IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
uses vg_write to correct more common or less severe issues,
and also adds the ability to repair some metadata corruption
that couldn't be handled previously.
Have the caller pass the label_sector to the read
function so the read function can set the sector
field in the label struct, instead of having the
read function return a pointer to the label for
the caller to set the sector field.
Also have the read function return a flag indicating
to the caller that the scanned device was identified
as a duplicate pv.
When reading metadata headers and text, use a new set
of flags to identify specific errors that are seen.
These will be used for more advanced repair in a
subsequent commit.
As we start refactoring the code to break dependencies (see doc/refactoring.txt),
I want us to use full paths in the includes (eg, #include "base/data-struct/list.h").
This makes it more obvious when we're breaking abstraction boundaries, eg, including a file in
metadata/ from base/
For reporting commands (pvs,vgs,lvs,pvdisplay,vgdisplay,lvdisplay)
we do not need to repeat the label scan of devices in vg_read if
they all had matching metadata in the initial label scan. The
data read by label scan can just be reused for the vg_read.
This cuts the amount of device i/o in half, from two reads of
each device to one. We have to be careful to avoid repairing
the VG if we've skipped rescanning. (The VG repair code is very
poor, and will be redone soon.)
Recent changes allow some major simplification of the way
lvmcache works and is used. lvmcache_label_scan is now
called in a controlled fashion at the start of commands,
and not via various unpredictable side effects. Remove
various calls to it from other places. lvmcache_label_scan
should not be called from anywhere during a command, because
it produces an incorrect representation of PVs with no MDAs,
and misclassifies them as orphans. This has been a long
standing problem. The invalid flag and rescanning based on
that is no longer used and removed. The 'force' variation is
no longer needed and removed.
Create a new dev->bcache_fd that the scanning code owns
and is in charge of opening/closing. This prevents other
parts of lvm code (which do various open/close) from
interfering with the bcache fd. A number of dev_open
and dev_close are removed from the reading path since
the read path now uses the bcache.
With that in place, open(O_EXCL) for pvcreate/pvremove
can then be fixed. That wouldn't work previously because
of other open fds.
New label_scan function populates bcache for each device
on the system.
The two read paths are updated to get data from bcache.
The bcache is not yet used for writing. bcache blocks
for a device are invalidated when the device is written.
No longer use the external 'result' pointer internally to set up the
cached label. The callback _set_label_read_result() is now given the
internal label pointer directly
Callers that don't need the result are no longer required to pass a
label pointer into label_read().
Dedicated functions are now used to process each piece of data obtained,
so the refactoring in this file gives us one for the vgsummary and one
for the metadata header. This new type of function takes two parameters
(for now), the obtained data plus a single struct (that must not
reference any data on the stack) that wraps up the entire context needed
to process it.
Mark the first metadata area on each text format PV as MDA_PRIMARY.
Pass this information down to the device layer so that when
there are two metadata areas on a block device, we can easily
distinguish two independent streams of I/O.
lvmcache_foreach_mda() can fail for numerous reasons
and failing error code cannot be ignored (out-of-memory...)
TODO: might need more error handling tunning.
This reverts commit 70db1d523d.
Since we use 'strncpy' even for case where it exactly matches
the buffer size and \0 is not expected to be added there.
Refactor the recent metadata-reading optimisation patches.
Remove the recently-added cache fields from struct labeller
and struct format_instance.
Instead, introduce struct lvmcache_vgsummary to wrap the VG information
that lvmcache holds and add the metadata size and checksum to it.
Allow this VG summary information to be looked up by metadata size +
checksum. Adjust the debug log messages to make it clear when this
shortcut has been successful.
(This changes the optimisation slightly, and might be extendable
further.)
Add struct cached_vg_fmtdata to format-specific vg_read calls to
preserve state alongside the VG across separate calls and indicate
if the details supplied match, avoiding the need to read and
process the VG metadata again.
Use similar logic as with text_vg_import_fd() and avoid repeated
parsing of same mda and its config tree for vgname_from_mda().
Remember last parsed vgname, vgid and creation_host in labeller
structure and if the metadata have the same size and checksum,
return this stored info.
TODO: The reuse of labeller struct is not ideal, some lvmcache API for
this functionality would be nicer.
All labellers always use the "private" (void *) field as the fmt pointer. Making
this fact explicit in the type of the labeller simplifies the label reporting
code which needs to extract the format. Moreover, it removes a number of
error-prone casts from the code.
The PV header extension information (PV header extension version, flags
and list of Embedding Area locations) is stored just beyond the PV header base.
When calculating the Embedding Area start value (ea_start), the same logic is
used as when calculating the pe_start value for Data Area - the value must
follow exactly the same alignment restrictions for its start value
(the alignment detected automatically or provided via command line using
the --dataalignment and --dataalignmentoffset arguments).
The Embedding Area is placed at the very start of the PV, starting at
ea_start. The Data Area starting at pe_start is placed next. The pe_start is
still properly aligned. Due to the pe_start alignment, it's possible that the
resulting Embedding Area size (ea_size) ends up bigger in size than requested
(but never less than requested).
New tools with PV header extension support will read the extension
if it exists and it's not an error if it does not exist (so old PVs
will still work seamlessly with new tools).
Old tools without PV header extension support will just ignore any
extension.
As for the Embedding Area location information (its start and size),
there are actually two places where this is stored:
- PV header extension
- VG metadata
The VG metadata contains a copy of what's written in the PV header
extension about the Embedding Area location (NULL value is not copied):
physical_volumes {
pv0 {
id = "AkSSRf-difg-fCCZ-NjAN-qP49-1zzg-S0Fd4T"
device = "/dev/sda" # Hint only
status = ["ALLOCATABLE"]
flags = []
dev_size = 262144 # 128 Megabytes
pe_start = 67584
pe_count = 23 # 92 Megabytes
ea_start = 2048
ea_size = 65536 # 32 Megabytes
}
}
The new metadata fields are "ea_start" and "ea_size".
This is mostly useful when restoring the PV by using existing
metadata backups (e.g. pvcreate --restorefile ...).
New tools does not require these two fields to exist in VG metadata,
they're not compulsory. Therefore, reading old VG metadata which doesn't
contain any Embedding Area information will not end up with any kind
of error but only a debug message that the ea_start and ea_size values
were not found.
Old tools just ignore these extra fields in VG metadata.
PV header extension comes just beyond the existing PV header base:
PV header base (existing):
- uuid
- device size
- null-terminated list of Data Areas
- null-terminater list of MetaData Areas
PV header extension:
- extension version
- flags
- null-terminated list of Embedding Areas
This patch also adds "eas" (Embedding Areas) list to lvmcache (lvmcache_info)
and it also adds support for common operations on the list (just like for
already existing "das" - Data Areas list):
- lvmcache_add_ea
- lvmcache_update_eas
- lvmcache_foreach_ea
- lvmcache_del_eas
Also, add ea_start and ea_size to struct physical_volume for processing
PV Embedding Area location throughout the code (currently only one
Embedding Area is supported, though the definition on disk allows for
more if needed in the future...).
Also, define FMT_EAS format flag to mark that the format actually
supports Embedding Areas (currently format-text only).
Before, we used vg_write_lock_held call to determnine the way a device is
opened. Unfortunately, this opened many devices in RW mode when it was not
really necessary. With the OPTIONS+="watch" rule used in the udev rules,
this could fire numerous events while closing such devices (and it caused
useless scans from within udev rules in return).
A common bug we hit with this was with the lvremove command which was unable
to remove the LV since it was being opened from within the udev rules. This
patch should minimize such situations (at least with respect to LVM handling
of devices).
Though there's still a possibility someone will open a device 'outside' in
parallel and fire the event based on the watch rule when closing a device
once opened for RW.