IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Changes:
- BASH_SOURCE index was one off.
- The first line of stacktrace was pure confusion displaying executed
script together with innermost line number (which was either 125 when
STACKTRACE or 229 when skip was called.)
- We can safely ignore innermost call, as stack trace is always produced
by stacktrace function.
- It is safer to test for array length, instead of testing FUNCNAME is
main - if main function were introduced.
- Bashishm is safe to use as this function as a whole is relying on bash.
Use 1 logic for 2 loops tearing down left device.
First loops tries to remove all closed devices with 'normal' remove.
Second loop tries to replace those left devices with 'error' target.
We can't really sleep that much in teardown as it slows test too much.
So do a nested loop (similar to 'dmsetup remove_all') and keep
removing devices with open count == 0 as long as it works.
When we want to squash as much device as possible,
it's better to give it some delay, so devices have
some time to release it's resouces for next removal.
Also drop surrounding cookie processing and let each
dmsetup call run on its own.
Add missing get_devs.
When $7 is not given use empty string.
See if we can live with less RAM disk for PVs.
Drop limitation on single core as presence 1.12 should address this.
The checking order here has happend after TESTDIR was removed
resulting in weird further error on trap path.
Properly check for unexpected dmeventd before removing TESTDIR
since 'trap' codepath is still using it.
Also try to kill this unexpected dmeventd so testing is
not skipping all next dmeventd tests.
(Downside would be - if user would be accidentally starting
dmeventd by some regular system admin work - such dmeventd
might be killd if it's unused. It can't kill dmeventd in-use.
Fix mirror_images_on() to actually report something useful (thought
it might be tuned later).
So for now the function got through all '_mimages_' and compares
where the order of them is matching given list of devices.
Possible misspelling: FAILED_MIXED_STR may not be assigned, but FAIL_MIXED_STR is.
Possible misspelling: FAILED_MULTI_STR may not be assigned, but FAIL_MULTI_STR is.
Possible misspelling: FAILED_BLACK_STR may not be assigned, but FAIL_BLACK_STR is.
Correctly skip the test when lvmdbusd is found already running.
For pgrep usage we need to add '-f -l' options to get python3 name
printed.
Remove no longer used 'pids' local var.
lvm_run needs to place NULL as the last element into argv[].
Otherwise we get:
Conditional jump or move depends on uninitialised value(s)
_command_required_pos_matches (lvmcmdline.c:1443)
_find_command (lvmcmdline.c:1610)
lvm_run_command (lvmcmdline.c:2770)
lvm2_run (lvmcmdlib.c:91)
New tests to add checking for '100%' in-sync at start of "recover"
process (it shouldn't happen, but I've seen it before). Also,
check status over the whole cycle of various sync processes ("resync"
and "recover").
First test in this file checks whether 'aa' is ever spotted during
a "recover" operation (it should not be). More tests should follow
in this file to look for oddities in status output - especially as
it relates to the sync_ratio, dev_health, and sync_action fields.
For the test clean-up, I was providing too many devices to the first
command - possibly allowing it to allocate in the wrong place. I was
also not providing a device for the second command - virtually ensuring
the test was not performing correctly at times.
This patch ensures that under normal conditions (i.e. not during repair
operations) that users are prevented from removing devices that would
cause data loss.
When a RAID1 is undergoing its initial sync, it is ok to remove all but
one of the images because they have all existed since creation and
contain all the data written since the array was created. OTOH, if the
RAID1 was created as a result of an up-convert from linear, it is very
important not to let the user remove the primary image (the source of
all the data). They should be allowed to remove any devices they want
and as many as they want as long as one original (primary) device is left
during a "recover" (aka up-convert).
This fixes bug 1461187 and includes the necessary regression tests.
Two of the sync actions performed by the kernel (aka MD runtime) are
"resync" and "recover". The "resync" refers to when an entirely new array
is going through the process of initializing (or resynchronizing after an
unexpected shutdown). The "recover" is the process of initializing a new
member device to the array. So, a brand new array with all new devices
will undergo "resync". An array with replaced or added sub-LVs will undergo
"recover".
These two states are treated very differently when failures happen. If any
device is lost or replaced while "resync", there are no worries. This is
because any writes created from the inception of the array have occurred to
all the devices and can be safely recovered. Even though non-initialized
portions will still be resync'ed with uninitialized data, it is ok. However,
if a pre-existing device is lost (aka, the original linear device in a
linear -> raid1 convert) during a "recover", data loss can be the result.
Thus, writes are errored by the kernel and recovery is halted. The failed
device must be restored or removed. This is the correct behavior.
Unfortunately, we were treating an up-convert from linear as a "resync"
when we should have been treating it as a "recover". This patch
removes the special case for linear upconvert. It allows each new image
sub-LV to be marked with a rebuild flag and treats the array as 'in-sync'.
This has the correct effect of causing the upconvert to be treated as a
"recover" rather than a "resync". There is no need to flag these two states
differently in LVM metadata, because they are already considered differently
by the kernel RAID metadata. (Any activation/deactivation will properly
resume the "recover" process and not a "resync" process.)
We make this behavior change based on the presense of dm-raid target
version 1.9.0+.
Code path missed validation of lvcreate --cachepool argument.
If the non cache-pool LV was passed in, code has still continued
further work and failed later on internal error. Validate this
condition at right place now.
- Must reread all objects as PVs might be removed.
- Never consider testsuite provided PVs nested, or tearDown fails to
remove any outstanding VGs on them.