IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Correction to function for extracting vgname out of lvconvert
parameters.
Avoid repeating some checks.
Add code to handle generic options which may provide vgname in its argument
and compare them all so they match to a single vgname (otherwise it's a
error).
Extract default (envvar) vgname only when no position nor optional vgname is
found.
Fixing regression instroduce with patchset started with commit:
1e2420bca8 (2.02.169)
lvcreate supports a 'conversion' when caching LV.
This normally worked fine, however in case passed LV was
thin-pool's data LV with suffix _tdata we have failed to early.
As the easiest fix looks dropping validation of name when
caching type is select - such name check will happen later
once the VG is opened again and properly detect if the LV
with protected name already exists and can be converted,
or will be rejected as ambigiuous operation requiring user
to specify --type cache | --type cache-pool.
Replaced the confusing device error message "not found (or ignored by
filtering)" by either "not found" or "excluded by a filter".
(Later we should be able to say which filter.)
Left the the liblvm code paths alone.
Activation lock has a primary purpose to serialize locking of individual
LV in case there is no other protecting mechanism for parallel
execution.
However in the case an activated LV is composed from several other LVs,
noone should be able to manipulate with those LVs as well.
This patch add a very 'naive' global VG activation locking in this case.
In the future we may introduce smarter function detecting minimal closed
graph components if this will appear as bottleneck
Patch checks if the VG Write lock is held - in this case we do not
need any more locking - command has exclusive access to VG.
In case we have clustered VG and we are activating an LV which does not
need other LVs - we also do not need any more locks.
In all other cases take respective lock - for single LV - use lvid,
for complex LVs use vgname.
vgmerge suffers from a similar problem to the one fixed in commit
8146548d25 ("vgsplit: Fix intermediate
metadata corruption.")
When merging, splitting or renaming VGs, use a new PV status flag
PV_MOVED_VG to mark the PVs that hold metadata with the old VG name and
use this to provide PV-level granularity instead of incorrectly assuming
all PVs in the VG are the same.
Changing the VG of a PV uses the same on-disk mechanism as vgrename.
This relies on recognising both the old and new VG names. Prior to this
patch the vgsplit code incorrectly provided the new VG name twice
instead of the old and new ones. This lead the low-level mechanism not
to recognise the device as already belonging to a VG and so paying no
attention to the location of its existing metadata, sometimes partly
overwriting it and then later trying to read the corrupt metadata and
issuing a checksum error.
In a shared VG, only allow pvmove with a named LV,
so that only PE's used by the LV will be moved.
The LV is then activated exclusively, ensuring that
the PE's being moved are not used from another host.
Previously, pvmove was mistakenly allowed on a full PV.
This won't work when LVs using that PV are active on
other hosts.
Enable handling of --poolmetadataspare so if user can prevent
creation of _pmspare volume during --repair operation (just
like during actual lvcreate or lvconvert) for pool volumes.
When file-locking mode failed on locking, such description was leaked
(typically not an issue since command usually exists afterwards).
So shirt close() at the end of function and use it in all error paths.
Also make sure, when interrrupt is detected, it's really not holding
lock and returns 0.
Fix code checking that the 2nd mda which is at the end of disk really
fits the available free space and avoid any DA and MDA interleaving when
we already have DA preallocated. This mainly applies when we're restoring
a PV from VG backup using pvcreate --restorefile where we may already have
some DA preallocated - this means the PV was in a VG before with already
allocated space from it (the LVs were created). Hence we need to avoid
stepping into DA - the MDA can never ever be inside in such case!
The code responsible for this calculation was already in
_text_pv_add_metadata_area fn, but it had a bug in the calculation where
we subtracted one more sector by mistake and then the code could still
incorrectly allocate the MDA inside existing DA. The patch also renames
the variable in the code so it doesn't confuse us in future.
Also, if the 2nd mda doesn't fit, don't silently continue with just 1
MDA (at the start of the disk). If 2nd mda was requested and we can't
create that due to unavailable space, error out correctly (the patch
also adds a test to shell/pvcreate-operation.sh for this case).
If the PV was originally created with a larger-than-default
metadata area the restored one wasn't and might not even be
large enough to hold the metadata!
Previously the cache remembered an existing bootloaderarea and
reinstated it (without even checking for overlap) when asked to
write out the PV. pvcreate could write out an incorrect layout.
Avoid adding -g more then once for debug builds.
Avoid enabling DEBUG_MEM when we build multithreaded tools.
Link executables with -fPIE -pie and --export-dynamic LDFLAGS
Introduce PROGS_FLAGS to add option to pass flags for external libs.
Link lvm2 internally library only when really used.
Link DAEMON_LIBS with daemons.
Pass VALGRIND_CFLAGS internally
Set shell failure mode on couple places.
lvm2 warned about zeroing and too big chunksize (>=512KiB), but
only during lvconvert, so lvcreate was creating thin-pools
without any warning about possible slowness of thin provisioning
because of zeroing.
Since _deactivate_and_remove_lvs() is used in more then one place,
move the needed udev synchronization into this function so other
users automatically get correct fs state before next dm manipulation.
Assumption here is that this udev synchronization 'delay' may also
prevent to 'early' table reloads which might cause kernel problems
for md-core - but we may need more generic time-limited reload
frequency for raid devices.
Note: on udev-less system there will be almost no delay.
Since we are reading size as (double) we can get way bigger
number then just plain int64. So to make this check actually
more valid and usable do a maxsize compare in 'double'.
Initialize mutex upfront any debugging and fix this report:
Mutex reinitialization: mutex 0x485d20, recursion count 0, owner 1.
at 0x4C38480: pthread_mutex_init_intercept (drd_pthread_intercepts.c:821)
by 0x4C38480: pthread_mutex_init (drd_pthread_intercepts.c:830)
by 0x11F359: main (clvmd.c:562)
mutex 0x485d20 was first observed at:
at 0x4C38F63: pthread_mutex_lock_intercept (drd_pthread_intercepts.c:885)
by 0x4C38F63: pthread_mutex_lock (drd_pthread_intercepts.c:898)
by 0x11E920: debuglog (clvmd.c:254)
by 0x11F1D8: main (clvmd.c:527)
Switch from warn to log_error since this generated
failing return code for command so printing log_error()
is mandatory.
Happens with i.e. pvscan --cache meets crashing lvmetad.
Centralise editing of the client list into _add_client() and
_del_client(). Introduce _local_client_count to track the size of the
list for debugging purposes. Simplify and standardise the various ways
the list gets walked.
While processing one element of the list in main_loop(),
cleanup_zombie() may be called and remove a different element, so make
sure main_loop() refreshes its list state on return. Prior to this
patch, the list edits for clients disappearing could race against the
list edits for new clients connecting and corrupt the list and cause a
variety of segfaults.
An easy way to trigger such failures was by repeatedly running shell
commands such as:
lvs &; lvs &; lvs &;...;killall -9 lvs; lvs &; lvs &;...
Situations that occasionally lead to the failures can be spotted by
looking for 'EOF' with 'inprogress=1' in the clvmd debug logs.