IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
Since we already check in few other places 'info' is not NULL,
do the same for others - however when info would be NULL
it more or less looks like internal error.
When not using lvmetad, this uses the system_id field in
the cached vginfo structs that are populated during a scan.
When using lvmetad, this requests the VG from lvmetad, and
checks the system_id field in the returned metadata.
When the command already knows both the vgid and vgname,
it should send both to lvmetad for a more exact request,
and it can save lvmetad the work of a name lookup.
Use 'mda' instead of NULL to quite Coverity warn.
However this code seems to be actually not even possible to hit.
With proper analysis it may possibly be dropped from code to
simplify logic.
When the command gets a list of alternate devices
from lvmetad, log each one directly. This is not
the same as the warnings when adding lvmcache,
which are related to which duplicate is preferred.
If lvmlockd is running, lvmetad is configured (use_lvmetad=1),
but lvmetad is not running, then commands will seg fault
when trying to send a message to lvmetad.
The difference is lvmetad being "active", not just "used".
When lvmetad_pvscan_vg() reads VG metadata from each PV,
it compares it to the last one to verify it matches.
If the VG metadata does not match on the PVs, an error
is printed and it fails to read the VG. In this error
case, use log_debug to show the differences between
the two unmatching copies of the metadata.
One host changes a VG, making the cached VG on another
host invalid. The other host then rereads the VG from
disk to get the latest copy. If the first host removed
a PV from the VG, the second host attempts to reread the
VG from old PV when rescanning. Reading the VG from the
removed PV fails, causing vg_read to return "VG not found".
The fix is to simply not fail when a VG is not found while
rereading a PV and continue without it.
(This doesn't happen if the second host happens to first
run a command like 'vgs' that triggers a global revalidation
of metadata.)
The code was expecting the wrong return value from
compare_config, which returns 0 when equal.
This is a problem for a lockd VG using multiple PVs
when the VG needs to be rescanned.
Previously, a command would only rescan a lockd VG
when lvmetad returned the "vg_invalid" flag indicating
that the cached copy was invalid (which is done by
lvmlockd.) This is still the only usual reason for
rescanning a lockd VG, but two new special cases are
added where we also do the rescan:
. When the --shared option is used to display lockd VGs
from hosts not using lvmlockd. This is the same case
as using --foreign to display foreign VGs, but --shared
was missing the corresponding bits to rescan the VGs.
. When a lockd VG is allowed to be read for displaying
after failing to acquire the lock from lvmlockd. In
this case, the usual mechanism for validating the
cache is missed, so assume the cache would have been
invalidated. (This had been a previous todo item
that was lost during other cleanup.)
These were long-standing todos that were lost track of.
pvscan autoactivation does not work for lockd VGs because
lock start is needed on a lockd VG before locking can be
done for it. Add a check to skip the attempt at autoactivate
rather than calling it, knowing it will fail.
Add a comment explaining why pvscan --cache works fine for
lockd VGs without locks, and why autoactivate is not done.
Put the change from commit #10d27998b3d2f6100e9e29e83d1d99948c55875f
back so we have working tree again for now. This code needs a bit of
a cleanup to return proper return value to check...
lib/format1/import-export.c:167: var_deref_op: Dereferencing null pointer "vg->lvm1_system_id"
lib/cache/lvmetad.c:1023: var_deref_op: Dereferencing null pointer "this"
daemons/lvmlockd/lvmlockd-core.c:2659: check_after_deref: Null-checking "act" suggests that it may be null, but it has already been dereferenced on all paths leading to the check
/daemons/lvmetad/lvmetad-core.c:1024: check_after_deref: Null-checking "pvmeta" suggests that it may be null, but it has already been dereferenced on all paths leading to the check
This is the client side handling of the global_invalid state
added to lvmetad in commit c595b50cec8a6b95c6ac4988912d1412f3cc0237.
The function added here:
. checks if the global state in lvmetad is invalid
. if so, scans disks to update the state in lvmetad
. clears the global_invalid flag in lvmetad
. updates the local udev db to reflect any changes
and update the lvmetad copy after it is reread from disk.
This is the client side handling of the vg_invalid state
added to lvmetad in commit c595b50cec8a6b95c6ac4988912d1412f3cc0237.
lvmetad_init() should not be called with open connection to the daemon.
Doing so is considered to be an internall error within lvm2 code.
Such coincidence can't occur within current code. Let's assure us it won't
ever happen.
This is an alternative/equivalent to commit
ca67cf84df6015c990618de3dc45c0b87eee75ce
The problem (wrong label->dev after a new preferred
duplicate device is chosen) was isolated to the lvmetad
case (non-lvmetad worked fine), and this fixes the problem
by setting the new label->dev in the lvmetad-specific
code rather than in the general lvmcache code.
In process_each_{vg,lv,pv} when no vgname args are given,
the first step is to get a list of all vgid/vgname on the
system. This is exactly what lvmetad returns from a
vg_list request. The current code is doing a vg_lookup
on each VG after the vg_list and populating lvmcache with
the info for each VG. These preliminary vg_lookup's are
unnecessary, because they will be done again when the
processing functions call vg_read. This patch eliminates
the initial round of vg_lookup's, which can roughly cut in
half the number of lvmetad requests and save a lot of extra work.
Example:
/dev/loop0 and /dev/loop1 are duplicates,
created by copying one backing file to the
other.
'identity /dev/loopX' creates an identity
mapping for loopX named idmloopX, which
adds a duplicate for the named device.
The duplicate selection code for lvmetad is
incomplete, and lvmetad is disabled for this
example.
[~]# losetup -f loopfile0
[~]# pvs
PV VG Fmt Attr PSize PFree
/dev/loop0 foo lvm2 a-- 308.00m 296.00m
[~]# losetup -f loopfile1
[~]# pvs
Found duplicate PV LnSOEqzEYED3RvIOa5PZP2s7uyuBLmAV: using /dev/loop1 not /dev/loop0
Using duplicate PV /dev/loop1 which is more recent, replacing /dev/loop0
PV VG Fmt Attr PSize PFree
/dev/loop1 foo lvm2 a-- 308.00m 308.00m
[~]# ./identity /dev/loop0
[~]# pvs
Found duplicate PV LnSOEqzEYED3RvIOa5PZP2s7uyuBLmAV: using /dev/loop1 not /dev/loop0
Using duplicate PV /dev/loop1 without holders, replacing /dev/loop0
Found duplicate PV LnSOEqzEYED3RvIOa5PZP2s7uyuBLmAV: using /dev/mapper/idmloop0 not /dev/loop1
Using duplicate PV /dev/mapper/idmloop0 from subsystem DM, replacing /dev/loop1
PV VG Fmt Attr PSize PFree
/dev/mapper/idmloop0 foo lvm2 a-- 308.00m 296.00m
[~]# ./identity /dev/loop1
[~]# pvs
WARNING: duplicate PV LnSOEqzEYED3RvIOa5PZP2s7uyuBLmAV is being used from both devices /dev/loop0 and /dev/loop1
Found duplicate PV LnSOEqzEYED3RvIOa5PZP2s7uyuBLmAV: using /dev/loop1 not /dev/loop0
Using duplicate PV /dev/loop1 which is more recent, replacing /dev/loop0
Found duplicate PV LnSOEqzEYED3RvIOa5PZP2s7uyuBLmAV: using /dev/mapper/idmloop0 not /dev/loop1
Using duplicate PV /dev/mapper/idmloop0 from subsystem DM, replacing /dev/loop1
Found duplicate PV LnSOEqzEYED3RvIOa5PZP2s7uyuBLmAV: using /dev/mapper/idmloop1 not /dev/mapper/idmloop0
Using duplicate PV /dev/mapper/idmloop1 which is more recent, replacing /dev/mapper/idmloop0
PV VG Fmt Attr PSize PFree
/dev/mapper/idmloop1 foo lvm2 a-- 308.00m 308.00m
Refactor the recent metadata-reading optimisation patches.
Remove the recently-added cache fields from struct labeller
and struct format_instance.
Instead, introduce struct lvmcache_vgsummary to wrap the VG information
that lvmcache holds and add the metadata size and checksum to it.
Allow this VG summary information to be looked up by metadata size +
checksum. Adjust the debug log messages to make it clear when this
shortcut has been successful.
(This changes the optimisation slightly, and might be extendable
further.)
Add struct cached_vg_fmtdata to format-specific vg_read calls to
preserve state alongside the VG across separate calls and indicate
if the details supplied match, avoiding the need to read and
process the VG metadata again.
Metadata areas which are marked as ignored should not be scanned
and read during pvscan --cache. Otherwise, this can cause lvmetad
to cache out-of-date metadata in case other PVs with fresh metadata
are missing by chance.
Make this to work like in non-lvmetad case where the behaviour would
be the same as if the PV was orphan (in case we have no other PVs
with valid non-ignored metadata areas).
When lvm1 PVs are visible, and lvmetad is used, and the foreign
option was included in the reporting command, the reporting
command would fail after the 'pvscan all devs' function saw
the lvm1 PVs. There is no reason the command should fail
because of the lvm1 PVs; they should just be ignored.
We need to use proper filter chain when we disable lvmetad use
explicitly in the code by calling lvmetad_set_active(0) while
overriding existing configuration. We need to reinitialize filters
in this case so proper filter chain is used. The same applies
for the other way round - when we enable lvmetad use explicitly in
the code (though this is not yet used).
With this change, the filter chains used look like this now:
A) When *lvmetad is not used*:
- persistent filter -> regex filter -> sysfs filter ->
global regex filter -> type filter ->
usable device filter(FILTER_MODE_NO_LVMETAD) ->
mpath component filter -> partitioned filter ->
md component filter
B) When *lvmetad is used* (two separate filter chains):
- the lvmetad filter chain used when scanning devs for lvmetad update:
sysfs filter -> global regex filter -> type filter ->
usable device filter(FILTER_MODE_PRE_LVMETAD) ->
mpath component filter -> partitioned filter ->
md component filter
- the filter chain used for lvmetad responses:
persistent filter -> usable device filter(FILTER_MODE_POST_LVMETAD) ->
regex filter
We used to print an error message whenever we tried to deal with devices that
lvmetad knew about but were rejected by a client-side filter. Instead, we now
check whether the device is actually absent or only filtered out and only print
a warning in the latter case.