IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If there is sufficient space in the metadata area, align the next
metadata to a disk offset that is a multiple of 4096 bytes and
don't write it circularly. If it doesn't all fit at the end
of the metadata area, go back to the start and write it all there
contiguously.
If there is insufficient space to use the new stricter rules, revert to
the original behaviour, aligning on 512-byte boundaries wrapping around
the circular buffer as required.
Use new ALIGN_ABSOLUTE macro when calculating the start location
of new metadata and adjust the end of buffer detection so that
there is no longer an imposed gap between old and new metadata.
Currently both start and offset should always be divisible by alignment,
so this should have no effect, but a later patch will increase alignment
so these variables can no longer be optimised out.
Expand out the metadata wrapping calculations to prepare
to support a larger alignment.
The current alignment is 512 bytes so
(mdac_area_start + rlocn->offset) % alignment is zero.
Mark the first metadata area on each text format PV as MDA_PRIMARY.
Pass this information down to the device layer so that when
there are two metadata areas on a block device, we can easily
distinguish two independent streams of I/O.
Introduce enum dev_io_reason to categorise block device I/O
in debug messages so it's obvious what it is for.
DEV_IO_SIGNATURES /* Scanning device signatures */
DEV_IO_LABEL /* LVM PV disk label */
DEV_IO_MDA_HEADER /* Text format metadata area header */
DEV_IO_MDA_CONTENT /* Text format metadata area content */
DEV_IO_FMT1 /* Original LVM1 metadata format */
DEV_IO_POOL /* Pool metadata format */
DEV_IO_LV /* Content written to an LV */
DEV_IO_LOG /* Logging messages */
When an ignored metadata area gets flagged for use again, make sure the
code doesn't try to parse its old metadata. Firstly by trying to detect
this situation and skipping the read (while still remembering the
position reached in the circular buffer), and secondly by clearing the
invalid live metadata location on disk as a precaution when subsequently
writing out the precommitted metadata.
Problems showed up when a metadata area in one VG got moved to
another VG in ignored state (still holding metadata for the original
VG) and then later got brought into use in the new VG - only the header
should be read in this case, not any of the metadata content.
vgmerge suffers from a similar problem to the one fixed in commit
8146548d25 ("vgsplit: Fix intermediate
metadata corruption.")
When merging, splitting or renaming VGs, use a new PV status flag
PV_MOVED_VG to mark the PVs that hold metadata with the old VG name and
use this to provide PV-level granularity instead of incorrectly assuming
all PVs in the VG are the same.
Changing the VG of a PV uses the same on-disk mechanism as vgrename.
This relies on recognising both the old and new VG names. Prior to this
patch the vgsplit code incorrectly provided the new VG name twice
instead of the old and new ones. This lead the low-level mechanism not
to recognise the device as already belonging to a VG and so paying no
attention to the location of its existing metadata, sometimes partly
overwriting it and then later trying to read the corrupt metadata and
issuing a checksum error.
lvmcache_foreach_mda() can fail for numerous reasons
and failing error code cannot be ignored (out-of-memory...)
TODO: might need more error handling tunning.
Fix code checking that the 2nd mda which is at the end of disk really
fits the available free space and avoid any DA and MDA interleaving when
we already have DA preallocated. This mainly applies when we're restoring
a PV from VG backup using pvcreate --restorefile where we may already have
some DA preallocated - this means the PV was in a VG before with already
allocated space from it (the LVs were created). Hence we need to avoid
stepping into DA - the MDA can never ever be inside in such case!
The code responsible for this calculation was already in
_text_pv_add_metadata_area fn, but it had a bug in the calculation where
we subtracted one more sector by mistake and then the code could still
incorrectly allocate the MDA inside existing DA. The patch also renames
the variable in the code so it doesn't confuse us in future.
Also, if the 2nd mda doesn't fit, don't silently continue with just 1
MDA (at the start of the disk). If 2nd mda was requested and we can't
create that due to unavailable space, error out correctly (the patch
also adds a test to shell/pvcreate-operation.sh for this case).
In order to reject out of place reshaping with segment data_offset
field on old runtime, add a respective segment type incompatibility
flag causing "+RESHAPE_DATA_OFFSET" to be suffixed to the segment
type name.
Prohibit activation of reshaping RaidLVs on incompatible
lvm2 runtime by storing e.g. 'raid5+RESHAPE' segment type
strings in the lvm2 metadata. Incompatible runtime not
supporting reshaping won't be able to activate those thus
avoiding potential data corruption.
Any new non-reshaping lvconvert command will reset the
segment type string from 'raid5+RESHAPE' to 'raid5'.
See commits
0299a7af1e and
4141409eb0
for segtype flag support.
Since lvmetad is using 'MISSING' in status for 'another' purpose,
we need to support ATM also flag get from this place.
Until fixed better - we accept both flags - alhough lvm2 will
only print in flags.
Switch METADATA_FORMAT flag usage to be stored via segtype
instead of 'status' flag which appeared to cause major
incompatibility troubles.
For backward compatiblity segtype flags are still accepted also
via 'status' bits which were used from version 2.02.169 so metadata
saved by this newer lvm2 version should still work nicely, although
new save version will no longer work on this older lvm2 version.
Allow storing LV status bits with segment type name field.
Switching to this since this field has better support for compatibility
with older version of lvm2 - since such unknown segtype will not cause
complete invisiblity of metadata from older lvm2 code - just the
particular LV will become unusable with unknown type of segment.
This patch fixed lvm2 compilation running on x32 arch.
(Using 64bit x86 cpu features but running on 32b address space,
so consuming less mem in VM).
On x32 arch 'time_t' is 64bit while 'long' is 32bit.
Cache pool read/writes metadata_format within its segment type..
For CachePoolLV unselected metadata format is NOT stored in metadata.
For CacheLV when metadata format is not present/selected in lvm2 metadata,
it's automatically assumed to be the version 1 (backward compatible).
To ensure older lvm2 will not 'miss-read' metadata with new version 2,
such LV is marked with METADATA_FORMAT status flag (segment is
specifying metadata format). So when cache uses metadata format 2,
it will become inaccesible on older system without such support.
(kernel dm cache < 1.10, lvm2 < 2.02.169).
In order to support striped raid5/6/10 LV reshaping (change
of LV type, stripesize or number of legs), this patch
introduces infrastructure prerequisites to be used
by raid_manip.c extensions in followup patches.
This base is needed for allocation of out-of-place
reshape space required by the MD raid personalities to
avoid writing over data in-place when reading off the
current RAID layout or number of legs and writing out
the new layout or to a different number of legs
(i.e. restripe)
Changes:
- add members reshape_len to 'struct lv_segment' to store
out-of-place reshape length per component rimage
- add member data_copies to struct lv_segment
to support more than 2 raid10 data copies
- make alloc_lv_segment() aware of both reshape_len and data_copies
- adjust all alloc_lv_segment() callers to the new API
- add functions to retrieve the current data offset (needed for
out-of-place reshaping space allocation) and the devices count
from the kernel
- make libdm deptree code aware of reshape_len
- add LV flags for disk add/remove reshaping
- support import/export of the new 'struct lv_segment' members
- enhance lv_extend/_lv_reduce to cope with reshape_len
- add seg_is_*/segtype_is_* macros related to reshaping
- add target version check for reshaping
- grow rebuilds/writemostly bitmaps to 246 bit to support kernel maximal
- enhance libdm deptree code to support data_offset (out-of-place reshaping)
and delta_disk (legs add/remove reshaping) target arguments
Related: rhbz834579
Related: rhbz1191935
Related: rhbz1191978
When command calls backup() more then once (which is actually not
wanted) this warning message is shown repeatedly:
"WARNING: This metadata update is NOT backed up."
Instead now print message just once and less confuse user.
Previously, a command sent lvmetad new VG metadata in vg_commit().
In vg_commit(), devices are suspended, so any memory allocation
done by the command while sending to lvmetad, or by lvmetad while
updating its cache could deadlock if memory reclaim was triggered.
Now lvmetad is updated in unlock_vg(), after devices are resumed.
The new method for updating VG metadata in lvmetad is in two phases:
1. In vg_write(), before devices are suspended, the command sends
lvmetad a short message ("set_vg_info") telling it what the new
VG seqno will be. lvmetad sees that the seqno is newer than
the seqno of its cached VG, so it sets the INVALID flag for the
cached VG. If sending the message to lvmetad fails, the command
fails before the metadata is committed and the change is not made.
If sending the message succeeds, vg_commit() is called.
2. In unlock_vg(), after devices are resumed, the command sends
lvmetad the standard vg_update message with the new metadata.
lvmetad sees that the seqno in the new metadata matches the
seqno it saved from set_vg_info, and knows it has the latest
copy, so it clears the INVALID flag for the cached VG.
If a command fails between 1 and 2 (after committing the VG on disk,
but before sending lvmetad the new metadata), the cached VG retains
the INVALID flag in lvmetad. A subsequent command will read the
cached VG from lvmetad, see the INVALID flag, ignore the cached
copy, read the VG from disk instead, update the lvmetad copy
with the latest copy from disk, (this clears the INVALID flag
in lvmetad), and use the correct VG metadata for the command.
(This INVALID mechanism already existed for use by lvmlockd.)