IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This uses the vg->pv_write_list in place of the
vg->pvs_to_write list, and eliminates the use of
pvcreate_params. The label remove and zeroing
steps are shifted out of vg_write() to the higher
level like pvcreate will do.
The backup_restore_vg is used directly for restoring the VG from backup.
It's also used to do the VG conversions from one metadata format to
another which means vgconvert calls backup_restore_vg too.
When restoring VG from backup, we need to rewrite/write PV headers as
PVs may have been orphans before and now they're becoming part of some
VG - we need to write the PV_EXT_USED flag at least.
When using the backup_restore_vg for vgconvert, we need to write
completely new PV header in different format.
Avoid the special "pv_write" call and handling that was used before
this patch in vgconvert (vgconvert_single function to be more precise)
and reuse existing internal interface to register PV header for writing
(or rewriting) via vg->pvs_to_write list instead like we do it elsewhere
in the code.
This patch also resolves a problem in which PV headers with target
format were written in the vgconvert_single fn as orphans and VG
metadata were added later on - this was a tiny hack actually.
We can't do this now - we need to write the PV as belonging
to a VG because otherwise the PV_EXT_USED flag won't be written
properly (if the PV header is written as orphan, the PV_EXT_USED
is set to 0, of course, even though metadata are attached later).
So this patch removes this tiny inconsistency which was passing
just fine before because we didn't have any relation to the VG
in PV header before. Now we have the PV_EXT_USED flag which says
the "PV is used in some VG".
Use process_each_vg() to lock and read the old VG,
and then call the main vgrename code.
When real VG names are used (not a UUID in place of the
old name), the command still pre-locks the new name
(when strcmp wants it locked first), before calling
process_each_vg on the old name.
In the case where the old name is replaced with a UUID,
process_each_vg now translates that UUID into the real
VG name, which it locks and reads. In this case, we
cannot do pre-locking to maintain lock ordering because
the old name is unknown. So, in this case the strcmp
based lock ordering is suppressed and the old name is
always locked first. This opens a remote chance for
lock ordering conflict between racing vgrenames between
two names where one or both commands use the UUID.
It's getting a bit more complex here.
Basic idea behind is - check_current_backup() should not
log error when a user is using a read-only filesystem,
so e.g. vgscan will not report any error when it tries
to take missing backup.
We still have cases when error could be reported though,
e.g. the backup this would be a symbolic link, but these
are rather misconfiguration and unexpected case.
We have to modes of 'archive()' usage -
1. compulsory - fail stops command and user may try '-An' option
to do a command.
2. non-compulsory - some fails in archiving are ignorable (i.e.
read-only filesystem where archive dir is located).
Those 2 cases needs to be properly handle - i.e. the non-compulsory
logging should not be tampering error logging message production.
So more work here is needed
When checking minimum mda size, make sure the mda_size after alignment
and calculation is more than 0 - if there's no place for an MDA at the
end of the disk, the _text_pv_add_metadata_area does not try to add it
there and it returns (because we already have the MDA at the start of
the disk at least).
Actually, we don't need extra condition as introduced in commit
00348c0a63. We should fix the last
condition:
(mdac->rlocn.size >= mdah->size)
...which should be:
(MDA_HEADER_SIZE + (rlocn ? rlocn->size : 0) + mdac->rlocn.size >= mdah->size))
Where the "mdac" is new metadata, the "rlocn" is old metadata.
So the main problem with the previous condition was that it
didn't count in MDA_HEADER_SIZE properly (and possible existing
metadata - the "rlocn"). This could have caused the error state
where metadata in ring buffer overlap to not be hit.
Replace the new condition introduced in 00348c0a63
with the improved one for the condition that existed there
already but it was just incomplete.
We're already checking whether old and new meta do not overlap in
ring buffer (as we need to keep both old and new meta during vg_write
up until vg_commit).
We also need to check whether the new metadata do not overlap
themselves in case we don't have old metadata yet (...because
we're in vgcreate). This could happen if we're creating a VG so
that the very first metadata written are long enough that it wraps
themselves in metadata ring buffer.
Although we limited the minimum metadata area size better with the
previous commit ccb8da404d which
makes the initial VG metadata overlap in ring buffer to be less
probable, the risk of hitting this overlap condition is still there
if we still manage to generate big enough metadata somehow.
For example, users can provide many and/or long VG tags during vgcreate
so that the VG metadata is long enough to start to wrap in the ring
buffer again...
Also, leave out the note about "circular buffer" which is
an internal imeplementation detail anyway and not quite
informational for users:
Before this patch:
$ vgcreate vg1 /dev/sda
VG vg1 metadata too large for circular buffer
Failed to write VG vg1.
With this patch applied:
$ vgcreate vg1 /dev/sda
VG vg1 metadata too large: size of metadata to write is 691 bytes while PV metadata area size on /dev/sda is 512 bytes.
Failed to write VG vg1.
When using lvm shell, some structures which are cached in memory may be
reused. This happens for the struct label (a part of lvmcache_info
structure) when lvmetad is used in which case the PV scan is not
done that would normally overwrite these label structures in memory
and making them up-to-date.
This is all consequence of the fact that struct lvmcache_info and
struct label are not always assigned in the same part of the code.
For example, if lvmetad *is not* used, parts of the struct label are
reassigned in label_read fn while struct lvmcache_info is created
elsewhere. No part of the code reused struct label (and its "dev"
field) before calling label_read fn. That's why the real bug is
hidden when using lvm shell without lvmetad.
However, with lvmetad and lvm shell, the situation is a bit different.
The label_read fn is not called if lvmetad *is* used, hence the
struct label may have ended up not initialized properly.
There was missing assignment for the dev field in struct label
in _text_pv_write fn which caused this problem to appear in
lvm shell with lvmetad, for example:
Before this patch:
lvm> pvcreate /dev/sda
Physical volume "/dev/sda" successfully created
lvm> pvs /dev/sda
PV VG Fmt Attr PSize PFree
unknown device lvm2 --- 128.00m 128.00m
With this patch applied:
lvm> pvcreate /dev/sda
Physical volume "/dev/sda" successfully created
lvm> pvs /dev/sda
PV VG Fmt Attr PSize PFree
/dev/sda lvm2 --- 128.00m 128.00m
Also, this problem had not appeared before changes introduced
by commits e1a63905d1 through
3a6f91d713 which, among other
things, added proper label field type reporting. Before, label
reporting was the same as using struct physical_volume which
has its own dev field assigned and so this problem was not exposed.
This reverts commit 70db1d523d.
Since we use 'strncpy' even for case where it exactly matches
the buffer size and \0 is not expected to be added there.
vgsummary information contains provisional VG information
that is obtained without holding the VG lock. This info
can be used to lock the VG, and then read it with vg_read().
After the VG is read properly, the vgsummary info should
be verified.
Add the VG lock_type to the vgsummary. It needs to be
known before the VG can be locked and read.
Use 64bit arithmentic for PV size calculation (Coverity).
Also remove sector shift for compared PV size, since all
values are already held in sectors.
This fixes validatio of PV size when restoring PV
from vg metadata backup file.
When performing initial allocation (so there is nothing yet to
cling to), use the list of tags in allocation/cling_tag_list to
partition the PVs. We implement this by maintaining a list of
tags that have been "used up" as we proceed and ignoring further
devices that have a tag on the list.
https://bugzilla.redhat.com/983600
pv_write is called both to write orphans and to rewrite PV headers
of PVs in VGs. It needs to select the correct VG id so that the
internal cache state gets updated correctly.
It only affected commands that involved further steps after
the pv_write and was often masked because the metadata would
be re-read off disk and correct itself.
"Incorrect metadata area header checksum" warnings appeared.
Example:
Create vg1 containing dev1, dev2 and dev3.
Hide dev1 and dev2 from the system.
Fix up vg1 with vgreduce --removemissing.
Bring back dev1 and dev2.
In a single operation reinstate dev1 and dev2 into vg1 (vgextend).
Done as separate operations (automatically fix-up dev1 and dev2 as orphans,
then vgextend) it worked, but done all in one go the internal cache got
corrupted and warnings about checksum errors appeared.
This avoids a problem in which we're using selection on LV list - we
need to do the selection on initial state and not on any intermediary
state as we process LVs one by one - some of the relations among LVs
can be gone during this processing.
For example, processing one LV can cause the other LVs to lose the
relation to this LV and hence they're not selectable anymore with
the original selection criteria as it would be if we did selection
on inital state. A perfect example is with thin snapshots:
$ lvs -o lv_name,origin,layout,role vg
LV Origin Layout Role
lvol1 thin,sparse public,origin,thinorigin,multithinorigin
lvol2 lvol1 thin,sparse public,snapshot,thinsnapshot
lvol3 lvol1 thin,sparse public,snapshot,thinsnapshot
pool thin,pool private
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
The lvremove command above was supposed to remove lvol1 as well as
all its snapshots which have origin=lvol1. It failed to do so, because
once we removed the origin lvol1, the lvol2 and lvol3 which were
snapshots before are not snapshots anymore - the relations change
as we're processing these LVs one by one.
If we do the selection first and then execute any concrete actions on
these LVs (which is what this patch does), the behaviour is correct
then - the selection is done on the *initial state*:
$ lvremove -ff -S 'lv_name=lvol1 || origin=lvol1'
Logical volume "lvol1" successfully removed
Logical volume "lvol2" successfully removed
Logical volume "lvol3" successfully removed
Similarly for all the other situations in which relations among
LVs are being changed by processing the LVs one by one.
This patch also introduces LV_REMOVED internal LV status flag
to mark removed LVs so they're not processed further when we
iterate over collected list of LVs to be processed.
Previously, when we iterated directly over vg->lvs list to
process the LVs, we relied on the fact that once the LV is removed,
it is also removed from the vg->lvs list we're iterating over.
But that was incorrect as we shouldn't remove LVs from the list
during one iteration while we're iterating over that exact list
(dm_list_iterate_items safe can handle only one removal at
one iteration anyway, so it can't be used here).
The code never mixes reads of committed and precommitted metadata,
so there's no need to attempt to set PRECOMMITTED when
*use_previous_vg is being set.