commit
"pvscan: use alternate device names from DEVLINKS to check filter"
pvscan --cache <dev> is called by our udev rule at a time when all
the symlinks for <dev> may not be created yet (by other udev rules.)
The regex filter in lvm.conf may refer to <dev> using a symlink name
that hasn't yet been created, which would cause <dev> to not match
the filter regex. The DEVLINKS env var, set by udev, contains all
the symlink names for <dev> that have been or will be created.
So, we add all these symlink names to dev->aliases, as if we had
found them in /dev. This allows <dev> to be recognized by a regex
filter containing a symlink for <dev>.
Handle multiple devices using the same serial number as
their device id. After matching devices to devices file
entries, if there is a discrepency between the ondisk PVID
and the devices file PVID, then rematch devices to
devices file entries using PVID, looking at all disks
on the system with the same serial number.
Internally, NUM and BIN fields are marked as DM_REPORT_FIELD_TYPE_NUM_NUMBER
through libdevmapper API. The new 'json_std' format mandates that the report
string representing such a value must be a number, not an arbitrary string.
This is because numeric values in 'json_std' format do not have double quotes
around them. This practically means, we can't use string synonyms
("named reserved values") for such values and the report string must always
represent a proper number.
With 'json' and 'basic' formats, this is not an issue because 'basic' format
doesn't have any structure or typing at all and 'json' format puts all values
in quotes, including numeric ones.
Since we check for present DM devices - cache result for
futher use of checking presence of such device.
lvm2 uses cache result for label scan, but also when
it tries to activate or deactivate LV - however only simple
target 'striped' is reasonably supported.
Use disable_dm_devs to be able to control when lv_info()
get cache or uncached results.
TODO: support more type, however this is getting very complicated.
Port another optimization from pvscan -aay to vgchange -aay:
"pvscan: only add device args to dev cache"
This optimization avoids doing a full dev_cache_scan, and
instead populates dev-cache with only the devices in the
VG being activated.
This involves shifting the use of pvs_online files from
the hints interface up to the higher level label_scan
interface. This specialized label_scan is structured
around creating a list of devices from the pvs_online
files. Previously, a list of all devices was created
first, and then reduced based on the pvs_online files.
The initial step of listing all devices was slow when
thousands of devices are present on the system.
This optimization extends the previous optimization that
used pvs_online files to limit the devices that were
actually scanned (i.e. reading to identify the device):
"vgchange -aay: optimize device scan using pvs_online files"
The information in /run/lvm/pvs_online/<pvid> files can
be used to build a list of devices for a given VG.
The pvscan -aay command has long used this information to
activate a VG while scanning only devices in that VG, which
is an important optimization for autoactivation.
This patch implements the same thing through the existing
device hints interface, so that the optimization can be
applied elsewhere. A future patch will take advantage of
this optimization in vgchange -aay, which is now used in
place of pvscan -aay for event activation.
When a device id is set for a device, using an idtype other
than devname, it means that sysfs has been used with the device
to match the device id. So, checking for a sysfs entry for the
device in filter-sysfs is redundant. For any other cases not
covered by this (e.g. devname ids), have filter-sysfs simply
stat /sys/dev/block/major:minor to test if the device exists
in sysfs.
The extensive processing done by filter-sysfs init is removed.
It was taking an immense amount of time with many devices, e.g.
. 1024 PVs in 520 VGs
. 520 concurrent vgchange -ay <vgname> commands
. vgchange scans only PVs in the named VG (based on pvs_online
files from a pending patch)
A large number of the vgchange commands were taking over 1 min,
and nearly half of that time was used by filter-sysfs init.
With this patch, the vgchange commands take about half the time.