IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
This fixes a problem in commit e6bb780d24, in which the
back compat handling for the old locking_type=4 was
incorrectly translated to mean the same thing as --readonly,
which prevented activation because activation uses an
exclusive vg lock. Previously, locking_type=4 allowed
activation.
If we see locking_type 4 in an old config, translate it to
the new combination of --readonly and --sysinit, which we
now define to mean the --readonly behavior with an exception
to allow activation.
When vgcreate does an automatic pvcreate, it opens the
dev with O_EXCL to ensure no other subsystem is using
the device. This exclusive fd remained in bcache and
prevented activation parts of lvm from using the dev.
This appeared with vgcreate of a sanlock VG because of
the unique combination where the dev is not yet a PV,
so pvcreate is needed, and the vgcreate also creates
and activates an internal LV for sanlock.
Fix this by closing the exclusive fd after it's used
by pvcreate so that it won't interfere with other
bits of lvm that may try to use the device.
Conversions of LVs under snapshot to thinpool or cachepool
correctly fail but leave them inactive and provide cryptic
error messages like 'Internal error: #LVs (10) != #visible
LVs (2) + #snapshots (1) + #internal LVs (5) in VG VG'.
Reject and provide better error message.
Resolves: rhbz1514146
The 'lvconvert LV' command def has caused multiple problems
for command matching because it matches the required options
of any lvconvert command. Any lvconvert with incorrect options
ends up matching 'lvconvert LV', which then produces an error
about incorrect options being used for 'lvconvert LV'. This
prevents suggestions from nearest-command partial command matches.
Add a special case for 'lvconvert LV' so that it won't be used
as a partial match for a command that has options specified.
Native disk scanning is now both reduced and
async/parallel, which makes it comparable in
performance (and often faster) when compared
to lvm using lvmetad.
Autoactivation now uses local temp files to record
online PVs, and no longer requires lvmetad.
There should be no apparent command-level change
in behavior.
When lvmetad is not used, use temporary files to record
which PVs have appeared. Use these temp files to determine
when a VG is complete, to trigger autoactivation.
This change allows us to remove lvmetad while keeping the
same autoactivation behavior that lvmetad provides.
The temp files are created in /run/lvm/pvs_online/ and are
named for the PVID of the PV. The files contain the
major:minor of the device the PV was read from.
e.g. if VG foo has dev1 and dev2, then:
. pvscan --cache -aay dev1
reads vg metadata from dev1
creates /run/lvm/pvs_online/<pvid-of-dev1>
checks if all vg->pvs are online: no
. pvscan --cache -aay dev2
reads vg metadata from dev2
creates /run/lvm/pvs_online/<pvid-of-dev2>
checks if all vg->pvs are online: yes
autoactivates vg
A 'pvscan --cache dev' (without -aay) still records that
dev is online.
A 'pvscan --cache --major X --minor Y' after a device is
gone will remove the temp file for it.
A 'pvscan --cache [-aay]' (no devs) resets the state of
temp files by removing them all, then scanning all devs
and creating temp files for PVs that are found.
If no online files exist, the first pvscan --cache scans
all devs and creates temp files for any PVs found.
The scope of the temp files is only pvscan, and they are only
used for pvscan-based autoactivation. No other commands are
concerned with or aware of these temp files. When lvm creates
or removes PVs, no attempt is made to update the temp files.
Support vgchange usage with VDO segtype.
Also changing extent size need small update for vdo virtual extent.
TODO: API needs enhancements so it's not about adding ifs() everywhere.
It's no longer needed. Clustered VGs are now handled in
the same way as foreign VGs, and as shared VGs that
can't be accessed:
- A command processing all VGs sees a clustered VG,
prints a message ("Skipping clustered VG foo."),
skips it, and does not fail.
- A command where the clustered VG is explicitly
named on the command line, prints a message and fails.
"Cannot access clustered VG foo, see lvmlockd(8)."
The option is listed in the set of ignored options for
the commands that previously accepted it. (Removing it
entirely would cause commands/scripts to fail if they
set it.)
Shuffle code for better readability as set of conditions was
hard to follow.
Make it obvious the refresh & activate path is handling
monitoring and polling on its own.
So the only --monitor and --poll option needs explicit care.
Option --monitor without option --poll will now as a result
of this patch NOT start polling.
So command: vgchange --monitor n is no longer a polling starter.
Restoring polling for activated volumes lost with my recent commit:
75fed05d3e and move start of polling
directly into _activate_lvs_in_vg() - as there we know exactly
if there was some volume even activated.
Also make it sharing same code for pvscan -aay.
The previous method for forcibly changing a clustered VG
to a local VG involved using -cn and locking_type 0.
Since those options are deprecated, replace it with
the same command used for other forced lock type changes:
vgchange --locktype none --lockopt force.
vgreduce, vgremove and vgcfgrestore were acquiring
the orphan lock in the midst of command processing
instead of at the start of the command. (The orphan
lock moved to being acquired at the start of the
command back when pvcreate/vgcreate/vgextend were
reworked based on pvcreate_each_device.)
vgsplit also needed a small update to avoid reacquiring
a VG lock that it already held (for the new VG name).
A few places were calling a function to check if a
VG lock was held. The only place it was actually
needed is for pvcreate which wants to do its own
locking (and scanning) around process_each_pv.
The locking/scanning exceptions for pvcreate in
process_each_pv/vg_read can be enabled by just passing
a couple of flags instead of checking if the VG is
already locked. This also means that these special
cases won't be enabled unknowingly in other places
where they shouldn't be used.
The last commit related to this was incomplete:
"Implement lock-override options without locking type"
This is further reworking and reduction of the locking.[ch]
layer which handled all clustering, but is now only used
for file locking. The "locking types" that this layer
implemented were removed previously, leaving only the
standard file locking. (Some cluster-related artifacts
remain to be cleared out later.)
Command options to override or modify locking behavior
are reimplemented here without using the locking types.
Also, deprecated locking_type values are recognized,
and implemented as if one of the equivalent override
options was set.
Options that override file locking are:
. --nolocking disables all file locking.
. --readonly grants read lock requests without actually
taking a file lock, and refuses write lock requests.
. --ignorelockingfailure tries to set up file locks and
uses them normally if possible. When not possible, it
behaves like --readonly, but allows activation.
. --sysinit is the same as ignorelockingfailure.
. global/metadata_read_only acquires actual read file
locks, and refuses write lock requests.
(Some of these options could probably be deprecated
because they were added as workarounds to various
locking_type behaviors that are now deprecated.)
The locking_type setting now has one valid value: 1 which
refers to standard file locking. Configs that contain
deprecated values are recognized and still work in
largely the same way:
. 0 disabled all locking, now implemented like --nolocking
is set. Allow the nolocking option in all commands.
. 1 is the normal file locking setting and is unchanged.
. 2 was for external locking which was not used, and
reverts to normal file locking.
. 3 was for cluster/clvm. This reverts to normal file
locking, and prints messages about lvmlockd.
. 4 was equivalent to readonly, now implemented like
--readonly is set.
. 5 disabled all locking, now implemented like
--nolocking is set.
The options: --nolocking, --readonly, --sysinit
override, or make exceptions to, the normal file locking
behavior. Implement these by just checking for the
options in the file locking path instead of using
special locking types.
Make activation commands:
vgchange -ay, lvchange -ay, pvscan -aay
take an exclusive file lock on the VG to serialize
multiple concurrent activation commands which could
otherwise interfere with each other.
Four commands lock two VGs at a time:
- vgsplit and vgmerge already have their own logic to
acquire the locks in the correct order.
- vgimportclone and vgrename disable this ordering check.
Different flavors of activate_lv() and lv_is_active()
which are meaningful in a clustered VG can be eliminated
and replaced with whatever that flavor already falls back
to in a local VG.
e.g. lv_is_active_exclusive_locally() is distinct from
lv_is_active() in a clustered VG, but in a local VG they
are equivalent. So, all instances of the variant are
replaced with the basic local equivalent.
For local VGs, the same behavior remains as before.
For shared VGs, lvmlockd was written with the explicit
requirement of local behavior from these functions
(lvmlockd requires locking_type 1), so the behavior
in shared VGs also remains the same.
"lvconvert --type {linear|striped|raid*} ..." on a striped/linear
LV provides convenience interim type to convert to the requested
final layout similar to the given raid* <-> raid* conveninece types.
Whilst on it, add missing raid5_n convenince type from raid5* to raid10.
Resolves: rhbz1439925
Resolves: rhbz1447809
Resolves: rhbz1573255
In this command, lvcreate creates a new LV and then combines
it with an existing cache pool, producing a cache LV. This
command was previously not allowed in in a shared VG.
When the lvmlockd lock is shared, upgrade it to ex
when repair (writing) is needed during vg_read.
Pass the lockd state through additional read-related
functions so the instances of repair scattered through
vg_read can be handled.
(Temporary solution until the ad hoc repairs can be
pulled out of vg_read into a top level, centralized
repair function.)
The report uses process_each_vg() which populates lvmcache
based on a VG list from lvmetad. If there are no VGs,
but only orphan PVs, the orphans are not shown. Add an
explicit call to populate lvmcache with PV info from lvmetad.
The device-mapper directory now holds a copy of libdm source. At
the moment this code is identical to libdm. Over time code will
migrate out to appropriate places (see doc/refactoring.txt).
The libdm directory still exists, and contains the source for the
libdevmapper shared library, which we will continue to ship (though
not neccessarily update).
All code using libdm should now use the version in device-mapper.
As we start refactoring the code to break dependencies (see doc/refactoring.txt),
I want us to use full paths in the includes (eg, #include "base/data-struct/list.h").
This makes it more obvious when we're breaking abstraction boundaries, eg, including a file in
metadata/ from base/
ATM it's a bit ugly to enforce flushing of 'stdio' here, but works as quick
hot-fix.
log_print*() is using buffered I/O.
But for pooling with typical 1s interval this may take a while before
buffer about continues progress gets flushed.
So ATM fflush().
TODO: either add log_print*_with_flush() or maybe directly use just
line buffering with log_print() and only log_debug() keep using buffered
I/O mode.
with the --labelsector option. We probably don't
need all this code to support any value for this
option; it's unclear how, when, why it would be
used.
Filters are still applied before any device reading or
the label scan, but any filter checks that want to read
the device are skipped and the device is flagged.
After bcache is populated, but before lvm looks for
devices (i.e. before label scan), the filters are
reapplied to the devices that were flagged above.
The filters will then find the data they need in
bcache.
The clvmd saved_vg data is independent from the normal lvm
lvmcache vginfo data, so separate saved_vg from vginfo.
Normal lvm doesn't need to use save_vg at all, and in clvmd,
lvmcache changes on vginfo can be made without worrying
about unwanted effects on saved_vg.
I don't like having this in a common header because it means you end
up including too much and causing unneccessary dependencies. eg,
lib/misc/lib.h includes libdevmapper.h, internationalisation, and
logging stuff.
There are likely more bits of code that can be removed,
e.g. lvm1/pool-specific bits of code that were identified
using FMT flags.
The vgconvert command can likely be reduced further.
The lvm1-specific config settings should probably have
some other fields set for proper deprecation.
Shift refresh of mirror table right into monitor_dev_for_events().
Use !vg_write_lock_held() to recognize use of lvchange/vgchange.
(this shall change if this would no longer work, but requires
futher some API changes).
With this patch dm mirror table is only refreshed when necassary.
Also update WARNING message about mirror usage without monitoring
and display LV name.
When pvmove was run in background mode and forks
instead of using lvmpolld, the child pvmove process
was not clearing the bcache from the parent, so all
the aio ops in the child were failing.
For reporting commands (pvs,vgs,lvs,pvdisplay,vgdisplay,lvdisplay)
we do not need to repeat the label scan of devices in vg_read if
they all had matching metadata in the initial label scan. The
data read by label scan can just be reused for the vg_read.
This cuts the amount of device i/o in half, from two reads of
each device to one. We have to be careful to avoid repairing
the VG if we've skipped rescanning. (The VG repair code is very
poor, and will be redone soon.)
Recent changes allow some major simplification of the way
lvmcache works and is used. lvmcache_label_scan is now
called in a controlled fashion at the start of commands,
and not via various unpredictable side effects. Remove
various calls to it from other places. lvmcache_label_scan
should not be called from anywhere during a command, because
it produces an incorrect representation of PVs with no MDAs,
and misclassifies them as orphans. This has been a long
standing problem. The invalid flag and rescanning based on
that is no longer used and removed. The 'force' variation is
no longer needed and removed.
When a PV is stacked on an LV, the LV will be kept in
bcache, and the open fd on the LV may interfere with
processing the LV. So, drop/close a bcache fd for
an LV before processing the LV.
Create a new dev->bcache_fd that the scanning code owns
and is in charge of opening/closing. This prevents other
parts of lvm code (which do various open/close) from
interfering with the bcache fd. A number of dev_open
and dev_close are removed from the reading path since
the read path now uses the bcache.
With that in place, open(O_EXCL) for pvcreate/pvremove
can then be fixed. That wouldn't work previously because
of other open fds.
In the same way as the other process_each functions.
In the common case all the info that's needed can be
used from lvmcache after a label scan. But this means
that unchosen devs for duplicate PVs need to be handled
explicitly.