IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Metadata areas which are marked as ignored should not be scanned
and read during pvscan --cache. Otherwise, this can cause lvmetad
to cache out-of-date metadata in case other PVs with fresh metadata
are missing by chance.
Make this to work like in non-lvmetad case where the behaviour would
be the same as if the PV was orphan (in case we have no other PVs
with valid non-ignored metadata areas).
When lvm1 PVs are visible, and lvmetad is used, and the foreign
option was included in the reporting command, the reporting
command would fail after the 'pvscan all devs' function saw
the lvm1 PVs. There is no reason the command should fail
because of the lvm1 PVs; they should just be ignored.
We need to use proper filter chain when we disable lvmetad use
explicitly in the code by calling lvmetad_set_active(0) while
overriding existing configuration. We need to reinitialize filters
in this case so proper filter chain is used. The same applies
for the other way round - when we enable lvmetad use explicitly in
the code (though this is not yet used).
With this change, the filter chains used look like this now:
A) When *lvmetad is not used*:
- persistent filter -> regex filter -> sysfs filter ->
global regex filter -> type filter ->
usable device filter(FILTER_MODE_NO_LVMETAD) ->
mpath component filter -> partitioned filter ->
md component filter
B) When *lvmetad is used* (two separate filter chains):
- the lvmetad filter chain used when scanning devs for lvmetad update:
sysfs filter -> global regex filter -> type filter ->
usable device filter(FILTER_MODE_PRE_LVMETAD) ->
mpath component filter -> partitioned filter ->
md component filter
- the filter chain used for lvmetad responses:
persistent filter -> usable device filter(FILTER_MODE_POST_LVMETAD) ->
regex filter
We used to print an error message whenever we tried to deal with devices that
lvmetad knew about but were rejected by a client-side filter. Instead, we now
check whether the device is actually absent or only filtered out and only print
a warning in the latter case.
This prevents numerous VG refreshes on each "pvscan --cache -aay" call
if the VG is found complete. We need to issue the refresh only if the PV:
- is new
- was gone before and now it reappears (device "unplug/plug back" scenario)
- the metadata has changed
Test LVM_LVMETAD_PIDFILE for pid for lvm command.
Fix WHATS_NEW envvar name usage
Fix init order in prepare_lvmetad to respect set vars
and avoid clash with system settings.
Update test to really test the 'is running' message.
Introduce FMT_OBSOLETE to identify pool metadata and use it and FMT_MDAS
instead of hard-coded format names.
Explain device accesses on pvscan --cache man page.
If using lv/vgchange --sysinit -aay and lvmetad is enabled, we'd like to
avoid the direct activation and rely on autoactivation instead so
it fits system initialization scripts.
But if we're calling lv/vgchange --sysinit -aay too early when even
lvmetad service is not started yet, we just need to do the direct
activation instead without printing any error messages (while
trying to connect to lvmetad and not finding its socket).
This patch adds two helper functions - "lvmetad_socket_present" and
"lvmetad_used" which can be used to check for this condition properly
and avoid these lvmetad connections when the socket is not present
(and hence lvmetad is not yet running).
Fix and improve handling on sigint.
Always check for signal presence *before* calling of command,
so it will not call the command when break was hit.
If the command has been finished succesfully there is
no problem to mark the command ok and not report interrupt at all.
Fix cuple related stack; reports and assignments.
New tools with PV header extension support will read the extension
if it exists and it's not an error if it does not exist (so old PVs
will still work seamlessly with new tools).
Old tools without PV header extension support will just ignore any
extension.
As for the Embedding Area location information (its start and size),
there are actually two places where this is stored:
- PV header extension
- VG metadata
The VG metadata contains a copy of what's written in the PV header
extension about the Embedding Area location (NULL value is not copied):
physical_volumes {
pv0 {
id = "AkSSRf-difg-fCCZ-NjAN-qP49-1zzg-S0Fd4T"
device = "/dev/sda" # Hint only
status = ["ALLOCATABLE"]
flags = []
dev_size = 262144 # 128 Megabytes
pe_start = 67584
pe_count = 23 # 92 Megabytes
ea_start = 2048
ea_size = 65536 # 32 Megabytes
}
}
The new metadata fields are "ea_start" and "ea_size".
This is mostly useful when restoring the PV by using existing
metadata backups (e.g. pvcreate --restorefile ...).
New tools does not require these two fields to exist in VG metadata,
they're not compulsory. Therefore, reading old VG metadata which doesn't
contain any Embedding Area information will not end up with any kind
of error but only a debug message that the ea_start and ea_size values
were not found.
Old tools just ignore these extra fields in VG metadata.
Rename lvmetad_warning() to lvmetad_connect_or_warn().
Log all connection attempts on the client side, whether successful or not.
Reduce some nesting and remove a redundant assertion.
Calling pvscan --cache with -aay on a PV without an MDA would spuriously fail
with an internal error, because of an incorrect assumption that a parsed VG
structure was always available. This is not true and the autoactivation handler
needs to call vg_read to obtain metadata in cases where the PV had no MDAs to
parse. Therefore, we pass vgid into the handler instead of the (possibly NULL)
VG coming from the PV's MDA.