IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The information in /run/lvm/pvs_online/<pvid> files can
be used to build a list of devices for a given VG.
The pvscan -aay command has long used this information to
activate a VG while scanning only devices in that VG, which
is an important optimization for autoactivation.
This patch implements the same thing through the existing
device hints interface, so that the optimization can be
applied elsewhere. A future patch will take advantage of
this optimization in vgchange -aay, which is now used in
place of pvscan -aay for event activation.
Just setting lvm.conf level=N should not send messages to
syslog (now the journal by default.)
Sending messages to syslog should require setting lvm.conf
log { syslog=1 level=N }.
Configure via lvm.conf log/journal or command line --journal.
Possible values:
"command" records command information.
"output" records default command output.
"debug" records full command debugging.
Multiple values can be set in lvm.conf as an array.
One value can be set in --journal which is added to
values set in lvm.conf
The new system_id_source="appmachineid" will cause
lvm to use an lvm-specific derivation of the machine-id,
instead of the machine-id directly. This is now
recommended in place of using machineid.
related to config settings:
obtain_device_info_from_udev (controls if lvm gets
a list of devices from readdir /dev or from libudev)
external_device_info_source (controls if lvm asks
libudev for device information)
. Make the obtain_device_list_from_udev setting
affect only the choice of readdir /dev vs libudev.
The setting no longer controls if udev is used for
device type checks.
. Change obtain_device_list_from_udev default to 0.
This helps avoid boot timeouts due to slow libudev
queries, avoids reported failures from
udev_enumerate_scan_devices, and avoids delays from
"device not initialized in udev database" errors.
Even without errors, for a system booting with 1024 PVs,
lvm2-pvscan times improve from about 100 sec to 15 sec,
and the pvscan command from about 64 sec to about 4 sec.
. For external_device_info_source="none", remove all
libudev device info queries, and use only lvm
native device info.
. For external_device_info_source="udev", first check
lvm native device info, then check libudev info.
. Remove sleep/retry loop when attempting libudev
queries for device info. udev info will simply
be skipped if it's not immediately available.
. Only set up a libdev connection if it will be used by
obtain_device_list_from_udev/external_device_info_source.
. For native multipath component detection, use
/etc/multipath/wwids. If a device has a wwid
matching an entry in the wwids file, then it's
considered a multipath component. This is
necessary to natively detect multipath
components when the mpath device is not set up.
There have been two separate checks for metadata
validity: first that the metadata text begins with
a valid VG name, and second the checksum of the
metadata text. These happen in different places,
which means there have been two separate error paths
for invalid metadata. This also causes large metadata
to be read in multiple parts, the first part is read
just to check the vgname, and then remaining parts are
read later when the full metadata is needed.
This patch moves the vg name verification so it's
done just before the checksum verification, which
results in a single error path for invalid metadata,
and causes the entire metadata to be read together
rather that in parts from different parts of the code.
Add profilable configurable setting for vdo pool header size, that is
used as 'extra' empty space at the front and end of vdo-pool device
to avoid having a disk in the system the may have same data is real
vdo LV.
For some conversion cases however we may need to allow using '0' header size.
TODO: in this case we may eventually avoid adding 'linear' mapping layer
in future - but this requires further modification over lvm code base.
The autoactivation property can be specified in lvcreate
or vgcreate for new LVs/VGs, and the property can be changed
by lvchange or vgchange for existing LVs/VGs.
--setautoactivation y|n
enables|disables autoactivation of a VG or LV.
Autoactivation is enabled by default, which is consistent with
past behavior. The disabled state is stored as a new flag
in the VG metadata, and the absence of the flag allows
autoactivation.
If autoactivation is disabled for the VG, then no LVs in the VG
will be autoactivated (the LV autoactivation property will have
no effect.) When autoactivation is enabled for the VG, then
autoactivation can be controlled on individual LVs.
The state of this property can be reported for LVs/VGs using
the "-o autoactivation" option in lvs/vgs commands, which will
report "enabled", or "" for the disabled state.
Previous versions of lvm do not recognize this property. Since
autoactivation is enabled by default, the disabled setting will
have no effect in older lvm versions. If the VG is modified by
older lvm versions, the disabled state will also be dropped from
the metadata.
The autoactivation property is an alternative to using the lvm.conf
auto_activation_volume_list, which is still applied to to VGs/LVs
in addition to the new property.
If VG or LV autoactivation is disabled either in metadata or in
auto_activation_volume_list, it will not be autoactivated.
An autoactivation command will silently skip activating an LV
when the autoactivation property is disabled.
To determine the effective autoactivation behavior for a specific
LV, multiple settings would need to be checked:
the VG autoactivation property, the LV autoactivation property,
the auto_activation_volume_list. The "activation skip" property
would also be relevant, since it applies to both normal and auto
activation.
Use different 'hint' size for dm_hash_create() call - so
when debug info about hash is printed we can recognize which
hash was in use.
This patch doesn't change actual used size since that is always
rounded to be power of 2 and >=16 - so as such is only a
help to developer.
We could eventually use 'name' arg, but since this would have changed
API and this patchset will be routed to libdm & stable - we will
just use this small trick.
Drop the comment "This setting is no longer used." which
was printed just before the standard deprecation comment:
"This configuration option is deprecated."
When lvmconfig --typeconfig full printed a deprecated
entry it would attempt to print a non-existing
deprecation comment resulting in output like:
# (null) # This setting is no longer used.
The LVM devices file lists devices that lvm can use. The default
file is /etc/lvm/devices/system.devices, and the lvmdevices(8)
command is used to add or remove device entries. If the file
does not exist, or if lvm.conf includes use_devicesfile=0, then
lvm will not use a devices file. When the devices file is in use,
the regex filter is not used, and the filter settings in lvm.conf
or on the command line are ignored.
LVM records devices in the devices file using hardware-specific
IDs, such as the WWID, and attempts to use subsystem-specific
IDs for virtual device types. These device IDs are also written
in the VG metadata. When no hardware or virtual ID is available,
lvm falls back using the unstable device name as the device ID.
When devnames are used, lvm performs extra scanning to find
devices if their devname changes, e.g. after reboot.
When proper device IDs are used, an lvm command will not look
at devices outside the devices file, but when devnames are used
as a fallback, lvm will scan devices outside the devices file
to locate PVs on renamed devices. A config setting
search_for_devnames can be used to control the scanning for
renamed devname entries.
Related to the devices file, the new command option
--devices <devnames> allows a list of devices to be specified for
the command to use, overriding the devices file. The listed
devices act as a sort of devices file in terms of limiting which
devices lvm will see and use. Devices that are not listed will
appear to be missing to the lvm command.
Multiple devices files can be kept in /etc/lvm/devices, which
allows lvm to be used with different sets of devices, e.g.
system devices do not need to be exposed to a specific application,
and the application can use lvm on its own set of devices that are
not exposed to the system. The option --devicesfile <filename> is
used to select the devices file to use with the command. Without
the option set, the default system devices file is used.
Setting --devicesfile "" causes lvm to not use a devices file.
An existing, empty devices file means lvm will see no devices.
The new command vgimportdevices adds PVs from a VG to the devices
file and updates the VG metadata to include the device IDs.
vgimportdevices -a will import all VGs into the system devices file.
LVM commands run by dmeventd not use a devices file by default,
and will look at all devices on the system. A devices file can
be created for dmeventd (/etc/lvm/devices/dmeventd.devices) If
this file exists, lvm commands run by dmeventd will use it.
Internal implementaion:
- device_ids_read - read the devices file
. add struct dev_use (du) to cmd->use_devices for each devices file entry
- dev_cache_scan - get /dev entries
. add struct device (dev) to dev_cache for each device on the system
- device_ids_match - match devices file entries to /dev entries
. match each du on cmd->use_devices to a dev in dev_cache, using device ID
. on match, set du->dev, dev->id, dev->flags MATCHED_USE_ID
- label_scan - read lvm headers and metadata from devices
. filters are applied, those that do not need data from the device
. filter-deviceid skips devs without MATCHED_USE_ID, i.e.
skips /dev entries that are not listed in the devices file
. read lvm label from dev
. filters are applied, those that use data from the device
. read lvm metadata from dev
. add info/vginfo structs for PVs/VGs (info is "lvmcache")
- device_ids_find_renamed_devs - handle devices with unstable devname ID
where devname changed
. this step only needed when devs do not have proper device IDs,
and their dev names change, e.g. after reboot sdb becomes sdc.
. detect incorrect match because PVID in the devices file entry
does not match the PVID found when the device was read above
. undo incorrect match between du and dev above
. search system devices for new location of PVID
. update devices file with new devnames for PVIDs on renamed devices
. label_scan the renamed devs
- continue with command processing
Initial support for thin-pool used slightly smaller max size 15.81GiB
for thin-pool metadata. However the real limit later settled at 15.88GiB
(difference is ~64MiB - 16448 4K blocks).
lvm2 could not simply increase the size as it has been using hard cropping
of the loaded metadata device to avoid warnings printing warning of kernel
when the size was bigger (i.e. due to bigger extent_size).
This patch adds the new lvm.conf configurable setting:
allocation/thin_pool_crop_metadata
which defaults to 0 -> no crop of metadata beyond 15.81GiB.
Only user with these sizes of metadata will be affected.
Without cropping lvm2 now limits metadata allocation size to 15.88GiB.
Any space beyond is currently not used by thin-pool target.
Even if i.e. bigger LV is used for metadata via lvconvert,
or allocated bigger because of to large extent size.
With cropping enabled (=1) lvm2 preserves the old limitation
15.81GiB and should allow to work in the evironement with
older lvm2 tools (i.e. older distribution).
Thin-pool metadata with size bigger then 15.81G is now using CROP_METADATA
flag within lvm2 metadata, so older lvm2 recognizes an
incompatible thin-pool and cannot activate such pool!
Users should use uncropped version as it is not suffering
from various issues between thin_repair results and allocated
metadata LV as thin_repair limit is 15.88GiB
Users should use cropping only when really needed!
Patch also better handles resize of thin-pool metadata and prevents resize
beoyond usable size 15.88GiB. Resize beyond 15.81GiB automatically
switches pool to no-crop version. Even with existing bigger thin-pool
metadata command 'lvextend -l+1 vg/pool_tmeta' does the change.
Patch gives better controls 'coverted' metadata LV and
reports less confusing message during conversion.
Patch set also moves the code for updating min/max into pool_manip.c
for better sharing with cache_pool code.
New VDO targets v6.2.3 corrects support for online rename of VDO device.
If needed if can be disable via new lvm.conf setting:
vdo_disabled_features = [ "online_rename" ]
While normally the 'mmap' file reading is better utilizing resources,
it has also its odd side with handling errors - so while we normally
use the mmap only for reading regular files from root filesystem
(i.e. lvm.conf) we can't prevent error to happen during the read
of these file - and such error unfortunately ends with SIGBUS error.
Maintaing signal handler would be compilated - so switch to slightly
less effiecient but more error resistant read() functinality.
It's better to set most of option as 'commented' with some
documented defaults instead of providing strict values.
This has the advantage we can eventually 'change' defualts
and get them working in future. Otherwise once the setting
is stored in lvm.conf in /etc, such setting has strictly
defined value and that can be only change with file update.
To avoid polution of metadata with some 'garbage' content or eventualy
some leak of stale data in case user want to upload metadata somewhere,
ensure upon allocation the metadata device is fully zeroed.
Behaviour may slow down allocation of thin-pool or cache-pool a bit
so the old behaviour can be restored with lvm.conf setting:
allocation/zero_metadata=0
TODO: add zeroing for extension of metadata volume.
Avoid having PVs with different logical block sizes in the same VG.
This prevents LVs from having mixed block sizes, which can produce
file system errors.
The new config setting devices/allow_mixed_block_sizes (default 0)
can be changed to 1 to return to the unrestricted mode.
If udev info is missing for a device, (which would indicate
if it's an MD component), then do an end-of-device read to
check if a PV is an MD component. (This is skipped when
using hints since we already know devs in hints are good.)
A new config setting md_component_checks can be used to
disable the additional end-of-device MD checks, or to
always enable end-of-device MD checks.
When both hints and udev info are disabled/unavailable,
the end of PVs will now be scanned by default. If md
devices with end-of-device superblocks are not being
used, the extra I/O overhead can be avoided by setting
md_component_checks="start".
This is the default bcache size that is created at the
start of the command. It needs to be large enough to
hold a single copy of metadata for a given VG, or the
VG cannot be read or written (since the entire VG would
not fit into available memory.)
Increasing the default reduces the chances of anyone
needing to increase the default to use their VG.
The size can be set in lvm.conf global/io_memory_size;
the lower limit is 4 MiB and the upper limit is 128 MiB.
which defines the amount of memory that lvm will allocate
for bcache. Increasing this setting is required if it is
smaller than a single copy of VG metadata.
For users who do not want all of the fields included
in debug lines, let them specify in lvm.conf which
fields to include. timestamp, command[pid], and
file:line fields can all be disabled.
Without this, the output from different commands in a single
log file could not be separated.
Change the default "indent" setting to 0 so that the default
debug output does not include variable spaces in the middle
of debug lines.
Save the list of PVs in /run/lvm/hints. These hints
are used to reduce scanning in a number of commands
to only the PVs on the system, or only the PVs in a
requested VG (rather than all devices on the system.)
Drop very old original format of VDO target and focus on V2 version.
So some variables were renamed or replaced.
There is no compatibility preserved (with assumption so far this is
experimental feature and there is no real user).
Note - version currently VDO calls this version 6.2.
This is a followup patch to commit edb72cb70c
to support related lvm2 test suite tests.
A 'global/support_mirrored_mirror_log' bool configuration variable gets
introduced allowing the creation of, or conversion to mirrored 'mirror'
logs if set. The capability to create these in turn allows the rest of
the tests to perform activation of such existing LVs and their conversions
to disk/core 'mirror' logs.
Display a disclaimer warning if enabled that this is not for regular use.
Add definition of the enabled config option to respective test scripts.
Related: rhbz1643562
. When using default settings, this commit should change
nothing. The first PE continues to be placed at 1 MiB
resulting in a metadata area size of 1020 KiB (for
4K page sizes; slightly smaller for larger page sizes.)
. When default_data_alignment is disabled in lvm.conf,
align pe_start at 1 MiB, based on a default metadata area
size that adapts to the page size. Previously, disabling
this option would result in mda_size that was too small
for common use, and produced a 64 KiB aligned pe_start.
. Customized pe_start and mda_size values continue to be
set as before in lvm.conf and command line.
. Remove the configure option for setting default_data_alignment
at build time.
. Improve alignment related option descriptions.
. Add section about alignment to pvcreate man page.
Previously, DEFAULT_PVMETADATASIZE was 255 sectors.
However, the fact that the config setting named
"default_data_alignment" has a default value of 1 (MiB)
meant that DEFAULT_PVMETADATASIZE was having no effect.
The metadata area size is the space between the start of
the metadata area (page size offset from the start of the
device) and the first PE (1 MiB by default due to
default_data_alignment 1.) The result is a 1020 KiB metadata
area on machines with 4KiB page size (1024 KiB - 4 KiB),
and smaller on machines with larger page size.
If default_data_alignment was set to 0 (disabled), then
DEFAULT_PVMETADATASIZE 255 would take effect, and produce a
metadata area that was 188 KiB and pe_start of 192 KiB.
This was too small for common use.
This is fixed by making the default metadata area size a
computed value that matches the value produced by
default_data_alignment.
The pvscan systemd service for autoactivation was
mistakenly dropped along with the lvmetad related
services.
The activation generator program now looks at the new
lvm.conf setting "event_activation" (default 1) to
switch between event activation and direct activation.
Previously, the old use_lvmetad setting was used to
switch between event and direct activation.
io_setup() for aio may fail if a system has reached the
aio request limit. In this case, fall back to using
sync io. Also, lvm use of aio can be disabled entirely
with config setting global/use_aio=0.
The system limit for aio requests can be seen from
/proc/sys/fs/aio-max-nr
The current usage of aio requests can be seen from
/proc/sys/fs/aio-nr
The system limit for aio requests can be increased by
setting fs.aio-max-nr using sysctl.
Also add last-byte limit to the sync io code.
devices/scan_lvs (default 1) determines whether lvm
will scan LVs for layered PVs. The lvm behavior has
always been to scan LVs, but it's rare for LVs to have
layered PVs, and much more common for there to be many
LVs that substantially slow down scanning with no benefit.
This is implemented in the usable filter, and has the
same effect as listing all LVs in the global_filter.
Native disk scanning is now both reduced and
async/parallel, which makes it comparable in
performance (and often faster) when compared
to lvm using lvmetad.
Autoactivation now uses local temp files to record
online PVs, and no longer requires lvmetad.
There should be no apparent command-level change
in behavior.
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
The device-mapper directory now holds a copy of libdm source. At
the moment this code is identical to libdm. Over time code will
migrate out to appropriate places (see doc/refactoring.txt).
The libdm directory still exists, and contains the source for the
libdevmapper shared library, which we will continue to ship (though
not neccessarily update).
All code using libdm should now use the version in device-mapper.
As we start refactoring the code to break dependencies (see doc/refactoring.txt),
I want us to use full paths in the includes (eg, #include "base/data-struct/list.h").
This makes it more obvious when we're breaking abstraction boundaries, eg, including a file in
metadata/ from base/
There are likely more bits of code that can be removed,
e.g. lvm1/pool-specific bits of code that were identified
using FMT flags.
The vgconvert command can likely be reduced further.
The lvm1-specific config settings should probably have
some other fields set for proper deprecation.
For reporting commands (pvs,vgs,lvs,pvdisplay,vgdisplay,lvdisplay)
we do not need to repeat the label scan of devices in vg_read if
they all had matching metadata in the initial label scan. The
data read by label scan can just be reused for the vg_read.
This cuts the amount of device i/o in half, from two reads of
each device to one. We have to be careful to avoid repairing
the VG if we've skipped rescanning. (The VG repair code is very
poor, and will be redone soon.)
Create a new dev->bcache_fd that the scanning code owns
and is in charge of opening/closing. This prevents other
parts of lvm code (which do various open/close) from
interfering with the bcache fd. A number of dev_open
and dev_close are removed from the reading path since
the read path now uses the bcache.
With that in place, open(O_EXCL) for pvcreate/pvremove
can then be fixed. That wouldn't work previously because
of other open fds.
The copy of VG metadata stored in lvmcache was not being used
in general. It pretended to be a generic VG metadata cache,
but was not being used except for clvmd activation. There
it was used to avoid reading from disk while devices were
suspended, i.e. in resume.
This removes the code that attempted to make this look
like a generic metadata cache, and replaces with with
something narrowly targetted to what it's actually used for.
This is a way of passing the VG from suspend to resume in
clvmd. Since in the case of clvmd one caller can't simply
pass the same VG to both suspend and resume, suspend needs
to stash the VG somewhere that resume can grab it from.
(resume doesn't want to read it from disk since devices
are suspended.) The lvmcache vginfo struct is used as a
convenient place to stash the VG to pass it from suspend
to resume, even though it isn't related to the lvmcache
or vginfo. These suspended_vg* vginfo fields should
not be used or touched anywhere else, they are only to
be used for passing the VG data from suspend to resume
in clvmd. The VG data being passed between suspend and
resume is never modified, and will only exist in the
brief period between suspend and resume in clvmd.
suspend has both old (current) and new (precommitted)
copies of the VG metadata. It stashes both of these in
the vginfo prior to suspending devices. When vg_commit
is successful, it sets a flag in vginfo as before,
signaling the transition from old to new metadata.
resume grabs the VG stashed by suspend. If the vg_commit
happened, it grabs the new VG, and if the vg_commit didn't
happen it grabs the old VG. The VG is then used to resume
LVs.
This isolates clvmd-specific code and usage from the
normal lvm vg_read code, making the code simpler and
the behavior easier to verify.
Sequence of operations:
- lv_suspend() has both vg_old and vg_new
and stashes a copy of each onto the vginfo:
lvmcache_save_suspended_vg(vg_old);
lvmcache_save_suspended_vg(vg_new);
- vg_commit() happens, which causes all clvmd
instances to call lvmcache_commit_metadata(vg).
A flag is set in the vginfo indicating the
transition from the old to new VG:
vginfo->suspended_vg_committed = 1;
- lv_resume() needs either vg_old or vg_new
to use in resuming LVs. It doesn't want to
read the VG from disk since devices are
suspended, so it gets the VG stashed by
lv_suspend:
vg = lvmcache_get_suspended_vg(vgid);
If the vg_commit did not happen, suspended_vg_committed
will not be set, and in this case, lvmcache_get_suspended_vg()
will return the old VG instead of the new VG, and it will
resume LVs based on the old metadata.
New label_scan function populates bcache for each device
on the system.
The two read paths are updated to get data from bcache.
The bcache is not yet used for writing. bcache blocks
for a device are invalidated when the device is written.
Callers that read larger amounts of data now get a pointer to read-only
data directly without copying it through an intermediate buffer. This
data is owned by the device layer so the callers no longer free it.
If it obtains the data, it passes it into the supplied callback function
and returns 1. Otherwise the callback receives failed = 1.
Updated config_file_read_fd to use this and similarly return the data
via a callback fn of its own.
Rename dev_read() to dev_read_buf() - the function that reads data
into a supplied buffer.
Introduce a new dev_read() that allocates the buffer it returns and
switch the important users over to this. No caller may change the
returned data. (For now, callers are responsible for freeing it after
use, but later the device layer will take full ownership.)
dev_read_buf() should only be used for tiny buffers or unimportant code
(such as the old disk formats).
The creation of wrapped around metadata - where the start of metadata is
written up to the end of the buffer and the remainder follows back at
the start of the buffer - is now restricted to cases where writing the
metadata in one piece wouldn't fit. This shouldn't happen in 'normal'
usage so let's begin treating the code for this as a special case that
can be ignored when optimising 'normal' cases.
Mark the first metadata area on each text format PV as MDA_PRIMARY.
Pass this information down to the device layer so that when
there are two metadata areas on a block device, we can easily
distinguish two independent streams of I/O.
Introduce enum dev_io_reason to categorise block device I/O
in debug messages so it's obvious what it is for.
DEV_IO_SIGNATURES /* Scanning device signatures */
DEV_IO_LABEL /* LVM PV disk label */
DEV_IO_MDA_HEADER /* Text format metadata area header */
DEV_IO_MDA_CONTENT /* Text format metadata area content */
DEV_IO_FMT1 /* Original LVM1 metadata format */
DEV_IO_POOL /* Pool metadata format */
DEV_IO_LV /* Content written to an LV */
DEV_IO_LOG /* Logging messages */