IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Changes:
- move device type registration out of "type filter" (filter.c)
to a separate and new dev-type.[ch] for common use throughout the code
- the structure for keeping the major numbers detected for available
device types and available partitioning available is stored in
"dev_types" structure now
- move common partitioning detection code to dev-type.[ch] as well
together with other device-related functions bound to dev_types
(see dev-type.h for the interface)
The dev-type interface contains all common functions used to detect
subsystems/device types, signature/superblock recognition code,
type-specific device properties and other common device properties
(bound to dev_types), including partitioning support.
- add dev_types instance to cmd context as cmd->dev_types for common use
- use cmd->dev_types throughout as a central point for providing
information about device types
Giving volume type information about being 'metadata' type of volume
has higher priority then i.e. 'mirror' or 'thin' flag - for those
type we have 'target attr' (7th. field).
The special suspend/resume code in lv_remove for LVM1 snapshots was interpsersed
with a vg_commit call. However, while with LVM1 metadata, vg_commit is
technically a no-op, the activation code relied on the ondisk and incore
metadata being the same, since on LVM1, a "commit" happens in vg_write
already. Since the "ondisk" metadata was previously not available with format1
(and incore was silently used instead, via lvmcache), the problem was masked.
This ties the two preceding changes together, actually using the "ondisk"
version of VG metadata instead of calling into lvmcache when activating
volumes. The cache hooks are still used as a fallback, because we don't have an
uncached scanning API yet.
Previously, we have relied on UUIDs alone, and on lvmcache to make getting a
"new copy" of VG metadata fast. If the code which triggers the activation has
the correct VG metadata at hand (the version which is currently on disk), it can
now hand it to the activation code directly.
This allows us to get the current on-disk version of the metadata whenever we
have the current in-flight version, without a recourse to scanning or lvmcache.
Last commit made dump filter only partially composable.
Add remaining functionality and also support composable wipe,
which is needed, when i.e. vgscan needs to remove cache.
(in release fix)
Add a generic dump operation to filters and make the composite filter call
through to its components. Previously, when global filter was set, the code
would treat the toplevel composite filter's private area as if it belonged a
persistent filter, trying to write nonsense into a non-sensical file.
Also deal with NULL cmd->filter gracefully.
This patch adds the ability to set the minimum and maximum I/O rate for
sync operations in RAID LVs. The options are available for 'lvcreate' and
'lvchange' and are as follows:
--minrecoveryrate <Rate> [bBsSkKmMgG]
--maxrecoveryrate <Rate> [bBsSkKmMgG]
The rate is specified in size/sec/device. If a suffix is not given,
kiB/sec/device is assumed. Setting the rate to 0 removes the preference.
There is no point in creation of 2chunks snapshot,
since the snapshot is invalidated immeditelly with the first write
as there is no free chunk for COW blocks
(2 chunks are used by the snap header and the 1st. metadata chunk).
Enhance error message about the lowest usable size.
Avoid hitting memory corruption (double free) in code path,
where PV FID has been already destroyed and the released pointer
was left in PV structure and could have been tried to be released
from there 2nd. time with final context destruction.
There are places where 'lv_is_active' was being used where it was
more correct to use 'lv_is_active_locally'. For example, when checking
for the existance of a kernel instance before asking for its status.
Most of the time these would work correctly. (RAID is only allowed on
non-clustered VGs at the moment, which means that 'lv_is_active' and
'lv_is_active_locally' would give the same result.) However, it is
more correct to use the proper variant and it helps with future
scenarios where targets might be allowed exclusively (or clustered) in
a cluster VG.
If calling _snap_target_present on 2nd and later call and for
a segment with MERGING flag set, we must return the status of
snapshot as well as snapshot-merge target presence, not just
the snapshot one.
This fixes a long standing regression since LVM2 2.02.74 (commit 4efb1d9c,
"Update heuristic used for default and detected data alignment.")
The default PE alignment could be used (via MAX()) even if it was
determined that the device's MD stripe width, or minimal_io_size or
optimal_io_size were not factors of the default PE alignment (either 64K
or the newer default of 1MB, etc). This bug would manifest if the
default PE alignment was larger than the overriding hint that the
device provided (e.g. default of 1MB vs optimal_io_size of 768K).
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
If the dm_realloc would fail, the already allocate _maps_buffer
memory would have been lost (overwritten with NULL).
Fix this by using temporary line buffer.
Also add a minor cleanup to set end of buffer to '\0',
only when we really know the file size fits the preallocated buffer.
Setting the cmd->default_settings.udev_fallback also requires DM
driver version check. However, this caused useless mapper/control
access with ioctl if not needed actually. For example if we're not
using activation code, we don't need to know the udev_fallback as
there's no node and symlink processing.
For example, this premature mapper/control access caused problems
when using lvm2app even when no activation happens - there are
situations in which we don't need to use mapper/control, but still
need some of the lvm2app functionality. This is also the case for
lvm2-activation systemd generator which just needs to look at the
lvm2 configuration, but it shouldn't touch mapper/control.
For reporting stacked or joined devices properly in cluster,
we need to report their activation state according the lock,
which activated this device tree.
This is getting a bit complex - current code tries simple approach -
For snapshot - return status for origin.
For thin pool - return status of the first known active thin volume.
For the rest of them - try to use dependency list of LVs and skip
known execptions. This should be able to recursively deduce top level
device for given LV.
(in release fix)
Add new lvs segment field 'Monitor' showing 3 states:
"monitored" - LV is monitored by dmeventd.
"not monitored" - LV is currently not being monitored by dmeventd
"" (empty) - LV does not support monitoring, or dmeventd support
is not compiled in.
Support for exclusive activation of snapshots revealed some problems.
When snapshot is created, COW LV is activated first (for clearing) and
then it's transformed into snapshot's COW LV, but it has left the lock
for such LV active in cluster and this lock could not have been removed
from dlm, unless snapshot has been removed within same dlm session.
If the user tried to remove snapshot after rebooting node, the lock was
missing, and COW LV could not have been detached.
Patch modifes the approach in this way:
Always deactivate COW LV for clustered vg after clearing (so it's
activated again via imlicit snapshot activation rule when snapshot is activated).
When snapshot is removed, activate COW LV as independend LV, so the lock
will exist for such LV, but only when the snapshot is active.
Also add test case for testing snapshot removal after cluster reboot.
Merging multiple config files together needs to know newest (highest)
timestamp of merged files. Persistent cache file is being used
only in case, the config file is older then .cache file.
Add verbose message when we will not obtain devices from udev
(i.e. testing is using different udev dir, and the log was
giving misleading info about using udev)
Add proper error message if zalloc from pull would have failed.
Fix typo obolete -> obsolete
Assign fid as the last step before returning VG.
Make the format reader for 'lvm1' and 'pool' equal to 'lvm2' format reader.
It has caused memory corruption to lvmetad as it later calls
destroy_instance() to allocated fid. This patch should fix problems
with crashing test lvmetad-lvm1.sh.
There is no need to strdup a key when inserting into
the hash table as the table allocates memory and copies
the string. This was causing memory to be lost.
'lvchange' is used to alter a RAID 1 logical volume's write-mostly and
write-behind characteristics. The '--writemostly' parameter takes a
PV as an argument with an optional trailing character to specify whether
to set ('y'), unset ('n'), or toggle ('t') the value. If no trailing
character is given, it will set the flag.
Synopsis:
lvchange [--writemostly <PV>:{t|y|n}] [--writebehind <count>] vg/lv
Example:
lvchange --writemostly /dev/sdb1:y --writebehind 512 vg/raid1_lv
The last character in the 'lv_attr' field is used to show whether a device
has the WriteMostly flag set. It is signified with a 'w'. If the device
has failed, the 'p'artial flag has priority.
Example ("nosync" raid1 with mismatch_cnt and writemostly):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg Rwi---r-m 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-w 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-- 1 linear 4.00m
Example (raid1 with mismatch_cnt, writemostly - but failed drive):
[~]# lvs -a --segment vg
LV VG Attr #Str Type SSize
raid1 vg rwi---r-p 2 raid1 500.00m
[raid1_rimage_0] vg Iwi---r-- 1 linear 500.00m
[raid1_rimage_1] vg Iwi---r-p 1 linear 500.00m
[raid1_rmeta_0] vg ewi---r-- 1 linear 4.00m
[raid1_rmeta_1] vg ewi---r-p 1 linear 4.00m
A new reportable field has been added for writebehind as well. If
write-behind has not been set or the LV is not RAID1, the field will
be blank.
Example (writebehind is set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r-- 512
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
Example (writebehind is not set):
[~]# lvs -a -o name,attr,writebehind vg
LV Attr WBehind
lv rwi-a-r--
[lv_rimage_0] iwi-aor-w
[lv_rimage_1] iwi-aor--
[lv_rmeta_0] ewi-aor--
[lv_rmeta_1] ewi-aor--
Commit 9fd7ac7d03 introduced a way a
method of avoiding reading from mirrors with a device failure. If
a device was found to be dead, the mapping table was checked for
'handle_errors' or 'block_on_error'. These strings were checked for
in the table string via 'strstr', which could also match on strings
like, 'no_handle_errors' or 'no_block_on_error'. No such strings
exist, but we don't want to have problems in the future if they do.
So, we check for ' <string>{'\0'|' '}'.
Revert commit 31c24dd9f2. This commit
was used to force a RAID device-mapper table to be loaded into the
kernel despite the fact that it was identical to the one already
loaded. The effect allowed a RAID array with a transiently failed
device to refresh and reintegrate the failed device. This operation
is better done in the kernel on a 'resume'. Since,
'lvchange --refresh' already performs a suspend/resume cycle, the
above commit is not needed once the kernel change is made. Reverting
the commit removes an unnecessary (at least for now) change to the
device-mapper interface.
New options to 'lvchange' allow users to scrub their RAID LVs.
Synopsis:
lvchange --syncaction {check|repair} vg/raid_lv
RAID scrubbing is the process of reading all the data and parity blocks in
an array and checking to see whether they are coherent. 'lvchange' can
now initaite the two scrubbing operations: "check" and "repair". "check"
will go over the array and recored the number of discrepancies but not
repair them. "repair" will correct the discrepancies as it finds them.
'lvchange --syncaction repair vg/raid_lv' is not to be confused with
'lvconvert --repair vg/raid_lv'. The former initiates a background
synchronization operation on the array, while the latter is designed to
repair/replace failed devices in a mirror or RAID logical volume.
Additional reporting has been added for 'lvs' to support the new
operations. Two new printable fields (which are not printed by
default) have been added: "syncaction" and "mismatches". These
can be accessed using the '-o' option to 'lvs', like:
lvs -o +syncaction,mismatches vg/lv
"syncaction" will print the current synchronization operation that the
RAID volume is performing. It can be one of the following:
- idle: All sync operations complete (doing nothing)
- resync: Initializing an array or recovering after a machine failure
- recover: Replacing a device in the array
- check: Looking for array inconsistencies
- repair: Looking for and repairing inconsistencies
The "mismatches" field with print the number of descrepancies found during
a check or repair operation.
The 'Cpy%Sync' field already available to 'lvs' will print the progress
of any of the above syncactions, including check and repair.
Finally, the lv_attr field has changed to accomadate the scrubbing operations
as well. The role of the 'p'artial character in the lv_attr report field
as expanded. "Partial" is really an indicator for the health of a
logical volume and it makes sense to extend this include other health
indicators as well, specifically:
'm'ismatches: Indicates that there are discrepancies in a RAID
LV. This character is shown after a scrubbing
operation has detected that portions of the RAID
are not coherent.
'r'efresh : Indicates that a device in a RAID array has suffered
a failure and the kernel regards it as failed -
even though LVM can read the device label and
considers the device to be ok. The LV should be
'r'efreshed to notify the kernel that the device is
now available, or the device should be 'r'eplaced
if it is suspected of failing.
I've updated the dm_status_raid structure and dm_get_status_raid()
function to make it handle the new kernel status fields that will
be coming in dm-raid v1.5.0. It is backwards compatible with the
old status line - initializing the new fields to '0'. The new
structure is also more amenable to future changes. It includes a
'reserved' field that is currently initialized to zero but could
be used to hold flags describing new features. It also now uses
pointers for the character strings instead of attempting to allocate
their space along with the structure (causing the size of the
structure to be variable). This allows future fields to be appended.
The new fields that are available are:
- sync_action : shows what the sync thread in the kernel is doing
(idle, frozen, resync, recover, check, repair, or
reshape)
- mismatch_count: shows the number of discrepancies which were
found or repaired by a "check" or "repair"
process, respectively.
...to not pollute the common and format-independent code in the
abstraction layer above.
The format1 pv_write has common code for writing metadata and
PV header by calling the "write_disks" fn and when rewriting
the header itself only (e.g. just for the purpose of changing
the PV UUID) during the pvchange operation, we had to tweak
this functionality for the format1 case and we had to assign
the PV the orphan state temporarily.
This patch removes the need for this format1 tweak and it calls
the write_disks with appropriate flag indicating whether this is
a PV write call or a VG write call, allowing for metatada update
for the latter one.
Also, a side effect of the former tweak was that it effectively
invalidated the cache (even for the non-format1 PVs) as we
assigned it the orphan state temporarily just for the format1
PV write to pass.
Also, that tweak made it difficult to directly detect whether
a PV was part of a VG or not because the state was incorrect.
Also, it's not necessary to backup and restore some PV fields
when doing a PV write:
orig_pe_size = pv_pe_size(pv);
orig_pe_start = pv_pe_start(pv);
orig_pe_count = pv_pe_count(pv);
...
pv_write(pv)
...
pv->pe_size = orig_pe_size;
pv->pe_start = orig_pe_start;
pv->pe_count = orig_pe_count;
...this is already done by the layer below itself (the _format1_pv_write fn).
So let's have this cleaned up so we don't need to be bothered
about any 'format1 special case for pv_write' anymore.
The pv_by_path might be also dangerous to use as it does not
count with any other metadata areas but the ones found on the PV
itself. If metadata was not found on the PV referenced by the path,
it returned no PV though it might have been referenced by metadata
elsewhere (on other PVs...).
If extending a VG and including a PV with 0 MDAs that was already
a part of a VG, the vgextend allowed that PV to be added and we
ended up *with one PV in two VGs*!
The vgextend code used the 'pv_by_path' fn that returned a PV for
a given path. However, when the PV did not have any metadata areas,
the fn just returned a PV without any reference to existing VG.
Consequently, any checks for the existing VG failed.
[0] raw/~ # pvcreate --metadatacopies 0 /dev/sda
Physical volume "/dev/sda" successfully created
[0] raw/~ # pvcreate --metadatacopies 1 /dev/sdb
Physical volume "/dev/sdb" successfully created
[0] raw/~ # vgcreate vg1 /dev/sda /dev/sdb
Volume group "vg1" successfully created
[0] raw/~ # pvcreate --metadatacopies 1 /dev/sdc
Physical volume "/dev/sdc" successfully created
[0] raw/~ # vgcreate vg2 /dev/sdc
Volume group "vg2" successfully created
Before this patch (incorrect):
[0] raw/~ # vgextend vg2 /dev/sda
Volume group "vg2" successfully extended
With this patch (correct):
[0] raw/~ # vgextend vg2 /dev/sda
Physical volume '/dev/sda' is already in volume group 'vg1'
Unable to add physical volume '/dev/sda' to volume group 'vg2'.
Before, the find_pv_by_name call always failed if the PV found was orphan.
However, we might use this function even for a PV that is not part of any VG.
This patch adds 'allow_orphan' arg to find_pv_by_name fn that allows that.
_find_pv_by_name -> find_pv_by_name
_find_pv_in_vg -> find_pv_in_vg
_find_pv_in_vg_by_uuid -> find_pv_in_vg_by_uuid
The only callers of the underscored variants were their wrappers
without the underscore. No other part of the code referenced the
underscored variants.
Keep the flag whether given thin pool argument has been given on command
line or it's been 'estimated'
Call of update_pool_params() must not change cmdline given args and
needs to know this info.
Since there is a need to move this update function into /lib, we cannot
use arg_count().
FIXME: we need some generic mechanism here.
Previous commit included changes to WHATSNEW, but the code changes
were missing. Here is the description from the previous commit:
commit bbc6378b73
Author: Jonathan Brassow <jbrassow@redhat.com>
Date: Thu Feb 21 11:31:36 2013 -0600
RAID: Make 'lvchange --refresh' restore transiently failed RAID PVs
A new function (dm_tree_node_force_identical_table_reload) was added to
avoid the suppression of identical table reloads. This allows RAID LVs
to reload the on-disk superblock information that contains which devices
have failed and the bitmaps. If the failed device has returned, this has
the effect of restoring the device and initiating recovery. Without this
patch, the user had to completely deactivate their RAID LV and re-activate
it in order to restore the failed device. Now they simply need to
suspend and resume (which is done by 'lvchange --refresh').
The identical table suppression is only avoided if the LV is not PARTAIL
(i.e. all of it's devices can be seen and read by LVM) and the kernel
status of the array contains failed devices. In other words, the function
will only be called in the case where we may have success in restoring
a failed device in the array.
lvm dumpconfig [--ignoreadvanced] [--ignoreunsupported]
--ignoreadvanced causes the advanced configuration options to be left
out on dumpconfig output
--ignoreunsupported causes the options that are not officially supported
to be lef out on dumpconfig output
This shows up in the output as a short commentary:
$ lvm dumpconfig --type default --withcomments metadata/disk_areas
# Configuration option metadata/disk_areas.
# This configuration option is advanced.
# This configuration option is not officially supported.
disk_areas=""
lvm dumpconfig [--withcomments] [--withversions]
The --withcomments causes the comments to appear on output before each
config node (if they were defined in config_settings.h).
The --withversions causes a one line extra comment to appear on output
before each config node with the version information in which the
configuration setting first appeared.
There's a possibility to interconnect the dm_config_node with an
ID, which in our case is used to reference the configuration
definition ID from config_settings.h. So simply interconnecting
struct dm_config_node with struct cfg_def_item.
This patch also adds support for enhanced config node output besides
existing "output line by line". This patch adds a possibility to
register a callback that gets called *before* the config node is
processed line by line (for example to include any headers on output)
and *after* the config node is processed line by line (to include any
footers on output). Also, it adds the config node reference itself
as the callback arg in addition to have a possibility to extract more
information from the config node itself if needed when processing the
output callback (e.g. the key name, the id, or whether this is a
section or a value etc...).
If the config node from lvm.conf/--config tree is recognized and valid,
it's always coupled with the config node definition ID from
config_settings.h:
struct dm_config_node {
int id;
const char *key;
struct dm_config_node *parent, *sib, *child;
struct dm_config_value *v;
}
For example if the dm_config_node *cn holds "devices/dev" configuration,
then the cn->id holds "devices_dev_CFG" ID from config_settings.h, -1 if
not found in config_settings.h and 0 if matching has not yet been done.
To support the enhanced config node output, a new structure has been
defined in libdevmapper to register it:
struct dm_config_node_out_spec {
dm_config_node_out_fn prefix_fn; /* called before processing config node lines */
dm_config_node_out_fn line_fn; /* called for each config node line */
dm_config_node_out_fn suffix_fn; /* called after processing config node lines */
};
Where dm_config_node_out_fn is:
typedef int (*dm_config_node_out_fn)(const struct dm_config_node *cn, const char *line, void *baton);
(so in comparison to existing callbacks for config node output, it has
an extra dm_config_node *cn arg in addition)
This patch also adds these functions to libdevmapper:
- dm_config_write_node_out
- dm_config_write_one_node_out
...which have exactly the same functionality as their counterparts
without the "out" suffix. The "*_out" functions adds the extra hooks
for enhanced config output (prefix_fn and suffix_fn mentioned above).
One can still use the old interface for config node output, this is
just an enhancement for those who'd like to modify the output more
extensively.
lvm dumpconfig [--type {current|default|missing|new}] [--atversion] [--validate]
This patch adds above-mentioned args to lvm dumpconfig and it maps them
to creation and writing out a configuration tree of a specific type
(see also previous commit):
- current maps to CFG_TYPE_CURRENT
- default maps to CFG_TYPE_DEFAULT
- missing maps to CFG_TYPE_MISSING
- new maps to CFG_TYPE_NEW
If --type is not defined, dumpconfig defaults to "--type current"
which is the original behaviour of dumpconfig before all these changes.
The --validate option just validates current configuration tree
(lvm.conf/--config) and it writes a simple status message:
"LVM configuration valid" or "LVM configuration invalid"
Configuration checking is initiated during config load/processing
(_process_config fn) which is part of the command context
creation/refresh.
This patch also defines 5 types of trees that could be created from
the configuration definition (config_settings.h), the cfg_def_tree_t:
- CFG_DEF_TREE_CURRENT that denotes a tree of all the configuration
nodes that are explicitly defined in lvm.conf/--config
- CFG_DEF_TREE_MISSING that denotes a tree of all missing
configuration nodes for which default valus are used since they're
not explicitly used in lvm.conf/--config
- CFG_DEF_TREE_DEFAULT that denotes a tree of all possible
configuration nodes with default values assigned, no matter what
the actual lvm.conf/--config is
- CFG_DEF_TREE_NEW that denotes a tree of all new configuration nodes
that appeared in given version
- CFG_DEF_TREE_COMPLETE that denotes a tree of the whole configuration
tree that is used in LVM2 (a combination of CFG_DEF_TREE_CURRENT +
CFG_DEF_TREE_MISSING). This is not implemented yet, it will be added
later...
The function that creates the definition tree of given type:
struct dm_config_tree *config_def_create_tree(struct config_def_tree_spec *spec);
Where the "spec" specifies the tree type to be created:
struct config_def_tree_spec {
cfg_def_tree_t type; /* tree type */
uint16_t version; /* tree at this LVM2 version */
int ignoreadvanced; /* do not include advanced configs */
int ignoreunsupported; /* do not include unsupported configs */
};
This tree can be passed to already existing functions that write
the tree on output (like we already do with cmd->cft).
There is a new lvm.conf section called "config" with two new options:
- config/checks which enables/disables checking (enabled by default)
- config/abort_on_errors which enables/disables aborts on any type of
mismatch found in the config (disabled by default)
Add support for configuration checking - type checking and recognition
of registered configuration settings that LVM2 understands and also
check the structure of the configuration. Log error on any mismatch
found.
A hash over all allowed configuration paths is created which helps
with matching the exact configuration (lvm.conf/--config tree) with
the configuration item definition from config_settings.h in an
efficient and one-step way.
Two more helper flags are introduced for each configuration definition
item:
- CFG_USED which marks the item as being used (lvm.conf/--config)
This helps with identifying missing configuration options
(and for which defaults were used) when traversing the tree later.
- CFG_VALID which denotes that the item has already been checked and
it was found valid. This improves performance, so if the check
is called once again on the same tree which was not reloaded, we
can just return the state from previous check (with a possibility
to force the check if needed).
The new function that config.h exports and which is going to be used
to perform the configuration checking is:
int config_def_check(struct cmd_context *cmd, int force, int skip, int suppress_messages)
...which is exported internally via config.h.
For example, the old call and reference:
find_config_tree_str(cmd, "devices/dir", DEFAULT_DEV_DIR)
...now becomes:
find_config_tree_str(cmd, devices_dir_CFG)
So we're referring to the named configuration ID instead
of passing the configuration path and the default value
is taken from central config definition in config_settings.h
automatically.
This patch adds basic structures that encapsulate the config_settings.h
content - it takes each item and puts it in structures:
- cfg_def_type_t to define config item type
- cfg_def_value_t to define config item (default) value
- flags used to define the nature and use of the config item:
- CFG_NAME_VARIABLE for items with variable names (e.g. tags)
- CFG_ALLOW_EMPTY for items where empty value is allowed
- CFG_ADVANCED for items which are considered as "advanced settings"
- CFG_UNSUPPORTED for items which are not officially supported
(config options mostly for internal use and testing/debugging)
- cfg_def_item_t to encapsulate the whole definition of the config
definition itself
Each config item is referenced by named ID, e.g. "devices_dir_CFG"
instead of directly typing the path "devices/dir" as it was before.
This patch also adds cfg_def_get_path helper function to get the
config setting path up to the root for given config ID
(it returns the path in form of "abc/def/.../xyz" where the "abc"
is the topmost element).
This file centrally defines all recognized LVM2 configuration
sections and settings. Each item here has its parent, set of
allowed types, default value, brief comment, version the setting
first appeared in and flags that further define the nature of
the configuration setting and its use.
Just to prevent accidental and improper use when reading the layout
from disk because of the already existing disk_areas_xl[0] lists
that are variable in size. We can read pv_header_extension only
after we know exactly where the lists end...
There are new reporting fields for Embedding Area: ea_start and ea_size.
An example of 1m Embedding Area and relevant reporting fields:
raw/~ # pvs -o pv_name,pe_start,ea_start,ea_size
PV 1st PE EA start EA size
/dev/sda 2.00m 1.00m 1.00m
The PV header extension information (PV header extension version, flags
and list of Embedding Area locations) is stored just beyond the PV header base.
When calculating the Embedding Area start value (ea_start), the same logic is
used as when calculating the pe_start value for Data Area - the value must
follow exactly the same alignment restrictions for its start value
(the alignment detected automatically or provided via command line using
the --dataalignment and --dataalignmentoffset arguments).
The Embedding Area is placed at the very start of the PV, starting at
ea_start. The Data Area starting at pe_start is placed next. The pe_start is
still properly aligned. Due to the pe_start alignment, it's possible that the
resulting Embedding Area size (ea_size) ends up bigger in size than requested
(but never less than requested).
New tools with PV header extension support will read the extension
if it exists and it's not an error if it does not exist (so old PVs
will still work seamlessly with new tools).
Old tools without PV header extension support will just ignore any
extension.
As for the Embedding Area location information (its start and size),
there are actually two places where this is stored:
- PV header extension
- VG metadata
The VG metadata contains a copy of what's written in the PV header
extension about the Embedding Area location (NULL value is not copied):
physical_volumes {
pv0 {
id = "AkSSRf-difg-fCCZ-NjAN-qP49-1zzg-S0Fd4T"
device = "/dev/sda" # Hint only
status = ["ALLOCATABLE"]
flags = []
dev_size = 262144 # 128 Megabytes
pe_start = 67584
pe_count = 23 # 92 Megabytes
ea_start = 2048
ea_size = 65536 # 32 Megabytes
}
}
The new metadata fields are "ea_start" and "ea_size".
This is mostly useful when restoring the PV by using existing
metadata backups (e.g. pvcreate --restorefile ...).
New tools does not require these two fields to exist in VG metadata,
they're not compulsory. Therefore, reading old VG metadata which doesn't
contain any Embedding Area information will not end up with any kind
of error but only a debug message that the ea_start and ea_size values
were not found.
Old tools just ignore these extra fields in VG metadata.
PV header extension comes just beyond the existing PV header base:
PV header base (existing):
- uuid
- device size
- null-terminated list of Data Areas
- null-terminater list of MetaData Areas
PV header extension:
- extension version
- flags
- null-terminated list of Embedding Areas
This patch also adds "eas" (Embedding Areas) list to lvmcache (lvmcache_info)
and it also adds support for common operations on the list (just like for
already existing "das" - Data Areas list):
- lvmcache_add_ea
- lvmcache_update_eas
- lvmcache_foreach_ea
- lvmcache_del_eas
Also, add ea_start and ea_size to struct physical_volume for processing
PV Embedding Area location throughout the code (currently only one
Embedding Area is supported, though the definition on disk allows for
more if needed in the future...).
Also, define FMT_EAS format flag to mark that the format actually
supports Embedding Areas (currently format-text only).
Extract restorable PV creation parameters from struct pvcreate_params into
a separate struct pvcreate_restorable_params for clarity and also for better
maintainability when adding any new items later.
Add basic support for converting LV into an external origin volume.
Syntax:
lvconvert --thinpool vg/pool --originname renamed_origin -T origin
It will convert volume 'origin' into a thin volume, which will
use 'renamed_origin' as an external read-only origin.
All read/write into origin will go via 'pool'.
renamed_origin volume is read-only volume, that could be activated
only in read-only mode, and cannot be modified.
Use the field 'origin' for reporting external origin lv name.
For thin volumes with external origin, report the size of
external origin size via:
lvs -o+origin_size
Reorder activation code to look similar for preload tree and
activation tree.
Its also give much better suppport for device stacking,
since now we also support activation of snapshot which might
be then used for other devices.
If zero metadata copies are used, there's no further recalculation of
PV alignment that happens when adding metadata areas to the PV and
which actually calculates the alignment correctly as a matter of fact.
So fix this for "PV without MDA" case as well.
Before this patch:
[1] raw/~ # pvcreate --dataalignment 8m --dataalignmentoffset 4m
--metadatacopies 1 /dev/sda
Physical volume "/dev/sda" successfully created
[1] raw/~ # pvs -o pv_name,pe_start
PV 1st PE
/dev/sda 12.00m
[1] raw/~ # pvcreate --dataalignment 8m --dataalignmentoffset 4m
--metadatacopies 0 /dev/sda
Physical volume "/dev/sda" successfully created
[1] raw/~ # pvs -o pv_name,pe_start
PV 1st PE
/dev/sda 8.00m
After this patch:
[1] raw/~ # pvcreate --dataalignment 8m --dataalignmentoffset 4m
--metadatacopies 1 /dev/sda
Physical volume "/dev/sda" successfully created
[1] raw/~ # pvs -o pv_name,pe_start
PV 1st PE
/dev/sda 12.00m
[1] raw/~ # pvcreate --dataalignment 8m --dataalignmentoffset 4m
--metadatacopies 0 /dev/sda
Physical volume "/dev/sda" successfully created
[1] raw/~ # pvs -o pv_name,pe_start
PV 1st PE
/dev/sda 12.00m
Also, remove a superfluous condition "pv->pe_start < pv->pe_align" in:
if (pe_start == PV_PE_START_CALC && pv->pe_start < pv->pe_align)
pv->pe_start = pv->pe_align ...
This part of the condition is not reachable as with the PV_PE_START_CALC,
we always have pv->pe_start set to 0 from the PV struct initialisation
(...the pv->pe_start value is just being calculated).
If '--mirrors/-m' and '--stripes/-i' are used together when creating
a logical volume, mirrors-over-stripes is currently chosen. The user
can override this by using the '--type raid10' option on creation.
However, we want a place where we can set the default behavior to
'raid10' explicitly - similar to the "mirror" and "raid1" tunable,
mirror_segtype_default.
A follow-on patch should use this new setting to change the default
from "mirror" to "raid10", as this is the preferred segment type.
When a device fails, we may wish to replace those segments with an
error segment. (Like when a 'vgreduce --removemissing' removes a
failed device that happens to be a RAID image/meta.) We are then left
with images that we will eventually want to remove or replace.
This patch allows us to pull out these virtual "error" sub-LVs. This
allows a user to 'lvconvert -m -1 vg/lv' to extract the bad sub-LVs.
Sub-LVs with error segments are considered for extraction before other
possible devices so that good devices are not accidentally removed.
This patch also adds the ability to replace RAID images that contain error
segments. The user will still be unable to run 'lvconvert --replace'
because there is no way to address the 'error' segment (i.e. no PV
that it is associated with). However, 'lvconvert --repair' can be
used to replace the image's error segment with a new PV. This is also
the most appropriate way to do it, since the LV will continue to be
reported as 'partial'.
Currently it is impossible to remove a failed PV which has a RAID LV
on it. This patch fixes the issue by replacing the failed PV with an
'error' segment within the affected sub-LVs. Once there is no longer
a RAID LV using the PV, it can be removed.
Most often, it is better to replace a failed RAID device with a spare.
(You can use 'lvconvert --repair <vg>/<LV>' to accomplish that.)
However, if there are no spares in the volume group and none will be
added, it is useful to be able to removed the failed device.
Following patches address the ability to perform 'lvconvert' operations
on RAID LVs that contain sub-LVs composed of 'error' segments.
We have been using 'mirror_region_size' in lvm.conf as the default region
size for RAID logical volumes as well as mirror logical volumes. Since,
"raid" is more inclusive and representative than "mirror", I have changed
the name of this setting. We must still check for the old setting and warn
the user if we are overriding it with the new setting if both happen to be
present.
This internal function check for active pool device.
For cluster it checks every thin volume,
On the non-clustered VG we need to check just
for presence of -tpool device.
There are currently a few issues with the reporting done on RAID LVs and
sub-LVs. The most concerning is that 'lvs' does not always report the
correct failure status of individual RAID sub-LVs (devices). This can
occur when a device fails and is restored after the failure has been
detected by the kernel. In this case, 'lvs' would report all devices are
fine because it can read the labels on each device just fine.
Example:
[root@bp-01 lvm2]# lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-- 100.00 lv_rimage_0(0),lv_rimage_1(0)
[lv_rimage_0] vg iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg iwi-aor-- /dev/sdb1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
However, 'dmsetup status' on the device tells us a different story:
[root@bp-01 lvm2]# dmsetup status vg-lv
0 1024000 raid raid1 2 DA 1024000/1024000
In this case, we must also be sure to check the RAID LVs kernel status
in order to get the proper information. Here is an example of the correct
output that is displayed after this patch is applied:
[root@bp-01 lvm2]# lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-p 100.00 lv_rimage_0(0),lv_rimage_1(0)
[lv_rimage_0] vg iwi-aor-p /dev/sda1(1)
[lv_rimage_1] vg iwi-aor-- /dev/sdb1(1)
[lv_rmeta_0] vg ewi-aor-p /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
The other case where 'lvs' gives incomplete or improper output is when a
device is replaced or added to a RAID LV. It should display that the RAID
LV is in the process of sync'ing and that the new device is the only one
that is not-in-sync - as indicated by a leading 'I' in the Attr column.
(Remember that 'i' indicates an (i)mage that is in-sync and 'I' indicates
an (I)mage that is not in sync.) Here's an example of the old incorrect
behaviour:
[root@bp-01 lvm2]# lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-- 100.00 lv_rimage_0(0),lv_rimage_1(0)
[lv_rimage_0] vg iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg iwi-aor-- /dev/sdb1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
[root@bp-01 lvm2]# lvconvert -m +1 vg/lv; lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-- 0.00 lv_rimage_0(0),lv_rimage_1(0),lv_rimage_2(0)
[lv_rimage_0] vg Iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg Iwi-aor-- /dev/sdb1(1)
[lv_rimage_2] vg Iwi-aor-- /dev/sdc1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
[lv_rmeta_2] vg ewi-aor-- /dev/sdc1(0) ** Note that all the images currently are marked as 'I' even though it is
only the last device that has been added that should be marked.
Here is an example of the correct output after this patch is applied:
[root@bp-01 lvm2]# lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-- 100.00 lv_rimage_0(0),lv_rimage_1(0)
[lv_rimage_0] vg iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg iwi-aor-- /dev/sdb1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
[root@bp-01 lvm2]# lvconvert -m +1 vg/lv; lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg rwi-a-r-- 0.00 lv_rimage_0(0),lv_rimage_1(0),lv_rimage_2(0)
[lv_rimage_0] vg iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg iwi-aor-- /dev/sdb1(1)
[lv_rimage_2] vg Iwi-aor-- /dev/sdc1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-- /dev/sdb1(0)
[lv_rmeta_2] vg ewi-aor-- /dev/sdc1(0)
** Note only the last image is marked with an 'I'. This is correct and we can
tell that it isn't the whole array that is sync'ing, but just the new
device.
It also works under snapshots...
[root@bp-01 lvm2]# lvs -a -o name,vg_name,attr,copy_percent,devices vg
LV VG Attr Cpy%Sync Devices
lv vg owi-a-r-p 33.47 lv_rimage_0(0),lv_rimage_1(0),lv_rimage_2(0)
[lv_rimage_0] vg iwi-aor-- /dev/sda1(1)
[lv_rimage_1] vg Iwi-aor-p /dev/sdb1(1)
[lv_rimage_2] vg Iwi-aor-- /dev/sdc1(1)
[lv_rmeta_0] vg ewi-aor-- /dev/sda1(0)
[lv_rmeta_1] vg ewi-aor-p /dev/sdb1(0)
[lv_rmeta_2] vg ewi-aor-- /dev/sdc1(0)
snap vg swi-a-s-- /dev/sda1(51201)