IF YOU WOULD LIKE TO GET AN ACCOUNT, please write an
email to Administrator. User accounts are meant only to access repo
and report issues and/or generate pull requests.
This is a purpose-specific Git hosting for
BaseALT
projects. Thank you for your understanding!
Только зарегистрированные пользователи имеют доступ к сервису!
Для получения аккаунта, обратитесь к администратору.
The vg read and vg write cases need to update lvmcache
differently, so create separate functions for them.
The read case now handles checking for outdated mdas
and moves them aside into a new list to be repaired in
a subsequent commit.
Have the caller pass the label_sector to the read
function so the read function can set the sector
field in the label struct, instead of having the
read function return a pointer to the label for
the caller to set the sector field.
Also have the read function return a flag indicating
to the caller that the scanned device was identified
as a duplicate pv.
Outdated PVs hold metadata for VG from which they
have been removed. Add the ability to keep track
of these in lvmcache.
This will be used for more advanced repair in a
subsequent commit.
mda's that cannot be processed by lvm because of
some corruption can be kept on a separate list.
These will be used for more advanced repair in a
subsequent commit.
If udev info is missing for a device, (which would indicate
if it's an MD component), then do an end-of-device read to
check if a PV is an MD component. (This is skipped when
using hints since we already know devs in hints are good.)
A new config setting md_component_checks can be used to
disable the additional end-of-device MD checks, or to
always enable end-of-device MD checks.
When both hints and udev info are disabled/unavailable,
the end of PVs will now be scanned by default. If md
devices with end-of-device superblocks are not being
used, the extra I/O overhead can be avoided by setting
md_component_checks="start".
Save the previous duplicate PVs in a global list instead
of a list on the cmd struct. dmeventd reuses the cmd struct
for multiple commands, and the list entries between commands
were being freed (apparently), causing a segfault in dmeventd
when it tried to use items in cmd->unused_duplicate_devs
that had been saved there by the previous command.
The new command 'pvck --dump metadata PV' will extract
the current version of VG metadata from a PV for testing
and debugging. --dump metadata_area extracts the entire
text metadata area.
There have been two file locks used to protect lvm
"global state": "ORPHANS" and "GLOBAL".
Commands that used the ORPHAN flock in exclusive mode:
pvcreate, pvremove, vgcreate, vgextend, vgremove,
vgcfgrestore
Commands that used the ORPHAN flock in shared mode:
vgimportclone, pvs, pvscan, pvresize, pvmove,
pvdisplay, pvchange, fullreport
Commands that used the GLOBAL flock in exclusive mode:
pvchange, pvscan, vgimportclone, vgscan
Commands that used the GLOBAL flock in shared mode:
pvscan --cache, pvs
The ORPHAN lock covers the important cases of serializing
the use of orphan PVs. It also partially covers the
reporting of orphan PVs (although not correctly as
explained below.)
The GLOBAL lock doesn't seem to have a clear purpose
(it may have eroded over time.)
Neither lock correctly protects the VG namespace, or
orphan PV properties.
To simplify and correct these issues, the two separate
flocks are combined into the one GLOBAL flock, and this flock
is used from the locking sites that are in place for the
lvmlockd global lock.
The logic behind the lvmlockd (distributed) global lock is
that any command that changes "global state" needs to take
the global lock in ex mode. Global state in lvm is: the list
of VG names, the set of orphan PVs, and any properties of
orphan PVs. Reading this global state can use the global lock
in sh mode to ensure it doesn't change while being reported.
The locking of global state now looks like:
lockd_global()
previously named lockd_gl(), acquires the distributed
global lock through lvmlockd. This is unchanged.
It serializes distributed lvm commands that are changing
global state. This is a no-op when lvmlockd is not in use.
lockf_global()
acquires an flock on a local file. It serializes local lvm
commands that are changing global state.
lock_global()
first calls lockf_global() to acquire the local flock for
global state, and if this succeeds, it calls lockd_global()
to acquire the distributed lock for global state.
Replace instances of lockd_gl() with lock_global(), so that the
existing sites for lvmlockd global state locking are now also
used for local file locking of global state. Remove the previous
file locking calls lock_vol(GLOBAL) and lock_vol(ORPHAN).
The following commands which change global state are now
serialized with the exclusive global flock:
pvchange (of orphan), pvresize (of orphan), pvcreate, pvremove,
vgcreate, vgextend, vgremove, vgreduce, vgrename,
vgcfgrestore, vgimportclone, vgmerge, vgsplit
Commands that use a shared flock to read global state (and will
be serialized against the prior list) are those that use
process_each functions that are based on processing a list of
all VG names, or all PVs. The list of all VGs or all PVs is
global state and the shared lock prevents those lists from
changing while the command is processing them.
The ORPHAN lock previously attempted to produce an accurate
listing of orphan PVs, but it was only acquired at the end of
the command during the fake vg_read of the fake orphan vg.
This is not when orphan PVs were determined; they were
determined by elimination beforehand by processing all real
VGs, and subtracting the PVs in the real VGs from the list
of all PVs that had been identified during the initial scan.
This is fixed by holding the single global lock in shared mode
while processing all VGs to determine the list of orphan PVs.
When a single copy of metadata gets within 1MB of the
current io_memory_size value, begin printing a warning
that the io_memory_size should be increased.
Save the list of PVs in /run/lvm/hints. These hints
are used to reduce scanning in a number of commands
to only the PVs on the system, or only the PVs in a
requested VG (rather than all devices on the system.)
Native disk scanning is now both reduced and
async/parallel, which makes it comparable in
performance (and often faster) when compared
to lvm using lvmetad.
Autoactivation now uses local temp files to record
online PVs, and no longer requires lvmetad.
There should be no apparent command-level change
in behavior.
When lvmetad is not used, use temporary files to record
which PVs have appeared. Use these temp files to determine
when a VG is complete, to trigger autoactivation.
This change allows us to remove lvmetad while keeping the
same autoactivation behavior that lvmetad provides.
The temp files are created in /run/lvm/pvs_online/ and are
named for the PVID of the PV. The files contain the
major:minor of the device the PV was read from.
e.g. if VG foo has dev1 and dev2, then:
. pvscan --cache -aay dev1
reads vg metadata from dev1
creates /run/lvm/pvs_online/<pvid-of-dev1>
checks if all vg->pvs are online: no
. pvscan --cache -aay dev2
reads vg metadata from dev2
creates /run/lvm/pvs_online/<pvid-of-dev2>
checks if all vg->pvs are online: yes
autoactivates vg
A 'pvscan --cache dev' (without -aay) still records that
dev is online.
A 'pvscan --cache --major X --minor Y' after a device is
gone will remove the temp file for it.
A 'pvscan --cache [-aay]' (no devs) resets the state of
temp files by removing them all, then scanning all devs
and creating temp files for PVs that are found.
If no online files exist, the first pvscan --cache scans
all devs and creates temp files for any PVs found.
The scope of the temp files is only pvscan, and they are only
used for pvscan-based autoactivation. No other commands are
concerned with or aware of these temp files. When lvm creates
or removes PVs, no attempt is made to update the temp files.
The md filter can operate in two native modes:
- normal: reads only the start of each device
- full: reads both the start and end of each device
md 1.0 devices place the superblock at the end of the device,
so components of this version will only be identified and
excluded when lvm uses the full md filter.
Previously, the full md filter was only used in commands
that could write to the device. Now, the full md filter
is also applied when there is an md 1.0 device present
on the system. This means the 'pvs' command can avoid
displaying md 1.0 components (at the cost of doubling
the i/o to every device on the system.)
(The md filter can operate in a third mode, using udev,
but this is disabled by default because there have been
problems with reliability of the info returned from udev.)
A few places were calling a function to check if a
VG lock was held. The only place it was actually
needed is for pvcreate which wants to do its own
locking (and scanning) around process_each_pv.
The locking/scanning exceptions for pvcreate in
process_each_pv/vg_read can be enabled by just passing
a couple of flags instead of checking if the VG is
already locked. This also means that these special
cases won't be enabled unknowingly in other places
where they shouldn't be used.
Four commands lock two VGs at a time:
- vgsplit and vgmerge already have their own logic to
acquire the locks in the correct order.
- vgimportclone and vgrename disable this ordering check.
We have been warning about duplicate devices (and disabling lvmetad)
immediately when the dup was detected (during label_scan). Move the
warnings (and the disabling) to happen later, after label_scan is
finished.
This lets us avoid an unwanted warning message about duplicates
in the special case were md components are eliminated during the
duplicate device resolution.
As we start refactoring the code to break dependencies (see doc/refactoring.txt),
I want us to use full paths in the includes (eg, #include "base/data-struct/list.h").
This makes it more obvious when we're breaking abstraction boundaries, eg, including a file in
metadata/ from base/
md devices using an older superblock version have
superblocks at the end of the md device. For commands
that skip reading the end of devices during filtering,
the md component devs will be scanned, and will appear
as duplicate PVs to the original md device. Remove
these md components from the list of unused duplicate
devices, so they are treated as if they had been
ignored during filtering. This avoids the restrictions
that are placed on using PVs with duplicates.
Filters are still applied before any device reading or
the label scan, but any filter checks that want to read
the device are skipped and the device is flagged.
After bcache is populated, but before lvm looks for
devices (i.e. before label scan), the filters are
reapplied to the devices that were flagged above.
The filters will then find the data they need in
bcache.
The clvmd saved_vg data is independent from the normal lvm
lvmcache vginfo data, so separate saved_vg from vginfo.
Normal lvm doesn't need to use save_vg at all, and in clvmd,
lvmcache changes on vginfo can be made without worrying
about unwanted effects on saved_vg.
To avoid the chance of freeing a saved vg while another
code path is using it, defer freeing saved vgs until
all the lvmcache content is dropped for the vg.
There are likely more bits of code that can be removed,
e.g. lvm1/pool-specific bits of code that were identified
using FMT flags.
The vgconvert command can likely be reduced further.
The lvm1-specific config settings should probably have
some other fields set for proper deprecation.