IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
There are likely more bits of code that can be removed,
e.g. lvm1/pool-specific bits of code that were identified
using FMT flags.
The vgconvert command can likely be reduced further.
The lvm1-specific config settings should probably have
some other fields set for proper deprecation.
For reporting commands (pvs,vgs,lvs,pvdisplay,vgdisplay,lvdisplay)
we do not need to repeat the label scan of devices in vg_read if
they all had matching metadata in the initial label scan. The
data read by label scan can just be reused for the vg_read.
This cuts the amount of device i/o in half, from two reads of
each device to one. We have to be careful to avoid repairing
the VG if we've skipped rescanning. (The VG repair code is very
poor, and will be redone soon.)
The copy of VG metadata stored in lvmcache was not being used
in general. It pretended to be a generic VG metadata cache,
but was not being used except for clvmd activation. There
it was used to avoid reading from disk while devices were
suspended, i.e. in resume.
This removes the code that attempted to make this look
like a generic metadata cache, and replaces with with
something narrowly targetted to what it's actually used for.
This is a way of passing the VG from suspend to resume in
clvmd. Since in the case of clvmd one caller can't simply
pass the same VG to both suspend and resume, suspend needs
to stash the VG somewhere that resume can grab it from.
(resume doesn't want to read it from disk since devices
are suspended.) The lvmcache vginfo struct is used as a
convenient place to stash the VG to pass it from suspend
to resume, even though it isn't related to the lvmcache
or vginfo. These suspended_vg* vginfo fields should
not be used or touched anywhere else, they are only to
be used for passing the VG data from suspend to resume
in clvmd. The VG data being passed between suspend and
resume is never modified, and will only exist in the
brief period between suspend and resume in clvmd.
suspend has both old (current) and new (precommitted)
copies of the VG metadata. It stashes both of these in
the vginfo prior to suspending devices. When vg_commit
is successful, it sets a flag in vginfo as before,
signaling the transition from old to new metadata.
resume grabs the VG stashed by suspend. If the vg_commit
happened, it grabs the new VG, and if the vg_commit didn't
happen it grabs the old VG. The VG is then used to resume
LVs.
This isolates clvmd-specific code and usage from the
normal lvm vg_read code, making the code simpler and
the behavior easier to verify.
Sequence of operations:
- lv_suspend() has both vg_old and vg_new
and stashes a copy of each onto the vginfo:
lvmcache_save_suspended_vg(vg_old);
lvmcache_save_suspended_vg(vg_new);
- vg_commit() happens, which causes all clvmd
instances to call lvmcache_commit_metadata(vg).
A flag is set in the vginfo indicating the
transition from the old to new VG:
vginfo->suspended_vg_committed = 1;
- lv_resume() needs either vg_old or vg_new
to use in resuming LVs. It doesn't want to
read the VG from disk since devices are
suspended, so it gets the VG stashed by
lv_suspend:
vg = lvmcache_get_suspended_vg(vgid);
If the vg_commit did not happen, suspended_vg_committed
will not be set, and in this case, lvmcache_get_suspended_vg()
will return the old VG instead of the new VG, and it will
resume LVs based on the old metadata.
New label_scan function populates bcache for each device
on the system.
The two read paths are updated to get data from bcache.
The bcache is not yet used for writing. bcache blocks
for a device are invalidated when the device is written.
When user configured lvm2 to NOT user monitoring, activated mirror
actually hang upon error and it's quite unusable moment.
So instead Warn those 'brave' non-monitoring users about possible
problem and activation mirror without blocking error handling.
This also makes it a bit simpler for test suite to handle trouble
cases when test is running without dmeventd.
Occasionaly users may need to peek into 'component devices.
Normally lvm2 does not let users activation component.
This patch adds special mode where user can activate
component LV in a 'read-only' mode i.e.:
lvchange -ay vg/pool_tdata
All devices can be deactivated with:
lvchange -an vg | vgchange -an....
With pthreaded daemons like 'dmeventd' using liblvm via plugin,
lvm2 actually should not 'play' with streams at all - as there
could be parallel outputs running.
As a current quick workaround just disable change for pthreaded
program (gettid() != getpid()).
TODO: it's possible the change of buffering actually doesn't serve us
any measurable benefit and could be dropped as whole later...
Meanwhile this patch is fixing this occasional valgrind race report:
Invalid read of size 4
at 0x571892C: vfprintf (in /usr/lib64/libc-2.26.9000.so)
by 0x57216B3: fprintf (in /usr/lib64/libc-2.26.9000.so)
by 0x5042886: dm_event_log (libdevmapper-event.c:925)
by 0x10B015: _dmeventd_log (dmeventd.c:125)
by 0x10D289: _unregister_for_event (dmeventd.c:1146)
by 0x10E52E: _handle_request (dmeventd.c:1583)
by 0x10E6D7: _do_process_request (dmeventd.c:1631)
by 0x10E7C6: _process_request (dmeventd.c:1660)
by 0x1101A4: main (dmeventd.c:2285)
Address 0x6264d30 is 192 bytes inside a block of size 552 free'd
at 0x4C2ED68: free (vg_replace_malloc.c:530)
by 0x573907D: fclose@@GLIBC_2.2.5 (in /usr/lib64/libc-2.26.9000.so)
by 0x6AC5C00: reopen_standard_stream (log.c:189)
by 0x6A8E62C: destroy_toolcontext (toolcontext.c:2271)
by 0x6BA5C22: lvm_fin (lvmcmdline.c:3339)
by 0x6BD5EF3: lvm2_exit (lvmcmdlib.c:123)
by 0x6856013: dmeventd_lvm2_exit (dmeventd_lvm.c:103)
by 0x66535B8: unregister_device (dmeventd_thin.c:432)
by 0x10CBBC: _do_unregister_device (dmeventd.c:926)
by 0x10CD74: _monitor_unregister (dmeventd.c:979)
by 0x10D094: _monitor_thread (dmeventd.c:1066)
by 0x54B35E0: start_thread (in /usr/lib64/libpthread-2.26.9000.so)
by 0x57C30EE: clone (in /usr/lib64/libc-2.26.9000.so)
Block was alloc'd at
at 0x4C2DBBB: malloc (vg_replace_malloc.c:299)
by 0x573932B: fdopen@@GLIBC_2.2.5 (in /usr/lib64/libc-2.26.9000.so)
by 0x6AC5DC2: reopen_standard_stream (log.c:200)
by 0x6A8D11D: create_toolcontext (toolcontext.c:1898)
by 0x6BA5B6B: init_lvm (lvmcmdline.c:3319)
by 0x6BD5BC8: cmdlib_lvm2_init (lvmcmdlib.c:34)
by 0x6BD5F04: lvm2_init (lvm2cmd.c:20)
by 0x6855EA7: dmeventd_lvm2_init (dmeventd_lvm.c:67)
by 0x665305F: register_device (dmeventd_thin.c:352)
by 0x10CB7A: _do_register_device (dmeventd.c:916)
by 0x10CEE4: _monitor_thread (dmeventd.c:1006)
by 0x54B35E0: start_thread (in /usr/lib64/libpthread-2.26.9000.so)
by 0x57C30EE: clone (in /usr/lib64/libc-2.26.9000.so)
....
Process terminating with default action of signal 6 (SIGABRT): dumping core
at 0x570016B: raise (in /usr/lib64/libc-2.26.9000.so)
by 0x5701520: abort (in /usr/lib64/libc-2.26.9000.so)
by 0x57437D8: __libc_message (in /usr/lib64/libc-2.26.9000.so)
by 0x5743831: __libc_fatal (in /usr/lib64/libc-2.26.9000.so)
by 0x5744056: _IO_vtable_check (in /usr/lib64/libc-2.26.9000.so)
by 0x574751C: __overflow (in /usr/lib64/libc-2.26.9000.so)
by 0x574191A: fputc (in /usr/lib64/libc-2.26.9000.so)
by 0x50428E3: dm_event_log (libdevmapper-event.c:934)
by 0x10B015: _dmeventd_log (dmeventd.c:125)
by 0x10D289: _unregister_for_event (dmeventd.c:1146)
by 0x10E52E: _handle_request (dmeventd.c:1583)
by 0x10E6D7: _do_process_request (dmeventd.c:1631)
by 0x10E7C6: _process_request (dmeventd.c:1660)
by 0x1101A4: main (dmeventd.c:2285)
Change run time access to the command_name struct
cmd->cname instead of indirectly through
cmd->command->cname. This removes the two run time
fields from struct command.
. Define a prototype for every lvm command.
. Match every user command with one definition.
. Generate help text and man pages from them.
The new file command-lines.in defines a prototype for every
unique lvm command. A unique lvm command is a unique
combination of: command name + required option args +
required positional args. Each of these prototypes also
includes the optional option args and optional positional
args that the command will accept, a description, and a
unique string ID for the definition. Any valid command
will match one of the prototypes.
Here's an example of the lvresize command definitions from
command-lines.in, there are three unique lvresize commands:
lvresize --size SizeMB LV
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync, --reportformat String, --resizefs,
--stripes Number, --stripesize SizeKB, --poolmetadatasize SizeMB
OP: PV ...
ID: lvresize_by_size
DESC: Resize an LV by a specified size.
lvresize LV PV ...
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --resizefs, --stripes Number, --stripesize SizeKB
ID: lvresize_by_pv
DESC: Resize an LV by specified PV extents.
FLAGS: SECONDARY_SYNTAX
lvresize --poolmetadatasize SizeMB LV_thinpool
OO: --alloc Alloc, --autobackup Bool, --force,
--nofsck, --nosync, --noudevsync,
--reportformat String, --stripes Number, --stripesize SizeKB
OP: PV ...
ID: lvresize_pool_metadata_by_size
DESC: Resize a pool metadata SubLV by a specified size.
The three commands have separate definitions because they have
different required parameters. Required parameters are specified
on the first line of the definition. Optional options are
listed after OO, and optional positional args are listed after OP.
This data is used to generate corresponding command definition
structures for lvm in command-lines.h. usage/help output is also
auto generated, so it is always in sync with the definitions.
Every user-entered command is compared against the set of
command structures, and matched with one. An error is
reported if an entered command does not have the required
parameters for any definition. The closest match is printed
as a suggestion, and running lvresize --help will display
the usage for each possible lvresize command.
The prototype syntax used for help/man output includes
required --option and positional args on the first line,
and optional --option and positional args enclosed in [ ]
on subsequent lines.
command_name <required_opt_args> <required_pos_args>
[ <optional_opt_args> ]
[ <optional_pos_args> ]
Command definitions that are not to be advertised/suggested
have the flag SECONDARY_SYNTAX. These commands will not be
printed in the normal help output.
Man page prototypes are also generated from the same original
command definitions, and are always in sync with the code
and help text.
Very early in command execution, a matching command definition
is found. lvm then knows the operation being done, and that
the provided args conform to the definition. This will allow
lots of ad hoc checking/validation to be removed throughout
the code.
Each command definition can also be routed to a specific
function to implement it. The function is associated with
an enum value for the command definition (generated from
the ID string.) These per-command-definition implementation
functions have not yet been created, so all commands
currently fall back to the existing per-command-name
implementation functions.
Using per-command-definition functions will allow lots of
code to be removed which tries to figure out what the
command is meant to do. This is currently based on ad hoc
and complicated option analysis. When using the new
functions, what the command is doing is already known
from the associated command definition.
Make it easier to replace missing segments with 'zero' returning
target - otherwise user would have to create some extra target
to provide zeros as /dev/zero can't be used (not a block device).
Also break code loop when segment is found and make it an INTERNAL_ERROR
where it's missing.
We added lightweight toolcontext handle to avoid useless initialization
of some parts of the context and also to avoid problems when using the
handle very soon at system boot, like in lvm2-activation-generator
through lvm2app interface. However, we missed reading all the other
config sources like lvmlocal.conf as well as any tag config - we need to
read these too to get the final config value which may be overriden in
any of these additional config sources.
Currently, we use this lightweight toolcontext handle to read
global/use_lvmetad and global/use_lvmpolld config values in
lvm2-activation-generator using lvm2app interface (lvm_config_find_bool
lvm2app function).
Some settings are not suitable for override in interactive/shell
mode because such settings may confuse the code and it may end
up with unexpected behaviour. This is because of the fact that
once we're in the interactive/shell mode, we have already applied
some settings for the shell itself and we can't override them
further because we're already using those settings to drive the
interactive/shell mode. Such settings would get ignored silently
or, in worse case, they would mess up the existing configuration.
When lvm commands are executed in lvm shell, we cover the whole lvm
command execution within this shell now. That means, all messages logged
and status caught during each command execution is now recorded in the
log report, including overall command's return code.
With patches that will follow, this will make it possible to widen log
report coverage when commands are executed from lvm shell so the amount
of messages that may end up in stderr/stdout instead of log report are
minimized.
Currently, the output is separated in 3 parts and each part can go into
a separate and user-defined file descriptor:
- common output (stdout by default, customizable by LVM_OUT_FD environment variable)
- error output (stderr by default, customizable by LVM_ERR_FD environment variable)
- report output (stdout by default, customizable by LVM_REPORT_FD environment variable)
For example, each type of output goes to different output file:
[0] fedora/~ # export LVM_REPORT_FD=3
[0] fedora/~ # lvs fedora vg/abc 1>out 2>err 3>report
[0] fedora/~ # cat out
[0] fedora/~ # cat err
Volume group "vg" not found
Cannot process volume group vg
[0] fedora/~ # cat report
LV VG Attr LSize Layout Role CTime
root fedora -wi-ao---- 19.00g linear public Wed May 27 2015 08:09:21
swap fedora -wi-ao---- 500.00m linear public Wed May 27 2015 08:09:21
Another example in LVM shell where the report goes to "report" file:
[0] fedora/~ # export LVM_REPORT_FD=3
[0] fedora/~ # lvm 3>report
(in lvm shell)
lvm> vgs
(content of "report" file)
[1] fedora/~ # cat report
VG #PV #LV #SN Attr VSize VFree
fedora 1 2 0 wz--n- 19.49g 0
(in lvm shell)
lvm> lvs
(content of "report" file)
[1] fedora/~ # cat report
VG #PV #LV #SN Attr VSize VFree
fedora 1 2 0 wz--n- 19.49g 0
LV VG Attr LSize Layout Role CTime
root fedora -wi-ao---- 19.00g linear public Wed May 27 2015 08:09:21
swap fedora -wi-ao---- 500.00m linear public Wed May 27 2015 08:09:21
This fixes commit f50d4011cd which
introduced a problem when using older lvm2 code with newer libdm.
In this case, the old LVM didn't recognize new _LOG_BYPASS_REPORT flag
that libdm-report code used. This ended up with no output at all
from libdm where log_print_bypass_report was called because the
_LOG_BYPASS_REPORT was not masked properly in lvm2's print_log fn
which was called as callback function for logging.
With this patch, the lvm2 registers separate print_log_libdm logging
function for libdm instead. The print_log_libdm is exactly the same
as print_log (used throughout lvm2 code) but it checks whether we're
printing common line on output where "common" means not going to stderr,
not a warning and not an error and if we are, it adds the
_LOG_BYPASS_REPORT flag so the log_print goes directly to output, not
to any log report.
So this achieves the same goal as in f50d4011cd,
just doing it in a way that newer libdm is still compatible with older
lvm2 code (libdm-report is the only code using log_print).
Looking at the opposite mixture - older libdm with newer lvm2 code,
that won't be compilable because the new log report functionality
that is in lvm2 also requires new dm_report_group_* libdm functions
so we don't need to care here.
Some commands scan labels to populate lvmcache multiple
times, i.e. lvmcache_init, scan labels to fill lvmcache,
lvmcache_destroy, then later repeat
Each time labels are scanned, duplicates are detected,
and preferred devices are chosen. Each time this is done
within a single command, we want to choose the same
preferred devices. So, check for existing preferences
when choosing preferred devices.
This also fixes a problem with the list of unused duplicate
devs when run in an lvm shell. The devs had been allocated
from cmd memory, resulting in invalid list entries between
commands.
A program may be using liblvm2app for simply checking a config
setting in lvm.conf. In this case, a full lvm context is not
needed, only cmd->cft (which are the config settings read from
lvm.conf).
lvm_config_find_bool() can now be passed a NULL lvm context
in which case it will only create cmd->cft, check the config
setting asked for, and destroy the cmd.
When setting up a toolcontext, the lib init function
was detecting an error when there was none, and then
it was returning an incompletely initialized cmd struct
instead of NULL. The effect was that the lib would try
to use the uninitialized cmd struct and segfault.
This would happen if a non-fatal error occurred during
cmd setup, e.g. user permission failed on lvmetad socket,
causing cmd to fall back to scanning and not use lvmetad.
The only real error condition is when create_toolcontext
returns NULL. If cmd is returned, the lib can use it.
If lvmetad is running, and a command opts to not use it
(--config global/use_lvmetad=0), and the command changes
metadata, then the metadata change is not visible to
lvmetad. Subsequent commands using lvmetad to change
metadata may cause corruption based on the invalid
lvmetad state.
Eventually we can set the disabled state in lvmetad
to prevent this problem, but for now print a warning
about the possibility.
When command is not using lvmetad because
use_lvmetad=0 in the config, but the lvmetad
pidfile exists, print a warning (previously
this checked for the socket existing instead
of the pidfile existing.)
The lvmetad connection is created within the
init_connections() path during command startup,
rather than via the old lvmetad_active() check.
The old lvmetad_active() checks are replaced
with lvmetad_used() which is a simple check that
tests if the command is using/connected to lvmetad.
The old lvmetad_set_active(cmd, 0) calls, which
stopped the command from using lvmetad (to revert to
disk scanning), are replaced with lvmetad_make_unused(cmd).
When a command modifies a PV or VG, or changes the
activation state of an LV, it will send a dbus
notification when the command is finished. This
can be enabled/disabled with a config setting.
This patch adds "include_historical_lvs" field to struct cmd_context to
make it possible for the command to switch between original funcionality
where no historical LVs are processed and functionality where historical
LVs are taken into account (and reported or processed further). The switch
between these modes is done using the '-H|--history' switch on command
line.
The include_historical_lvs state is then passed to process_each_* fns
using the "include_historical_lvs" field within struct processing_handle.
'verbose' was marked as a boolean option while it
takes integer args - so it has limited usage to 0 or 1,
but we supported 0-4 at least.
Fix it by switching to corrent int type.
(Hopefully noone was trying to use this variable as true/yes/false/no
way - as the would be unsupported/undocumented).
The regex filter (controlled by devices/filter lvm.conf setting) was
evaluated as the very last filter. However, this is not optimal when
it comes to restricting disk access - users define devices/filter
as well as devices/global_filter to avoid this.
The devices/global_filter is already positioned at the beginning of the
filter chain. We need to do the same for devices/filter.
Filter chains before this patch:
A: when lvmetad is not used:
persistent_filter -> sysfs_filter -> global_regex_filter ->
type_filter -> usable->filter -> mpath_component_filter ->
partition_filter -> md_component_filter -> fw_raid_filter ->
regex_filter
B: when lvmetad is used:
B1: to update lvmetad:
sysfs_filter -> global_regex_filter -> type_filter ->
usable_filter -> mpath_component_filter -> partition_filter ->
md_component_filter -> fw_raid_filter
B2: to retrieve info from lvmetad:
persistent_filter -> usable_filter -> regex_filter
From the chain list above we can see that particularly in case when
lvmetad is not used, the regex filter is the very last one that is
processed. If lvmetad is used, it doesn't matter much as there's
the global_regex_filter which is used instead when updating lvmetad
and when retrieving info from lvmetad, putting regex_filter in front
of usable_filter wouldn't change much since usabled_filter is not
reading disks directly.
This patch puts the regex filter to the front even in case lvmetad
is not used, hence reinstating the state as it was before commit
a7be3b12df (which moved the regex_filter
position in the chain). Still, the arguments for the commit
a7be3b12df still apply and they're
still satisfied since component filters (MD, mpath...) are evaluated
first just before updating lvmetad.
So with this patch, we end up with:
A: when lvmetad is not used:
persistent_filter -> sysfs_filter -> global_regex_filter ->
regex_filter -> type_filter -> usable->filter ->
mpath_component_filter -> partition_filter ->
md_component_filter -> fw_raid_filter
B: when lvmetad is used:
B1: to update lvmetad:
sysfs_filter -> global_regex_filter -> type_filter ->
usable_filter -> mpath_component_filter -> partition_filter ->
md_component_filter -> fw_raid_filter
B2: to retrieve info from lvmetad:
persistent_filter -> regex_filter -> usable_filter
This way, specifying the regex_filter in non-lvmetad case causes
the devices to be filtered based on regex first before processing
any other filters which can access disks (like md_component_filter).
This patch also streamlines the code for better readability.
Previously, a command would only rescan a lockd VG
when lvmetad returned the "vg_invalid" flag indicating
that the cached copy was invalid (which is done by
lvmlockd.) This is still the only usual reason for
rescanning a lockd VG, but two new special cases are
added where we also do the rescan:
. When the --shared option is used to display lockd VGs
from hosts not using lvmlockd. This is the same case
as using --foreign to display foreign VGs, but --shared
was missing the corresponding bits to rescan the VGs.
. When a lockd VG is allowed to be read for displaying
after failing to acquire the lock from lvmlockd. In
this case, the usual mechanism for validating the
cache is missed, so assume the cache would have been
invalidated. (This had been a previous todo item
that was lost during other cleanup.)
These were long-standing todos that were lost track of.
When vgremove is used to remove multiple VGs in one command,
e.g. vgremove foo bar, the first VG (foo) that is removed
may have held the sanlock global lock. In this case,
do not continue removing further VGs (bar) without the
global lock.
Use refresh_filters instead of destroy_filters and init_filters
in refresh_toolcontext fn which deals with cmd->initialized.filters
correctly on refresh.
Just shuffle the items and put them into logical groups so it's
visible at first sight what each group contains - it makes it a bit
easier to make heads and tails of the whole cmd_context monster.
Make it possible to decide whether we want to initialize connections and
filters together with toolcontext creation.
Add "filters" and "connections" fields to struct
cmd_context_initialized_parts and set these in cmd_context.initialized
instance accordingly.
(For now, all create_toolcontext calls do initialize connections and
filters, we'll change that in subsequent patch appropriately.)
Move original lvmetad and lvmpolld initialization code from
_process_config fn to their own functions _init_lvmetad and
_init_lvmpolld (both covered with single _init_connections fn).
Add struct cmd_context_initialized_parts to wrap up information
about which cmd context pieces are initialized and add variable
of this struct type into struct cmd_context.
Also, move existing "config_initialized" variable that was directly
part of cmd_context into the new cmd_context.initialized wrapper.
We'll be adding more items into the struct cmd_context_initialized_parts
with subsequent patches...
The vgchange/lvchange activation commands read the VG, and
don't write it, so they acquire a shared VG lock from lvmlockd.
When other commands fail to acquire a shared VG lock from
lvmlockd, a warning is printed and they continue without it.
(Without it, the VG metadata they display from lvmetad may
not be up to date.)
vgchange/lvchange -a shouldn't continue without the shared
lock for a couple reasons:
. Usually they will just continue on and fail to acquire the
LV locks for activation, so continuing is pointless.
. More importantly, without the sh VG lock, the VG metadata
used by the command may be stale, and the LV locks shown
in the VG metadata may no longer be current. In the
case of sanlock, this would result in odd, unpredictable
errors when lvmlockd doesn't find the expected lock on
disk. In the case of dlm, the invalid LV lock could be
granted for the non-existing LV.
The solution is to not continue after the shared lock fails,
in the same way that a command fails if an exclusive lock fails.
Use find_config_tree_array for all config arrays. Also, add
INTERNAL_ERROR in case there should have been at least default
value defined for a setting but it was not returned for some
reason (either config_settings.h misconfiguration or other config
tree error printed by functions called by find_config_tree_array).
Before, we used general find_config_tree_node function to retrieve
array values. This had a downside where if the node was not found,
we had to insert default values directly in-situ after the
find_config_tree_node call. This way, we had two copies of default
values - one in config_settings.h and the other one directly in the
code where we found out that find_config_tree_node returned NULL and
hence we needed to fall back to defaults.
With separate find_config_tree_array used for array config values,
we keep all the defaults centrally in config_settings.h because
the new find_config_tree_array automatically returns these defaults
if it can't find any value set in the configuration.
This patch just makes the behaviour exactly the same for arrays as
for any other non-array type where we call find_config_tree_<type>
already, hence making the internal interface for handling array
values consistent with the rest of the config types.
including the allow_override_lock_modes setting.
It was not possible to override default lock modes any longer,
since the command line options had already been removed.
A mechanism will probably be required later that puts part of
this back.
Make it possible to define format for time that is displayed.
The way the format is defined is equal to the way that is used
for strftime function, although not all formatting options as
used in strftime are available for LVM2 - the set is restricted
(e.g. we do not allow newline to be printed). The lvm.conf
comments contain the whole list that LVM2 accepts for time format
together with brief description (copied from strftime man page).
For example:
(defaults used - the format is the same as used before this patch)
$ lvs -o+time vg/lvol0 vg/lvol1
LV VG Attr LSize Time
lvol0 vg -wi-a----- 4.00m 2015-06-25 16:18:34 +0200
lvol1 vg -wi-a----- 4.00m 2015-06-29 09:17:11 +0200
(using 'time_format = "@%s"' in lvm.conf - number of seconds
since the Epoch)
$ lvs -o+time vg/lvol0 vg/lvol1
LV VG Attr LSize Time
lvol0 vg -wi-a----- 4.00m @1435241914
lvol1 vg -wi-a----- 4.00m @1435562231
Use of display_lvname() in plain log_debug() may accumulate memory in
command context mempool. Use instead small ringbuffer which allows to
store cuple (10 ATM) names so upto 10 full names can be used at one.
We are not keeping full VG/LV names as it may eventually consume larger
amount of RAM resouces if vgname is longer and lots of LVs are in use.
Note: if there would be ever needed for displaing more names at once,
the limit should be raised (e.g. log_debug() would need to print more
then 10 LVs on a single line).
In log messages refer to it as system ID (not System ID).
Do not put quotes around the system_id string when printing.
On the command line use systemid.
In code, metadata, and config files use system_id.
In lvmsystemid refer to the concept/entity as system_id.
The only realistic way for a host to have active LVs in a
foreign VG is if the host's system_id (or system_id_source)
is changed while LVs are active.
In this case, the active LVs produce an warning, and access
to the VG is implicitly allowed (without requiring --foreign.)
This allows the active LVs to be deactivated.
In this case, rescanning PVs for the VG offers no benefit.
It is not possible that rescanning would reveal an LV that
is active but wasn't previously in the VG metadata.
A foreign VG should be silently ignored by a reporting/display
command like 'vgs'. If the reporting/display command specifies
a foreign VG by name on the command line, it should produce an
error message.
Scanning commands pvscan/vgscan/lvscan are always allowed to
read and update caches from all PVs, including those that belong
to foreign VGs.
Other non-report/display/scan commands always ignore a foreign
VG, or report an error if they attempt to use a foreign VG.
vgimport should always invalidate the lvmetad cache because
lvmetad likely holds a pre-vgexported copy of the VG.
(This is unrelated to using foreign VGs; the pre-vgexported
VG may have had no system_id at all.)
Move the lvm1 sys ID into vg->lvm1_system_id and reenable the #if 0
LVM1 code. Still display the new-style system ID in the same
reporting field, though, as only one can be set.
Add a format feature flag FMT_SYSTEM_ON_PVS for LVM1 and disallow
access to LVM1 VGs if a new-style system ID has been set.
Treat the new vg->system_id as const.
Allow cmd->unknown_system_id to be cleared during toolcontext
refresh.
Set a default value of "none" for global/system_id_source.
Allow local/system_id to be empty so it's not impossible for
a later config file to remove it.
In a file containing a system ID:
Any whitespace at the start of a line is ignored;
Blank lines are ignored;
Any characters after a # are ignored along with the #.
The system ID is obtained by processing the first line with
non-ignored characters.
If further lines with non-ignored characters follow, a warning is
issued.
Add WARNING messages if there are problems setting the requested
system ID.
Ban "localhost" as a prefix regardless of the system_id_source.
Use cmd->hostname instead of calling uname again.
Make system_id_source values case-insensitive (as with new settings like
log_debug_classes) and also accept machine-id to match the filename.
Require system ID to begin with an alphanumeric character.
Rename fn to make clear it's only validation for systemid
and always terminate result rather than imposing this on the caller.
In 2.02.99, _init_tags() inadvertently began to ignore the
dm_config_tree struct passed to it. "tags" sections are not
merged together, so the "tags" section in the main config file was
being processed repeatedly and other "tags" sections were ignored.
Just like MD filtering that detects components of software RAID (md),
add detection for firmware RAID.
We're not adding any native code to detect this - there are lots of
firmware RAIDs out there which is just out of LVM scope. However,
with current changes with which we're able to get device info from
external sources (e.g. external_device_info_source="udev"), we can
do this easily if the external device status source has this kind
of information - which is the case of "udev" source where the results
of blkid scans are stored.
This detection should cover all firmware RAIDs that blkid can detect and
which are identified as:
ID_FS_TYPE = {adaptec,ddf,hpt45x,hpt37x,isw,jmicron,lsi_mega,nvidia,promise_fasttrack,silicon_medley,via}_raid_member
Composite filter is a filter that can put several filters in one set.
This patch adds a switch when creating the composite filter which will
enable or disable external device info handles for all the filters
the composite filter encompasses.
We want to use this external device info for majority of the filters
which are in the "lvmetad filter chain" (or the respective part if
we're not using lvmetad).
Following patches will use the enabled external device handle in
concrete filters from the composite filter...