IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
If LVM LVs happen to contain PVs, they are passed to the lvm udev
rule for processing, where they should be ignored. PVs on LVs
most likely belong to VM images, and don't belong to the host
which sees the LV. It's unsafe for the host to use these PVs.
Without this change, the LV would be processed by pvscan which
would generally ignore it, either because of the devices file,
or because of the default lvm policy to not consider LVs as
potential PVs. This change makes the udev rule consistent
with that policy and avoids the unnecessary system messages
produced when pvscan ignores the LV.
Allow users to specify their path to systemd-run binary:
configure --with-systemd-run=/my/path/system-run
By defaults it autodetected in $PATH and fallbacks to:
/usr/bin/systemd-run.
Since 67722b3123, we have a new mechanism
to run the autoactivation from udev. With this change, we also replaced
the way the LVM autoactivation service is instantiatiated - instead of
setting the SYSTEM_WANTS udev variable (which systemd read and then
instantiated the service), we're now directly instantiating the
transient 'lvm-activate-<vgname>' service by calling systemd-run.
As such, we don't need to bother with setting the SYSTEMD_READY variable
for foreign devices anymore (in this case, MD and loop devices on top of
which there's a PV).
Before, we set the SYSTEMD_READY variable to make sure that the SYSTEMD_WANTS
is applied correctly - the service instantiation was edge-triggered by
flipping the SYSTEMD_READY from 0 to 1 and at the same time having the
SYSTEMD_WANTS variable set to the service name to instantiate. We're
using systemd-run now so this condition does not apply anymore.
Also, it was not completely correct to set SYSTEMD_READY for foreign
devices because there might be cases where this could cause issues,
see also https://github.com/lvmteam/lvm2/issues/94.
If the transient service remains after it's done, then
it prevents the same transient service from being run
again later if the PVs are detached and reattached
(although the behavior of a second autoactivation is not
well defined and may only work in limited cases.)
Port the old pvscan -aay scanning optimization to vgchange -aay.
The optimization uses pvs_online files created by pvscan --cache
to derive a list of devices to use when activating a VG. This
allows autoactivation of a VG to avoid scanning all devices, and
only scan the devices used by the VG itself. The optimization is
applied internally using the device hints interface.
The new option "--autoactivation event" is given to pvscan and
vgchange commands that are called by event activation. This
informs the command that it is being used for event activation,
so that it can apply checks and optimizations that are specific
to event activation. Those include:
- skipping the command if lvm.conf event_activation=0
- checking that a VG is complete before activating it
- using pvs_online files to limit device scanning
new udev rule 69-dm-lvm.rules replaces
69-dm-lvm-meta.rules and lvm2-pvscan.service
udev rule calls pvscan directly on the added device
pvscan output indicates if a complete VG can be activated
udev env var LVM_VG_NAME_COMPLETE is used to pass complete
VG name from pvscan to the udev rule
udev rule uses systemd-run to run vgchange -aay <vgname>