IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The option can be used in multiple ways (like --cachesettings):
--integritysettings key=val
--integritysettings 'key1=val1 key2=val2'
--integritysettings key1=val1 --integritysettings key2=val2
Use with lvcreate or lvconvert when integrity is first enabled
to configure:
journal_sectors
journal_watermark
commit_time
bitmap_flush_interval
allow_discards
Use with lvchange to configure (only while inactive):
journal_watermark
commit_time
bitmap_flush_interval
allow_discards
lvchange --integritysettings "" clears any previously configured
settings, so dm-integrity will use its own defaults.
lvs -a -o integritysettings displays configured settings.
Instead of storing command_id as string, direcly
translate string to enum index and use 'command_enum()'
to get string when needed for printing.
This way we can easily detect error in the structure
while parsing it - and we can later avoid separate
'translation' loop.
Both commands default [raid_](min|max)recoveryrate to 0 but ensure
min_recovery_rate is not larger than max_recoveryrate. This results
in command failure without requestinng the user to also define
max_recovery_rate >= min_recovery_rate.
Fix both commands by defining max_recovery_rate = min_recoveryrate
in case "lvcreate/lvchange --minrecoveryrate Size ..." requests a
larger value than current maxrecoveryrate without also giving option
"--maxrecoveryrate Size ..." with a size greater or equal than min.
Names matching internal code layout.
Functionc in thin_manip.c uses thin_pool in its name.
Keep 'pool' only for function working for both cache and thin pools.
No change of functionality.
Allow to use --vdosettings with lvcreate,lvconvert,lvchange.
Support settings currenly only configurable via lvm.conf.
With lvchange we require inactivate LV for changes to be applied.
Settings block_map_era_length has supported alias block_map_period.
When multiple lvchange refresh processes executed at the same time,
suspend/resume ioctl on the same dm, some of these commands will be failed
for dm aready change status, and ioctl will return EINVAL in _do_dm_ioctl function.
to avoid this problem, add READ_FOR_ACTIVATE flags in lvchange refresh process,
it will hold LCK_WRITE lock and avoid suspend/resume dm at the same time.
Signed-off-by: Long YunJian <long.yunjian@zte.com.cn>
Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
The autoactivation property can be specified in lvcreate
or vgcreate for new LVs/VGs, and the property can be changed
by lvchange or vgchange for existing LVs/VGs.
--setautoactivation y|n
enables|disables autoactivation of a VG or LV.
Autoactivation is enabled by default, which is consistent with
past behavior. The disabled state is stored as a new flag
in the VG metadata, and the absence of the flag allows
autoactivation.
If autoactivation is disabled for the VG, then no LVs in the VG
will be autoactivated (the LV autoactivation property will have
no effect.) When autoactivation is enabled for the VG, then
autoactivation can be controlled on individual LVs.
The state of this property can be reported for LVs/VGs using
the "-o autoactivation" option in lvs/vgs commands, which will
report "enabled", or "" for the disabled state.
Previous versions of lvm do not recognize this property. Since
autoactivation is enabled by default, the disabled setting will
have no effect in older lvm versions. If the VG is modified by
older lvm versions, the disabled state will also be dropped from
the metadata.
The autoactivation property is an alternative to using the lvm.conf
auto_activation_volume_list, which is still applied to to VGs/LVs
in addition to the new property.
If VG or LV autoactivation is disabled either in metadata or in
auto_activation_volume_list, it will not be autoactivated.
An autoactivation command will silently skip activating an LV
when the autoactivation property is disabled.
To determine the effective autoactivation behavior for a specific
LV, multiple settings would need to be checked:
the VG autoactivation property, the LV autoactivation property,
the auto_activation_volume_list. The "activation skip" property
would also be relevant, since it applies to both normal and auto
activation.
dm-integrity stores checksums of the data written to an
LV, and returns an error if data read from the LV does
not match the previously saved checksum. When used on
raid images, dm-raid will correct the error by reading
the block from another image, and the device user sees
no error. The integrity metadata (checksums) are stored
on an internal LV allocated by lvm for each linear image.
The internal LV is allocated on the same PV as the image.
Create a raid LV with an integrity layer over each
raid image (for raid levels 1,4,5,6,10):
lvcreate --type raidN --raidintegrity y [options]
Add an integrity layer to images of an existing raid LV:
lvconvert --raidintegrity y LV
Remove the integrity layer from images of a raid LV:
lvconvert --raidintegrity n LV
Settings
Use --raidintegritymode journal|bitmap (journal is default)
to configure the method used by dm-integrity to ensure
crash consistency.
Initialization
When integrity is added to an LV, the kernel needs to
initialize the integrity metadata/checksums for all blocks
in the LV. The data corruption checking performed by
dm-integrity will only operate on areas of the LV that
are already initialized. The progress of integrity
initialization is reported by the "syncpercent" LV
reporting field (and under the Cpy%Sync lvs column.)
Example: create a raid1 LV with integrity:
$ lvcreate --type raid1 -m1 --raidintegrity y -n rr -L1G foo
Creating integrity metadata LV rr_rimage_0_imeta with size 12.00 MiB.
Logical volume "rr_rimage_0_imeta" created.
Creating integrity metadata LV rr_rimage_1_imeta with size 12.00 MiB.
Logical volume "rr_rimage_1_imeta" created.
Logical volume "rr" created.
$ lvs -a foo
LV VG Attr LSize Origin Cpy%Sync
rr foo rwi-a-r--- 1.00g 4.93
[rr_rimage_0] foo gwi-aor--- 1.00g [rr_rimage_0_iorig] 41.02
[rr_rimage_0_imeta] foo ewi-ao---- 12.00m
[rr_rimage_0_iorig] foo -wi-ao---- 1.00g
[rr_rimage_1] foo gwi-aor--- 1.00g [rr_rimage_1_iorig] 39.45
[rr_rimage_1_imeta] foo ewi-ao---- 12.00m
[rr_rimage_1_iorig] foo -wi-ao---- 1.00g
[rr_rmeta_0] foo ewi-aor--- 4.00m
[rr_rmeta_1] foo ewi-aor--- 4.00m
Enhance 'activation' experience for VDO pool to more closely match
what happens for thin-pools where we do use a 'fake' LV to keep pool
running even when no thinLVs are active. This gives user a choice
whether he want to keep thin-pool running (wihout possibly lenghty
activation/deactivation process)
As we do plan to support multple VDO LVs to be mapped into a single VDO,
we want to give user same experience and 'use-patter' as with thin-pools.
This patch gives option to activate VDO pool only without activating
VDO LV.
Also due to 'fake' layering LV we can protect usage of VDO pool from
command like 'mkfs' which do require exlusive access to the volume,
which is no longer possible.
Note: VDO pool contains 1024 initial sectors as 'empty' header - such
header is also exposed in layered LV (as read-only LV).
For blkid we are indentified as LV with UUID suffix - thus private DM
device of lvm2 - so we do not need to store any extra info in this
header space (aka zero is good enough).
The cache repair utility does not yet work with a cachevol
(where metadata and data exist on the same LV.) So, warn
and prompt if writeback is specified with a cachevol.
When vg_read rescans devices with the intention of
writing the VG, the label rescan can open the devs
RW so they do not need to be closed and reopened
RW in dev_write_bytes.
The -a was being included in the set of "one or more"
options instead of an actual required option. Even
though the cmd def was not implementing the restrictions
correctly, the command internally was.
Adjust the cmd def code which did not support a command
with some real required options and a set of "one or more"
options.
Allow using caching with VDO.
User can either cache a single vdopool or
a vdo LV - difference when the caching is put-in depends on a use-case
and it's upto user to decide which kind of speed is expected.
and "cachepool" to refer to a cache on a cache pool object.
The problem was that the --cachepool option was being used
to refer to both a cache pool object, and to a standard LV
used for caching. This could be somewhat confusing, and it
made it less clear when each kind would be used. By
separating them, it's clear when a cachepool or a cachevol
should be used.
Previously:
- lvm would use the cache pool approach when the user passed
a cache-pool LV to the --cachepool option.
- lvm would use the cache vol approach when the user passed
a standard LV in the --cachepool option.
Now:
- lvm will always use the cache pool approach when the user
uses the --cachepool option.
- lvm will always use the cache vol approach when the user
uses the --cachevol option.
There's a small window during creation of a new RaidLV when
rmeta SubLVs are made visible to wipe them in order to prevent
erroneous discovery of stale RAID metadata. In case a crash
prevents the SubLVs from being committed hidden after such
wiping, the RaidLV can still be activated with the SubLVs visible.
During deactivation though, a deadlock occurs because the visible
SubLVs are deactivated before the RaidLV.
The patch adds _check_raid_sublvs to the raid validation in merge.c,
an activation check to activate.c (paranoid, because the merge.c check
will prevent activation in case of visible SubLVs) and shares the
existing wiping function _clear_lvs in raid_manip.c moved to lv_manip.c
and renamed to activate_and_wipe_lvlist to remove code duplication.
Whilst on it, introduce activate_and_wipe_lv to share with
(lvconvert|lvchange).c.
Resolves: rhbz1633167
If a single, standard LV is specified as the cache, use
it directly instead of converting it into a cache-pool
object with two separate LVs (for data and metadata).
With a single LV as the cache, lvm will use blocks at the
beginning for metadata, and the rest for data. Separate
dm linear devices are set up to point at the metadata and
data areas of the LV. These dm devs are given to the
dm-cache target to use.
The single LV cache cannot be resized without recreating it.
If the --poolmetadata option is used to specify an LV for
metadata, then a cache pool will be created (with separate
LVs for data and metadata.)
Usage:
$ lvcreate -n main -L 128M vg /dev/loop0
$ lvcreate -n fast -L 64M vg /dev/loop1
$ lvs -a vg
LV VG Attr LSize Type Devices
main vg -wi-a----- 128.00m linear /dev/loop0(0)
fast vg -wi-a----- 64.00m linear /dev/loop1(0)
$ lvconvert --type cache --cachepool fast vg/main
$ lvs -a vg
LV VG Attr LSize Origin Pool Type Devices
[fast] vg Cwi---C--- 64.00m linear /dev/loop1(0)
main vg Cwi---C--- 128.00m [main_corig] [fast] cache main_corig(0)
[main_corig] vg owi---C--- 128.00m linear /dev/loop0(0)
$ lvchange -ay vg/main
$ dmsetup ls
vg-fast_cdata (253:4)
vg-fast_cmeta (253:5)
vg-main_corig (253:6)
vg-main (253:24)
vg-fast (253:3)
$ dmsetup table
vg-fast_cdata: 0 98304 linear 253:3 32768
vg-fast_cmeta: 0 32768 linear 253:3 0
vg-main_corig: 0 262144 linear 7:0 2048
vg-main: 0 262144 cache 253:5 253:4 253:6 128 2 metadata2 writethrough mq 0
vg-fast: 0 131072 linear 7:1 2048
$ lvchange -an vg/min
$ lvconvert --splitcache vg/main
$ lvs -a vg
LV VG Attr LSize Type Devices
fast vg -wi------- 64.00m linear /dev/loop1(0)
main vg -wi------- 128.00m linear /dev/loop0(0)
Native disk scanning is now both reduced and
async/parallel, which makes it comparable in
performance (and often faster) when compared
to lvm using lvmetad.
Autoactivation now uses local temp files to record
online PVs, and no longer requires lvmetad.
There should be no apparent command-level change
in behavior.
Make activation commands:
vgchange -ay, lvchange -ay, pvscan -aay
take an exclusive file lock on the VG to serialize
multiple concurrent activation commands which could
otherwise interfere with each other.
Different flavors of activate_lv() and lv_is_active()
which are meaningful in a clustered VG can be eliminated
and replaced with whatever that flavor already falls back
to in a local VG.
e.g. lv_is_active_exclusive_locally() is distinct from
lv_is_active() in a clustered VG, but in a local VG they
are equivalent. So, all instances of the variant are
replaced with the basic local equivalent.
For local VGs, the same behavior remains as before.
For shared VGs, lvmlockd was written with the explicit
requirement of local behavior from these functions
(lvmlockd requires locking_type 1), so the behavior
in shared VGs also remains the same.
As we start refactoring the code to break dependencies (see doc/refactoring.txt),
I want us to use full paths in the includes (eg, #include "base/data-struct/list.h").
This makes it more obvious when we're breaking abstraction boundaries, eg, including a file in
metadata/ from base/
Shift refresh of mirror table right into monitor_dev_for_events().
Use !vg_write_lock_held() to recognize use of lvchange/vgchange.
(this shall change if this would no longer work, but requires
futher some API changes).
With this patch dm mirror table is only refreshed when necassary.
Also update WARNING message about mirror usage without monitoring
and display LV name.
Occasionaly users may need to peek into 'component devices.
Normally lvm2 does not let users activation component.
This patch adds special mode where user can activate
component LV in a 'read-only' mode i.e.:
lvchange -ay vg/pool_tdata
All devices can be deactivated with:
lvchange -an vg | vgchange -an....
Add an exception to not allowing lvchange to change properties
on hidden LVs. When a thin pool data LV is a cache LV, we
need to allow changing cache properties on the tdata sublv of
the thin pool.