IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Use the recently added dump routines to produce the
old/traditional pvck output, and remove the code that
had been used for that.
The validation/checking done by the new routines means
that new lines prefixed with CHECK are printed for
incorrect values.
wipe_lv knows it's going to write the device, so it
can open rw from the start. It was opening readonly,
and then dev_write needed to reopen it readwrite.
When hints are invalid and ignored, the list of hints
could be non-empty (from additions before an invalid
hint was found). This confused the calling code which
was checking for an empty list to see if hints were used.
Ensure the list is empty when hints are not used.
This is the default bcache size that is created at the
start of the command. It needs to be large enough to
hold a single copy of metadata for a given VG, or the
VG cannot be read or written (since the entire VG would
not fit into available memory.)
Increasing the default reduces the chances of anyone
needing to increase the default to use their VG.
The size can be set in lvm.conf global/io_memory_size;
the lower limit is 4 MiB and the upper limit is 128 MiB.
When a single copy of metadata gets within 1MB of the
current io_memory_size value, begin printing a warning
that the io_memory_size should be increased.
which defines the amount of memory that lvm will allocate
for bcache. Increasing this setting is required if it is
smaller than a single copy of VG metadata.
Save the list of PVs in /run/lvm/hints. These hints
are used to reduce scanning in a number of commands
to only the PVs on the system, or only the PVs in a
requested VG (rather than all devices on the system.)
Ensure configure.h is always 1st. included header.
Maybe we could eventually introduce gcc -include option, but for now
this better uses dependency tracking.
Also move _REENTRANT and _GNU_SOURCE into configure.h so it
doesn't need to be present in various source files.
This ensures consistent compilation of headers like stdio.h since
it may produce different declaration.
io_setup() for aio may fail if a system has reached the
aio request limit. In this case, fall back to using
sync io. Also, lvm use of aio can be disabled entirely
with config setting global/use_aio=0.
The system limit for aio requests can be seen from
/proc/sys/fs/aio-max-nr
The current usage of aio requests can be seen from
/proc/sys/fs/aio-nr
The system limit for aio requests can be increased by
setting fs.aio-max-nr using sysctl.
Also add last-byte limit to the sync io code.
lvm uses a bcache block size of 128K. A bcache block
at the end of the metadata area will overlap the PEs
from which LVs are allocated. How much depends on
alignments. When lvm reads and writes one of these
bcache blocks to update VG metadata, it can also be
reading and writing PEs that belong to an LV.
If these overlapping PEs are being written to by the
LV user (e.g. filesystem) at the same time that lvm
is modifying VG metadata in the overlapping bcache
block, then the user's updates to the PEs can be lost.
This patch is a quick hack to prevent lvm from writing
past the end of the metadata area.
When vgcreate does an automatic pvcreate, it opens the
dev with O_EXCL to ensure no other subsystem is using
the device. This exclusive fd remained in bcache and
prevented activation parts of lvm from using the dev.
This appeared with vgcreate of a sanlock VG because of
the unique combination where the dev is not yet a PV,
so pvcreate is needed, and the vgcreate also creates
and activates an internal LV for sanlock.
Fix this by closing the exclusive fd after it's used
by pvcreate so that it won't interfere with other
bits of lvm that may try to use the device.
udev creates a train wreck of events if we open devices
with RDWR. Until we can fix/disable/scrap udev, work around
this by opening RDONLY and then closing/reopening RDWR when
a write is needed. This invalidates the bcache blocks for
the device before writing so it can trigger unnecessary
rereading.
The md filter can operate in two native modes:
- normal: reads only the start of each device
- full: reads both the start and end of each device
md 1.0 devices place the superblock at the end of the device,
so components of this version will only be identified and
excluded when lvm uses the full md filter.
Previously, the full md filter was only used in commands
that could write to the device. Now, the full md filter
is also applied when there is an md 1.0 device present
on the system. This means the 'pvs' command can avoid
displaying md 1.0 components (at the cost of doubling
the i/o to every device on the system.)
(The md filter can operate in a third mode, using udev,
but this is disabled by default because there have been
problems with reliability of the info returned from udev.)
Remove the io error message from bcache.c since it is not
very useful without the device path.
Make the io error messages from dev_read_bytes/dev_write_bytes
more user friendly.
As we start refactoring the code to break dependencies (see doc/refactoring.txt),
I want us to use full paths in the includes (eg, #include "base/data-struct/list.h").
This makes it more obvious when we're breaking abstraction boundaries, eg, including a file in
metadata/ from base/
with the --labelsector option. We probably don't
need all this code to support any value for this
option; it's unclear how, when, why it would be
used.
Filters are still applied before any device reading or
the label scan, but any filter checks that want to read
the device are skipped and the device is flagged.
After bcache is populated, but before lvm looks for
devices (i.e. before label scan), the filters are
reapplied to the devices that were flagged above.
The filters will then find the data they need in
bcache.
Don't allow writes in test mode. test mode should be
more sophisticated than just faking writes, and this
should be a last defense for cases where test mode is
not being checked correctly.